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Abstract The emergency vehicle location problem to deter-
mine the number of ambulance vehicles and their locations
satisfying a required reliability level is investigated in this
study. This is a complex nonlinear issue involving critical
decision making that has inherent stochastic characteristics.
This paper studies an iterative optimization algorithm with
parameter estimation to solve the emergency vehicle location
problem. In the suggested algorithm, a linear model deter-
mines the locations of ambulances, while a hypercube simu-
lation is used to estimate and provide parameters regarding
ambulance locations. First, we suggest an iterative hypercube
optimization algorithm in which interaction parameters and
rules for the hypercube and optimization are identified. The
interaction rules employed in this study enable our algorithm
to always find the locations of ambulances satisfying the reli-
ability requirement. We also propose an iterative simulation
optimization algorithm in which the hypercube method is re-
placed by a simulation, to achieve computational efficiency.
The computational experiments show that the iterative simu-
lation optimization algorithm performs equivalently to the it-
erative hypercube optimization. The suggested algorithms are
found to outperform existing algorithms suggested in the
literature.

Keywords Optimization . Iterative Approach . Hypercube .
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1 Introduction

In an emergency medical service system (EMS), the am-
bulance location problem (ALP) is a critical issue. Locat-
ing ambulances is crucial to providing timely emergency
medical services, affecting patients’ lives intimately. The
ALP can be defined as the problem to find the number
and locations of ambulances needed to provide a certain
level of timely service. The location set cover problem
(LSCP), which is to minimize the number of vehicles
required to cover all demand sites within a specific dis-
tance, is an effective approach used to model the ALP.
However, the LSCP is not able to capture the most im-
portant characteristic of the ALP: unavailability of an am-
bulance, such as when it is occupied by a patient, which
leads to the late arrival of the ambulance at the target
location, thus decreasing the patient’s chances of survival.
Therefore, it is important to build a reliable ambulance
location model.

In 1980s, the term reliability emerged regarding the
ALP to address the issue of unavailability of ambulances.
It can be defined as the probability that a patient who calls
fo r an ambulance wi l l be p rov ided wi th one :
reliability=(total calls—lost calls)/total calls. Thus, to en-
sure the reliability of demand sites, ambulance unavail-
ability must be controlled in the ALP. ReVelle and Horgan
[1–3] suggested the probabilistic LSCP (PLSCP) in which
a reliability factor was embodied as a constraint. This
problem seeks to find appropriate locations for the ambu-
lances to ensure that the reliability levels of all demand
sites are higher than required while minimizing the total
number of vehicles. However, the probabilistic nature of
the reliability constraint makes its modeling in mathemat-
ical terms very complex, which has been a significant
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issue. Without considering stochastic characteristics, the
model can give a solution that fails to guarantee reliabil-
ity. Because the ALP has (1) a complex modeling struc-
ture that involves tough decision making and has an in-
herent stochastic nature, and (2) because the hypercube
method is known to estimate reliability and analyze EMSs
accurately, this study employs an iterative hypercube op-
timization framework for the purpose of suggesting the
locations of ambulances with enhanced reliability. In the
proposed iterative hypercube optimization protocol, (a) an
optimization model is solved to determine the locations of
ambulances; (b) the hypercube model is used to estimate
the performance and parameters for the locations of am-
bulances obtained from the optimization procedures and
to check whether the solution satisfies the reliability con-
straints; (c) if the solution is feasible from the hypercube
outcome, the algorithm is terminated; (d) otherwise, the
information obtained via the hypercube model is delivered
to the optimization model; (e) the optimization model then
finds a new solution based on the new information; and
(f) the algorithm is repeated iteratively until it obtains a
real, feasible solution. Additionally, we propose using the
iterative simulation optimization algorithm for computa-
tional efficiency. It has the same framework as the itera-
tive hypercube optimization algorithm except that the hy-
percube method is replaced by a discrete event-based sim-
ulation. The hypercube does not perform well when ana-
lyzing an EMS with a large number of ambulances due to
its heavy computational burden, whereas this proposed
simulation is less sensitive to the number of vehicles.

The rest of this paper is organized as follows: in sec-
tion 2, we present a detailed survey of the relevant litera-
ture. In section 3, the study problem is defined using the
hypercube approach. In sections 4 and 5, we describe the
suggested iterative hypercube optimization framework and
the approach using the simulation. The experimental re-
sults are presented in section 6, followed by a comprehen-
sive conclusions section (section 7) and the cited
references.

2 Literature review

Location problems in the existing literature can be cate-
gorized as the LSCP and the maximal covering location
problem (MCLP). The LSCP finds the appropriate loca-
tions of ambulances to cover all of the demand sites with-
in a specific distance while minimizing the number of
ambulances (Toregas et al., [4]). The MCLP maximizes
the coverage of ambulances for a preset number of avail-
able ambulances (Church and ReVelle, [5]). Brotcorne
et al. [6] identified that ambulance locations decided ac-
cording to the aforementioned models have specific

shortcomings when the vehicles are busy. Daskin and
Stern [7], Horgan and Revell [8], and Gendreau et al.
[9] have suggested multiple coverage models to address
this issue. It seems difficult to find the adequate number
of ambulances to ensure a certain level of availability in
these models (Shariat-Mahaymany et al. [10]).

Probabilistic models for the ALP address EMS re-
quirements through considering the issue of ambulance
unavailability; their approaches primarily use stochastic
models and simulation models (to address the stochastic
nature of the ALP) or use mathematical models (to ad-
dress the decision-making process effectively).

Larson [11] proposed a hypercube model using a queu-
ing framework for the ALP. The model accurately calcu-
lates ambulance utilization and the reliability level and is
very helpful in determining overall performance of the
EMS. In contrast, it is difficult to compute clear results
for the total number of ambulances required. Larson [12],
Jarvis [13], Goldberg and Szidarovszky [14], and
Atkinson et al. [15, 16] have focused on the use of hy-
percube approximation algorithms methods to efficiently
evaluate the EMS.

A number of studies have suggested the integrated hy-
percube model with optimization frameworks for the pur-
pose of locating ambulances. There are two approaches in
these studies. The first approach is to maximize several
performance measures with the fixed number of vehicles.
The problems to maximize the expected reliability (Batta
et al., [17], Chiyoshi et al., [18], Saydam and Aytug,
[19]), to maximize the number of nodes satisfying re-
quired reliability (Galvao et al., [20]), to minimize the
expected traveling time (Geroliminis et al., [21, 22]),
and to optimize various performance measures (Iannoni
et al., [23]) with a fixed number of ambulances were in-
vestigated using the hypercube model incorporating solv-
ing algorithms such as meta-heuristics. The second ap-
proach is to minimize the number of vehicles satisfying
a reliability requirement, which is usually called as PLSC
P. Most of studies addressing PLSCP are based on a math-
ematical programming approach, and there are few studies
that adopt hypercube approach. A variation of PLSCP, the
dynamic available coverage location problem, was pro-
posed by Rajagopalan et al. [24] using a combination of
Jarvis’ hypercube approximation and a tabu search algo-
rithm. In their model, the reliability is estimated by hy-
percube approximation, however, it can be inaccurate in
some cases.

Savas [25] used a simulation approach to study the
EMS, and the average response time could be considerably
improved by placing ambulances closer to high demand
points and away from hospitals. Berlin and Liebman [26]
conducted a detailed simulation analysis to analyze ambu-
lance deployment in conjunction with a mathematical



programming model. A model which predicts response
time and pattern search was developed by Fitzsimmons
[27]. The simulation framework developed by Borras and
Pastor [28] measured the minimum local reliability levels.

In addition to the aforementioned hypercube models,
several studies have been carried out to address the reli-
ability concept by using mathematical approaches. Simi-
lar approaches have also used in these studies, namely, to
maximize the expected reliability level with a fixed num-
ber of ambulances and to minimize the number of am-
bulances so that the reliability of each demand site is
higher than required. For capturing reliability in these
models, the utilization estimation of ambulances, the
busy fraction, is sought as an integral aspect to take into
account.

One of the first methods to approximate the utilization
estimation of ambulances is the Bgiven utilization
method.^ In this method, the utilization or the workload
of an emergency vehicle is calculated before the number
and locations of ambulances are determined, and the
predetermined utilizations are incorporated into the
models to capture the reliability concept. One of the first
models addressing the MCLP in order to maximize reli-
ability is the maximum expected covering location prob-
lem (MEXCLP) suggested by Daskin [29]. Repede and
Bernardo [30] suggested an extension of MEXCLP, which
covers the variation of travel time. Another extension of
the MEXCLP that considers the stochastic travel time and
the unequal vehicle utilizations is suggested by Goldberg
et al. [31]. ReVelle and Hogan [2] suggested models to
maximize the number of demand sites covered with a
given reliability level α (called MALP I and MALP II).
The PLSCP as suggested by ReVelle and Hogan [3] is the
LSCP with a reliability level constraint. The utilization
estimation of ambulances is more critical in the PLSCP
than in the MCLP in their consideration of reliability,
because inaccurate utilization estimation in the PLSCP
may lead to an infeasible solution, and it can result in
over- or underestimation of the objective value regarding
the MCLP. ReVelle and Hogan [3] employed an area-
specific busy fraction into their model, which shows the
average utilization of the ambulances required to cover a
demand site. The assumption that the utilization of all the
ambulances covering a specific demand site will be the
same is not a realistic assumption because all ambulances
may have different utilization rates. Ball and Lin [32]
suggested a model using a Poisson distribution that con-
siders a site-specific busy fraction, that is, the utilization
of ambulances within a specific site. Borras and Pastor
[28] suggested two models: one using a queuing model
as suggested by Marianov and Revelle [33] while
employing a predetermined mean, and another one using
a site-specific busy fraction (calculated by dividing all of

the workload covered by a potential ambulance site by the
available service time). The shortcoming of the given uti-
lization method is that it considers the maximum possible
demand while calculating the utilization of ambulances,
which may lead to overestimation of the required number
of ambulances.

The upper-bound utilization method suggested by
Shariat-Mohaymany et al. [10] calculates the utilization
of ambulances using a simplified assumption, that is, the
reliability constraint is embodied in the model by limiting
the utilization of ambulances to less than the maximum
possible busy fraction. The advantage of this model is that
it prevents overestimation of the required number of am-
bulances by calculating the utilization of ambulances
without the maximum possible demand. Although this
model considers utilization based on the locations and
number of ambulances, it is not sufficient for finding a
feasible solution because of two major deficiencies: (i) the
identical ambulance workload assumption may not repre-
sent a real EMS, and (ii) the maximum-possible busy
fraction is based on the independent operation of ambu-
lances assumption; however, the operation of each ambu-
lance obviously must have some dependence characteris-
tic. These simplified assumptions may result in the viola-
tion of the reliability constraint. Lim et al. [34] suggested
an iterative procedure of simulation optimization to han-
dle the problem caused by the identical workload assump-
tion. However, the interaction rule employed in their mod-
el is not capable of finding a feasible solution satisfying
the required reliability in any instance.

To resolve this issue, this study suggests an iterative
hypercube optimization algorithm that considers non-
identical ambulance workloads and the maximum possible
busy fraction based on an assumption of dependent am-
bulance operation for solving the PLSCP. The interaction
rule utilized in this study is a novel framework in which
the different interaction parameters, update rules, and ter-
mination conditions are exploited, which enables the sug-
gested algorithm to find a feasible solution in any in-
stance, and which is also efficient in terms of the number
of ambulances. Also, we suggest an iterative simulation
optimization algorithm to cover the heavy computational
burden of the hypercube. It can solve the large-scale prob-
lem, which cannot be solved by the hypercube approach
within a reasonable time, and its capability is almost
equivalent to the iterative hypercube algorithm.

To summarize, the contributions of this paper are the
following: 1) the proposed algorithms ensure finding fea-
sible solutions of the PLSCP in any instance, whereas
the other mathematical models and iterative algorithms
cannot guarantee it in any instance, and 2) the computa-
tional experimental results show that the iterative simu-
lation optimization algorithm is approximately identical
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to the one using the hypercube in terms of performance
measures.

3 Problem modeling using hypercube

The objective function is to minimize the number of avail-
able ambulances required under a constraint, which is that
the reliability levels of all nodes should be higher than the
required level. There exists a maximum distance limit
which the ambulance should be able to serve on an emer-
gency call. The arrival times of emergency calls and ser-
vice times have a stochastic characteristic; therefore, the
model adapts the hypercube model suggested by Larson
[11] shown in constraint (5–8), and the function of loss
probability suggested by Iannoni et al. [23] shown in con-
straint (4). The following assumptions are employed in
this paper to describe the emergency medical service
system.

& Arrival times of emergency calls and service times follow
exponential distributions

& An emergency call is assigned to an available vehicle at
the shortest distance

& If there is no available vehicle within the maximum dis-
tance limit, a call is assigned to the private service system
(the call is lost).

& Events, such as an arriving emergency call and finishing
the services of an ambulance, are not allowed to occur
simultaneously

& The average numbers of emergency calls per node vary
independently

& The service times are identically distributed and do not
depend on distance

Based on these assumptions, a hypercube model can be
defined with a given number and locations of ambulances,
which is determined by using an optimization model. Ad-
ditionally, the optimization model seeks to find the opti-
mal solution satisfying the required reliability constraints,
where the reliability per node is computed by using the
hypercube model. The notations and formulations for the
PLSCP are as follows:

Index:

i, j node index
c ambulance index in each node

Data:

α required reliability level
dij distance from node i to node j
S covering distance

T average service time per call (hours)
ei average number of calls per hour in node i

Decision Variables:

xic 1 if the cth ambulance is allocated in node i; otherwise, 0

Hypercube notations:

N=ΣiΣcxic the total number of
ambulances

k, l vertices index of hypercube
n index for the allocated

ambulances (0≤n≤N)
In node index where

ambulance n is located
(which can be defined by xic)

Oin preference of ambulance n
in node i (for example, if
Oin=1, then ambulance n is
the closest ambulance from
node i, whereas, if Oin=N,
the ambulance n is the
farthest one)

CNn ¼ ijdiIn ≤Sf g set of nodes in the covering
distance from ambulance n

CAi ¼ njdiIn ≤Sf g set of ambulances in the
covering distance from
node i

Bk vertices of hypercube (0≤k
≤2N-1), where each vertex is
named as a sequential set of
N binary numbers taking
the value of 1 when the
vehicle is busy and of 0
when it is not

bkn binary numbers in Bk; bkn=
1 if ambulance n is busy in
Bk; otherwise, bkn=0

hkl=Σn|bln−bkn| Hamming distance between
two vertices Bk and Bl (for
instance, the Hamming
distance between vertices
0100 and 0110 is 1, while
the distance between
vertices 0110 and 0001 is 3)

h+kl=Σnmax(bln−bkn, 0) upward Hamming distance
from Bk to Bl, which
indicates the number of
binary values switching
from 0 to 1

h−kl=Σnmin(bln−bkn, 0) downward Hamming
distance from Bk to Bl,
which indicates the number



of binary values switching
from 1 to 0

HNkl index of an ambulance that
has different numbers
between Bk and Bl (which is
defined only if hkl=1)

FVkl ¼ ij Πn ¼oin<oiHNklð Þbkn
� �n

� 1−bkHNklð Þ ¼ 1&i∈CNHNklg
set of nodes where an
arising emergency call will
be assigned to ambulance
HNkl (which is defined only
if hkl=1 and h+kl=1)

qkl transition rate between two
vertices Bk and Bl

π{Bk} steady-state probability of
vertex Bk

lri local reliability of node i

Formulation:

minimize
X

i

X
c
xic ð1Þ

subject to

lri≥α ∀i ð2Þ

xic∈ 0; 1f g∀i; c⋅; ð3Þ

where lri satisfies the following:

lri ¼
X

k∈ kj∏n∈CAi bkn¼1

n oπ Bkf g∀i ð4Þ

N ¼
X

i

X
c
xic ð5Þ

X
k
π Bkf g⋅qkl ¼ 0 ∀l ð6Þ

X
k
π Bkf g ¼ 1 ð7Þ

qkl

X
i∈FVkl

ei ∀ k ; l hkl ¼ 1 &hþkl ¼ 1ð Þ
1 = T ∀k; l hkl ¼ 1 &h−kl ¼ −1ð Þ:
0 ∀ k ; l hkl ≥2ð Þ
−
X

l0 l0≠kð Þqkl0 ∀ k ; l hkl ¼ 0ð Þ

8>>>><
>>>>:

ð8Þ

The objective function represented in Eq. (1) is to
minimize the total number of allocated ambulances. Con-
straint (2) ensures that the reliability per node is higher
than the required reliability α. Constraint (3) requires
that xic takes a value of 1 or 0. Equations. (1)-(3) are
involved with deciding the number and locations of ve-
hicles, while Eqs. (4)-(8) are related to computing lri
representing the hypercube model. Formulation (4) com-
putes lri by summing the steady-state probabilities of the
vertices where all the vehicles covering node i are busy.
The total number of ambulances N is defined as ∑icxic in
formulation (5). Formulations (6) and (7) indicate the
constraints to derive the steady-state probability π{Bk}.
The computations of transition rate qkl are summarized in
formulation (8). The upward transition rate qkl (hkl=1
and h+kl =1) is considered as the demand that makes
the ambulance HNkl busy, which is computed as the
sum of the arrival rates of the nodes of which the closest
available ambulance is HNkl. The downward transition
rate qkl (hkl=1 and h−kl=� 1) is the service rate 1/T.
There is no transition between vertices having Hamming
distances ≥2. The transition rate of qkk is defined by
-∑l’(l’≠k)qkl’.

The reliability level constraint in the PLSCP is com-
plex and nonlinear, which makes it difficult to suggest its
solving algorithm. One approach to handling this prob-
lem is to define the optimization and the hypercube mod-
el separately and develop an algorithm to find a solution
via their interaction, which is described in section 4 of
this paper.

Fig. 1 Procedure of Algorithm
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4 Iterative hypercube optimization algorithm

The aim of this algorithm is to find a feasible solution in
any instance that is based on the hypercube model re-
sults. In the PLSCP, a solution is feasible if and only if
the reliability of each node resulting from the hypercube
model is higher than required. This algorithm exploits
the mathematical programming and hypercube in an iter-
ative scheme to obtain a feasible solution because (1) the
mathematical programming models for the ALP are able
to find the number and locations of ambulances with
consideration of a given constraint; however, it does
not have the ability to accurately compute the reliability
per node according to the locations of ambulances, and
(2) the hypercube model is capable of precisely estimat-
ing the reliability per node with given locations of am-
bulances, but it does not have the ability to generate new
locations of ambulances. Figure 1 shows the procedure
of the suggested algorithm. The interaction parameters
between the optimization and the hypercube are initial-
ized in the initial step or setting. The optimization model
solves the problem with the given parameters. The solu-
tion is validated via the hypercube, and the hypercube
also gives information on the interacting parameters.
The termination condition checks whether the feasibility
requirement is satisfied. If the solution is found to be
feasible as per the hypercube, the algorithm is terminat-
ed. Otherwise, it finds another solution after updating the
interaction parameters.

4.1 Optimization model for the iterative algorithm

We developed the optimization for the suggested algorithm
based on the upper-bound utilization method suggested by
Shariat-Mohaymany et al. [10]. Their model is an efficient
model regarding the number of ambulances; however, it is
limited in its ability to obtain feasible solutions because of
its assumptions of linearization. For obtaining a feasible
solution, the following two facts should be considered.
First, emergency calls arising from a demand site cannot
be equally distributed to the ambulances covering the site.
The percentage of ambulances per each node is dependent
on the solution, so it cannot be determined before the so-
lution is fixed. Second, the maximum possible busy frac-
tion, which is the upper bound of utilization of ambulances
to guarantee the reliability of each node that is to be higher
than required, also depends on the locations of vehicles.
This fact is based on the idea that, when an ambulance is
busy, the probability that other vehicles close to it are busy
increases because the demand covered by these ambu-
lances is shared to the other ambulances. However, a com-
plex nonlinear system will emerge to model the percent
usage of ambulances per node and the maximum possible

busy fractions in the optimization procedure. To handle
these problems, we assume that the data about the ambu-
lance’s workload and the maximum possible busy fraction
are generated by the hypercube and given to the optimiza-
tion model. The suggested optimization model employs the
following assumptions: (1) the required numbers of ambu-
lances covering each node are the same; (2) all the maxi-
mum unavailability levels of ambulances remain the same
(as in the work of Shariat-Mohaymany et al., [10]).

Index:

i, j node index
c ambulance index in each node
f required number of ambulances per each node
g index for distance group (1≤g≤S/θ)

Data:

α required reliability level
dij distance from node i to node j
S covering distance
Ni={j|dij≤S} set of nodes in the covering distance

from node i
T average service time per call
ei average number of calls per day in node i
θ distance interval (satisfying S/θ=any

integer)
Pairg={(i,j)| θ•(g–
1)≤dij≤θ g}

subset of pair (i, j)

pre_f the pre-determined f such that rf=1 in
the current iteration (in the first itera-
tion, pre_f=0)

Data from hypercube:

mbf maximum possible busy fraction
when the required number of
ambulances per each node is f
(required to be observed via
hypercube or simulation)

zij
hyper proportion of calls in node i that

are assigned to an ambulance in
node j (required to be observed
via hypercube)

min zg ¼ min
i; jð Þ∈Pairg

zi j
hyper the minimum of zij

hyper in
distance group g

max zg ¼ max
i; jð Þ∈Pairg

zi j
hyper the maximum of zij

hyper in
distance group g

sum zg ¼ ∑
i; jð Þ∈Pairg

zi jhyper the sum of zij
hyper in distance

group g.

Decision Variables:

xic 1 if the cth ambulance is allocated in node I; otherwise, 0
zij

op proportion of calls in node i that are assigned to
an ambulance in node j (to be determined)



rf 1 if the required number of ambulance per each node is
f; otherwise, 0

Formulation:

minimize
X

i

X
c

xic

subject to
X
j∈Ni

X
c

x jc≥ f ⋅r f ∀ f ; i ð9Þ

X
f

r f ¼ 1 ð10Þ

M 1−r f
� �þ mbf ⋅

X
c

x jc≥
X

i

T ⋅ei⋅zi jop ∀ j; f ð11Þ
X

j

zi j
op ¼ 1 ∀i ð12Þ

X
j∉Ni

zi j
op≤0 ∀i ð13Þ

xic≤xic−1 ∀i; c c > 1ð Þ ð14Þ

zi j
op≥min zg⋅x j1 ∀g; i; jð Þ∈Pg ð15Þ

zi j
op≤max zg⋅x j1 ∀g; i; jð Þ∈Pg ð16Þ
X
i; jð Þ∈Pg

zi j
op≤sum zg þ ε ∀g sum zg≠ −1

� �
ð17Þ

X
i; jð Þ∈Pg

zi j
op≥sum zg−ε ∀g sum zg≠ −1

� �
ð18Þ

r f ¼ 1 ∀ f ¼ pre f ð19Þ
xic; r f ∈ 0; 1f g; 0≤zi jop≤1 ð20Þ

Constraint (9) is that the number of ambulances covering
each node should be higher than required, and the required
number of ambulances is determined via constraint (10). Con-
straint (11) indicates that the workload of an ambulance has to
be lower than its maximum possible busy fraction. The max-
imum possible busy fraction depends on rf, and that is why the
term M(1—rf) is added in constraint (11) to make it work if
and only if rf = 1. Constraint (12) means that ever emergency
call has to be assigned to some node. Constraint (13) ensures
that emergency calls will not be assigned to nodes that lie
outside the covering distance. Constraint (14) is that the cth

ambulance could be allocated when the (c–1)th ambulance is
allocated. Constraints (15)-(18) are the soft-bound constraints
tomake zij

op similar to zij
hyper. In the presentedmodel, zij

hyper is
given and updated based on the hypercube results. However, it
is difficult to obtain the enough hypercube results to

accurately estimate all of zij
hyper. Furthermore, zij

hyper highly
restricts xic, so the solution will be dominated by the solution
in the previous iteration. These two facts motivated us to em-
ploy g, θ and Pairg for grouping zij

hyper with distance. For
example, there is a demand node, the high proportion of calls
may be assigned to the nearest ambulance, which imply that
zij

hyper depends on the distance. Thus, pair (i, j) is divided into
g groups according to the distance. For instance, pair (i, j)
satisfying 0≤dij≤θ is included into group 1, and pair (i, j)
satisfying θ≤dij≤2θ is included into group 2. With the defined
pair (i, j), zij

hyper is converted to min_zg, max_zg and sum_zg,
which does not fully represent each zij

hyper; however, they
could act as soft boundaries on them. This approach could
reduce the computational effort required to obtain a feasible
solution, although it might result in the loss of optimality.
Thus, if an ambulance is located in node j, at least the mini-
mum and maximum values for zij

op would be restricted by
min_zg andmax_zg according to its distance, as per constraints
(15) and (16), respectively. Otherwise, zij

op should be 0. Con-
straints (17) and (18) are boundary constraints on the sum of
zij

op, which means the sum of zij
op in distance group g should

be located in [sum_zg—ε, sum_zg+ε], where ε is the slack
value. Furthermore, the fixed rf could reduce the solving time
in the optimization procedure, and rf can be controlled by an
uncomplicated rule without a decision process of optimiza-
tion, after it is determined by the optimization model in the
first iteration. Therefore, the parameter on rf is employed for
computational efficiency and is denoted by pre_f. With con-
straint (19), rf is predetermined unless pre_f = ∅. Constraint
(20) ensures that xic and rf will be 0 or 1, and zij

op will be
floating between 0 and 1.

4.2 Initial setting

The interaction parameters are divided into three categories:
mbf, zij

hyper, and rf. The parameters mbf and zij
hyper are to be

adjusted for the purpose of finding a feasible solution. The

parameter mbf is given as
ffiffiffiffiffiffiffiffiffi
1−αf

p
(as suggested by Shariat-

Mohaymany et al., [10]). min_zg, max_zg, and sum_zg, which
are the parameters for zij

hyper, respectively take the values of 0,
1, and ∅ in the initial setting, so the optimization model arbi-
trarily finds a solution without consideration of zij

hyper in the
first iteration. pre_f is set as ∅, as shown in Table 1.

Table 1 Initialization of interaction parameters

Category Interaction parameter

mbf
mbf ¼

ffiffiffiffiffiffiffiffiffi
1−αf

p

zij
hyper min_zg=0, max_zg=1, sum_zg=−1

rf pre_f=0

Iterative optimization algorithm with parameter estimation



4.3 Hypercube model for the iterative algorithm

The hypercube model framework is adopted for the pur-
pose of validating the solution and updating the interac-
tion parameters. The input variables of the hypercube
model are the number and locations of ambulances, and
its output variables are the interaction parameters, such
as local reliability level and zij

hyper. To define zij
hyper, we

adapt the concept of fraction of dispatch suggested by
Geroliminis et al. [21]. The hypercube notations and
Eqs. (4)-(8) defined in section 3 are also utilized for
the hypercube in the iterative algorithm. Additionally,
the interaction parameters not defined in section 3 are
added as follows:

Interaction parameters

zi j
hyper ¼

X
n In¼ j& j∈Nið ÞX
k∈

kj∏
n0 oin0< oinð Þbkn0 1−bknð Þ¼1

� �π Bkf g= 1−lrið Þ

MLR ¼ min
i

lri : the minimum local reliability in total nodes

4.4 Termination condition

The aim of the suggested algorithm is to find a feasible
solution, and the MLR is an important factor for the ter-
mination condition. The number of ambulances (which is
a critical performance measure in the PLSCP) is also con-
sidered in the algorithm termination. The number of am-
bulances in the first iteration is assumed to be the ideal
minimum number of ambulances suggested in the optimi-
zation model because mbf =

ffiffiffiffiffiffiffiffiffi
1−αf

p
is an ideal maximum

value with the assumption of independent operation of
ambulances. The procedure for the termination condition
is defined as follows:

Data:

Iter index indicating current iteration number
extra_iter extra iterations to find another feasible solution
best_iter iteration index (when finding the best feasible

solution)
first_N number of ambulances in the first iteration
best_N number of ambulances in the best solution up to

the current iteration

Termination Condition:

(1) MLR≥α and first_N=∑i∑cxic
(2) iter≥best_iter+extra_iter

The termination condition (1) is based on the assump-
tion that the number of ambulances in the first iteration is
an ideal minimum, as suggested in the optimization mod-
el. Thus, if a solution satisfying the termination condition
(1) is found, there would be no need to search for another
feasible solution and a lower number of ambulances, and
so the algorithm would be terminated. The termination
condition (2) is that the algorithm will be terminated after
a particular number of searches after finding the best so-
lution. If another best solution is found following the it-
erative procedure, the best_N and best_iter are then up-
dated accordingly.

Fig. 3 Standard deviation of MLR

Fig. 2 Graph of 79*79 network



4.5 Parameter update

The parameters rf, mbf, and zij
hyper must be updated in

the optimization model to obtain a better solution. The
procedure for updating parameters is summarized in Ap-
pendix; it is composed of three main parts: updating

parameters rf, mbf, and zij
hyper. The parameters of rf are

pre_f, iterf, and min_ambf, which are initialized and up-
dated in steps 1 and 2. mbf is updated in step 3, and step
4 updates according to the rules min_zg, max_zg, and
sum_zg (which are the parameters of zij

hyper). The update
is performed with the results of the optimization (rf, xic)

Table 2 Gap between simulation and hypercube models

S DS α MLR Gap of lri Gap of zij
hyper

MLR(S) MLR(H) Gap Average Std Max Average Std Max

1.5 1 .80 0.808 0.818 0.01050 0.00185 0.00214 0.01218 0.00216 0.00230 0.01126

.825 0.826 0.826 0.00007 0.00137 0.00133 0.00557 0.00261 0.00259 0.01012

.85 0.964 0.964 0.00018 0.00102 0.00091 0.00387 0.00258 0.00187 0.00883

.875 0.963 0.965 0.00255 0.00096 0.00096 0.00521 0.00158 0.00183 0.00732

.90 0.965 0.967 0.00188 0.00101 0.00098 0.00499 0.00224 0.00236 0.01194

.925 0.961 0.963 0.00206 0.00093 0.00098 0.00567 0.00173 0.00206 0.01018

.95 0.966 0.968 0.00177 0.00092 0.00092 0.00379 0.00193 0.00191 0.00842

.975 0.977 0.976 0.00037 0.00060 0.00061 0.00319 0.00211 0.00198 0.00906

2 .80 0.923 0.925 0.00199 0.00158 0.00155 0.00644 0.00276 0.00229 0.01019

.825 0.918 0.920 0.00252 0.00132 0.00118 0.00593 0.00289 0.00238 0.01053

.85 0.897 0.903 0.00593 0.00141 0.00173 0.01266 0.00251 0.00256 0.01210

.875 0.929 0.931 0.00210 0.00177 0.00193 0.01088 0.00280 0.00255 0.01315

.90 0.924 0.927 0.00387 0.00152 0.00157 0.01087 0.00256 0.00254 0.01737

.925 0.931 0.935 0.00356 0.00164 0.00128 0.00543 0.00280 0.00223 0.01122

3 1 .80 0.826 0.833 0.00696 0.00271 0.00229 0.01117 0.00323 0.00272 0.01339

.825 0.837 0.849 0.01203 0.00271 0.00233 0.01203 0.00348 0.00315 0.01453

.85 0.859 0.873 0.01458 0.00239 0.00255 0.01458 0.00391 0.00386 0.02038

.875 0.878 0.884 0.00597 0.00185 0.00158 0.00873 0.00381 0.00382 0.02113

.90 0.956 0.963 0.00601 0.00132 0.00148 0.00894 0.00214 0.00215 0.01176

.925 0.955 0.961 0.00538 0.00116 0.00111 0.00538 0.00256 0.00263 0.01426

.95 0.955 0.960 0.00500 0.00135 0.00143 0.00753 0.00250 0.00250 0.02332

.975 0.985 0.986 0.00186 0.00053 0.00062 0.00342 0.00212 0.00229 0.01271

.99 0.991 0.993 0.00146 0.00056 0.00090 0.00734 0.00197 0.00234 0.01620

2 .80 0.898 0.903 0.00552 0.00215 0.00183 0.00931 0.00338 0.00326 0.01910

.825 0.889 0.894 0.00507 0.00230 0.00235 0.01217 0.00293 0.00250 0.01568

.85 0.891 0.897 0.00586 0.00184 0.00152 0.00586 0.00293 0.00259 0.01113

.875 0.895 0.901 0.00629 0.00249 0.00295 0.02296 0.00332 0.00331 0.03236

.90 0.905 0.910 0.00527 0.00146 0.00132 0.00673 0.00283 0.00264 0.01363

.925 0.928 0.932 0.00430 0.00132 0.00144 0.00511 0.00243 0.00229 0.01255

.95 0.958 0.958 0.00010 0.00118 0.00111 0.00457 0.00225 0.00224 0.01326

.975 0.976 0.978 0.00161 0.00073 0.00066 0.00272 0.00216 0.00252 0.01927

.99 0.993 0.994 0.00123 0.00040 0.00037 0.00142 0.00167 0.00203 0.01073

3 .80 0.832 0.843 0.01136 0.00316 0.00339 0.02712 0.00352 0.00451 0.03453

.825 0.833 0.838 0.00546 0.00359 0.00419 0.02125 0.00359 0.00470 0.05734

.85 0.872 0.872 0.00015 0.00250 0.00285 0.01546 0.00340 0.00609 0.08472

.875 0.888 0.890 0.00263 0.00277 0.00323 0.02292 0.00332 0.00439 0.03474

.90 0.913 0.918 0.00547 0.00231 0.00303 0.02177 0.00287 0.00494 0.05508

.925 0.935 0.938 0.00233 0.00192 0.00383 0.03367 0.00305 0.00440 0.05416

Average 0.00424 0.00165 0.00175 0.01023 0.00270 0.00288 0.02020

Iterative optimization algorithm with parameter estimation



Table 3 Comparison experiment
between HYP-OPT and
SIM-OPT

S DS α HYP-OPT SIM-OPT

MLR(H) N CT(*) MLR(S) MLR(H) N CT(*)

1.5 1 .8 0.808 9 176(9) 0.808 0.818 9 118(4)

.825 0.825 10 139(13) 0.826 0.826 10 70(7)

.85 0.967 12 1941(12) 0.964 0.964 12 43(9)

.875 0.965 12 293(1) 0.963 0.965 12 5(1)

.90 0.967 12 300(1) 0.965 0.967 12 4(1)

.925 0.963 12 295(1) 0.961 0.963 12 4(1)

.95 0.968 12 229(1) 0.966 0.968 12 5(1)

.975 – – – 0.977 0.976 14 2550(60)

.99 – – – 0.996 – 18 92(15)

2 .80 0.925 12 75(1) 0.923 0.925 12 4(1)

.825 0.920 12 75(1) 0.918 0.920 12 4(1)

.85 0.903 12 78(1) 0.897 0.903 12 5(1)

.875 0.931 12 77(1) 0.929 0.931 12 5(1)

.90 0.927 12 76(1) 0.924 0.927 12 5(1)

.925 0.930 12 699(8) 0.931 0.935 12 25(6)

.95 – – – 0.957 – 15 219(37)

.975 – – – 0.988 – 18 67(13)

.99 – – – 0.990 – 18 14(3)

3 1 .80 0.828 4 7(1) 0.826 0.833 4 6(1)

.825 0.836 4 5(1) 0.837 0.849 4 11(2)

.85 0.859 5 62(11) 0.859 0.873 5 79(10)

.875 0.877 5 35(2) 0.878 0.884 5 170(21)

.90 0.964 6 79(10) 0.956 0.963 6 116(10)

.925 0.959 6 3(1) 0.955 0.961 6 12(2)

.95 0.957 6 4(1) 0.955 0.960 6 9(1)

.975 0.981 8 685(82) 0.985 0.986 8 383(54)

.99 0.991 8 10(1) 0.991 0.993 8 7(1)

2 .80 0.892 6 6(1) 0.898 0.903 6 7(1)

.825 0.888 6 4(1) 0.889 0.894 6 11(2)

.85 0.889 6 4(1) 0.891 0.897 6 10(1)

.875 0.889 6 4(1) 0.895 0.901 6 6(1)

.90 0.906 7 5(1) 0.905 0.910 7 8(1)

.925 0.970 8 319(45) 0.928 0.932 8 344(35)

.95 0.969 8 77(11) 0.958 0.958 8 139(10)

.975 0.976 9 11(2) 0.976 0.978 9 84(8)

.99 0.993 10 105(15) 0.993 0.994 11 84(11)

3 .80 0.810 11 104(5) 0.832 0.843 11 21(2)

.825 0.825 11 347(11) 0.833 0.838 11 61(5)

.85 0.866 12 288(3) 0.872 0.872 12 8(1)

.875 0.886 12 2191(16) 0.888 0.890 12 200(14)

.90 – – – 0.913 0.918 13 273(17)

.925 – – – 0.935 0.938 14 542(33)

.95 – – – 0.967 – 15 262(20)

.975 – – – 0.978 – 17 535(46)

.99 – – – 0.991 – 19 1302(112)

N Number of ambulances

CT Computation time (sec)

*Number of iterations

Feasible solution is not found in 5 h or the case is out of memory

MLR(H) Minimum local reliability level from hypercube

MLR(S) Minimum local reliability level from simulation



and the hypercube model (zij
hyper, MLR) in the current

iteration.

5 Iterative simulation optimization algorithm

The iterative simulation optimization algorithm is the mod-
el having the same framework with the iterative hypercube

optimization algorithm and adopting the simulation that is
the substitution for the hypercube model. In this section,
the simulation procedure of the suggested algorithm is only
described, and the explanations on the other procedures are
skipped because they are the same with ones in section 4.
The input and output variables of the simulation are the
same as those in the hypercube model because their pur-
poses are identical.

Fig. 4 a First solution of SIM-OPTalgorithm for DS=1, S=1.5, andα=0.8. b. Second solution of SIM-OPTalgorithm for DS=1, S=1.5, and α=0.8. c.
Third solution of SIM-OPT algorithm for DS=1, S=1.5, and α=0.8. d. Fourth solution of SIM-OPT algorithm for DS=1, S=1.5, and α=0.8

Iterative optimization algorithm with parameter estimation



The simulation procedure is mainly composed of seven
functions: initializing data, updating the call list, ordering the
call list, assigning an ambulance, updating the next call time,
the current time, and output data. At the start of the simulation,
the running parameters and output data are initialized. In the
next stage, the new emergency calls to be assigned are updated
in the call list and sorted by the emergence time. After
updating the call list, the emergency calls on the list are
assigned to the closest available ambulances in the order of
their emergence times. When a call is assigned to an ambu-
lance, the available time of the ambulance is updated to the
emergence time of the corresponding call plus its service time.
When there is no available ambulance for a call, then the call
will be lost. (It is assumed that the call is assigned to the
private emergency system.) In the following step, the next call
times of the nodes whose calls are on the call list are regener-
ated. After regenerating the next call times, it is required to
check whether there are new emergency calls to be assigned.
When there is no new emergency call, the current time is
updated; otherwise, the procedures described above are re-
peated. The simulation is terminated when the total number
of calls reached the predefined number of calls. In the last step,
the output data are updated. The detailed procedure for the
simulation is shown in Appendix.

6 Experimental results

In the first phase of this research, the simulation is vali-
dated. In the second phase, an iterative hypercube optimi-
zation model (HYP-OPT) and an iterative simulation op-
timization model (SIM-OPT) are compared. SIM-OPT and
other mathematical programming approaches are com-
pared to evaluate the performance of SIM-OPT in the last
phase. The 79*79 network used by Serra [35], Borras and
Pastor [28], Shariat-Mohaymany et al. [10], and Lim et al.
[34] is employed in practice for comparison purposes. The
experimental setup has 4 demand scenarios (DS), 2

covering distance scenarios (S=1.5 and 3 miles), 9 re-
quired reliability level scenarios (α), and average service
time T defined as 0.75 (the total number of experiment
cases thus is 72). In each demand scenario, the average
numbers of calls for 79 nodes are between: [0.1365,
1.4425] for scenario 1 with average 0.7895, [0.2815,
2.3092] for scenario 2 with average 1.0000, [0.0147,
4.9852] for scenario 3 with average 2.7814, and
[0.0264, 8.9309] for scenario 4 with average 4.8562. In
these experiments, the performance measures of compari-
son are the number of ambulances, the MLR, and the
feasibility, that is, the MLR is higher than required. Fig-
ure 2 shows the nodes and arcs having lengths less than
1.5 miles in the 79*79 network. The optimization model
is coded using CPLEX 12.6 in JAVA to run, and the
simulation model is also coded in JAVA. All experiments
were performed on PC having Intel® Core 2 Quad
2.83 GHz processor with 8 GB RAM.

6.1 Simulation model validation

In the first step of the simulation model validation, the simu-
lation period was set by analyzing the decrease in deviation of
the MLR. In the second step, the validation of the simulation
was carried out by determining the difference between the
simulation and hypercube models in terms of the MLR, lri
and zij

hyper.
To obtain stable simulation results, the appropriate sim-

ulation period must be found. This study computed the
standard deviations of MLR values, resulting in 20 repeti-
tions of simulation runs while increasing the total number
of calls by 105. The locations of ambulances used for this
experiment are the solutions obtained by SIM-OPT for
each α scenario in the cases: DS=1, S=1.5. Figure 3 shows
that the standard deviation of the MLR is converged with a
total number of calls of 7*105. Thus, the simulation period
was set as the total number of calls of 8*105.

Fig. 5 Iteration results of SIM-
OPT algorithm (DS=4, S=3, and
α=0.925)



The comparison experiments between the simulation
and hypercube models were employed in this study for
the purpose of simulation validation. The solutions from
SIM-OPT having less than 14 vehicles were utilized for
this comparison because the hypercube is not operated

when the number of vehicles is more than 15, due to
the memory limit of the computer. The models are com-
pared in terms of MLR, lri, and zij

hyper.
The gap shown in the MLR column in Table 2 indi-

cates the absolute difference between MLR(H) and

Table 4 The results of
experiment S=1.5 DS α UBUL Lim et al. [34] SIM-OPT

MLR(S) ≥α N MLR(S) ≥α N CT MLR(S) ≥α N CT(*)

1 .80 0.812 ○ 9 0.815 ○ 9 505 0.808 ○ 9 118(4)

.825 0.814 X 10 0.829 ○ 10 1643 0.826 ○ 10 70(7)

.85 0.951 ○ 12 0.961 ○ 12 334 0.964 ○ 12 43(9)

.875 0.950 ○ 12 0.962 ○ 12 50 0.963 ○ 12 5(1)

.90 0.965 ○ 12 0.961 ○ 12 71 0.965 ○ 12 4(1)

.925 0.954 ○ 12 0.961 ○ 12 47 0.961 ○ 12 4(1)

.95 0.952 ○ 12 0.962 ○ 12 30 0.966 ○ 12 5(1)

.975 0.966 X 12 0.975 ○ 13 2005 0.977 ○ 14 2550(60)

.99 0.978 X 17 0.996 ○ 18 31 0.996 ○ 18 92(15)

2 .80 0.882 ○ 12 0.927 ○ 12 32 0.923 ○ 12 4(1)

.825 0.909 ○ 12 0.920 ○ 12 28 0.918 ○ 12 4(1)

.85 0.891 ○ 12 0.918 ○ 12 28 0.897 ○ 12 5(1)

.875 0.894 ○ 12 0.921 ○ 12 31 0.929 ○ 12 5(1)

.90 0.929 ○ 12 0.920 ○ 12 38 0.924 ○ 12 5(1)

.925 0.903 X 12 0.924 X 12 127 0.931 ○ 12 25(6)

.95 0.944 X 14 0.950 ○ 14 1159 0.957 ○ 15 219(37)

.975 0.970 X 18 0.989 ○ 18 46 0.988 ○ 18 67(13)

.99 0.986 X 18 0.987 X 18 60 0.990 ○ 18 14(3)

3 .80 0.798 X 17 0.873 ○ 18 695 0.812 ○ 17 75(10)

.825 0.837 ○ 18 0.897 ○ 18 631 0.884 ○ 18 73(10)

.85 0.864 ○ 18 0.882 ○ 18 38 0.869 ○ 18 7(1)

.875 0.884 ○ 18 0.878 ○ 18 26 0.891 ○ 18 13(2)

.90 0.891 X 19 0.905 ○ 20 589 0.902 ○ 19 174(33)

.925 0.903 X 21 0.936 ○ 21 1707 0.937 ○ 21 184(32)

.95 0.905 X 22 0.974 ○ 26 3163 0.951 ○ 23 152(23)

.975 0.964 X 24 0.976 ○ 25 826 0.976 ○ 24 409(68)

.99 0.978 X 26 0.993 ○ 30 1617 0.990 ○ 30 397(68)

4 .80 0.791 X 23 0.801 ○ 22 64 0.802 ○ 22 114(16)

.825 0.791 X 23 0.882 ○ 24 749 0.826 ○ 23 79(10)

.85 0.852 ○ 24 0.860 ○ 24 326 0.864 ○ 24 59(8)

.875 0.851 X 24 0.878 ○ 24 34 0.886 ○ 24 115(17)

.90 0.863 X 25 0.907 ○ 26 541 0.903 ○ 26 192(26)

.925 0.897 X 28 0.930 ○ 27 1075 0.926 ○ 27 111(16)

.95 0.908 X 30 0.951 ○ 30 3148 0.951 ○ 30 180(32)

.975 0.933 X 34 0.986 ○ 37 1032 0.978 ○ 34 270(46)

.99 0.966 X 35 0.991 ○ 38 4279 0.991 ○ 37 638(107)

N Number of ambulances

CT Computation time (sec)

*Number of iterations

MLR(S) Minimum local reliability level from simulation

≥α: Feasibility of solution (○: Feasible, X: Infeasible)

Iterative optimization algorithm with parameter estimation



MLR(S). In all the cases, the gap is less than 0.01, and
the average is 0.00424. The average, std, and max in
the Bgap of lri^ and Bgap of zij

hyper^ columns represent
the average, standard deviation, and maximum, respec-
tively, of the absolute differences between the simula-
tion and hypercube. The absolute differences of lri are
computed per node, and the absolute differences of zij-
hyper are calculated when zij

hyper>0. The average of the
absolute differences of lri is 0.00165 with a standard de-
viation of 0.00175, and the average of the maximum val-
ue is only 0.01023. Similarly, the average of the absolute
differences of zij

hyper is 0.00270 with a standard deviation
of 0.00288, and the average of the maximum value is
0.0202. Thus, it is clear that the suggested simulation
model provides similar results to those of the hypercube
model.

6.2 Comparison experiments of HYP-OPTand SIM-OPT

The purpose of this comparison experiment is to show
that HYP-OPT and SIM-OPT are approximately equiva-
lent in terms of performance measures such as the num-
ber of ambulances and feasibility. The two algorithms
are operated with the same initial settings for the inter-
action algorithm: extra_iter=5, θ=0.15, λ−=0.1, λ+=1,
and ε=2.

The comparison experiments of HYP-OPT and SIM-
OPT are performed with a time limit of 5 h. As shown
in Table 3, HYP-OPT found a feasible solution in the
cases in which less than 12 vehicles were utilized. In the
other cases, it failed to find a feasible solution because of
reaching the time limit or the memory limit of the com-
puter. The MLR(H) in the SIM-OPT column in Table 3
indicates the MLR values computed by the hypercube
model for the solutions obtained by SIM-OPT. Due to
the memory limit, the MLR(H) of SIM-OPT was calculat-
ed in the cases employing less than 14 ambulances. The
conclusions derived from this comparison experiment are
the following:

& HYP-OPT and SIM-OPT satisfied the reliability re-
quirement in all cases using the same number of
ambulances.

& The results of SIM-OPT show that MLR(S) and MLR(H)
have similar values (which are examined in detail in sec-
tion 6.3), and the solutions of SIM-OPTare also feasible in
MLR(H).

& The solving time of HYP-OPT increased with the number
of vehicles and iterations.

& The solving time of SIM-OPT depended on the
number of iterations regardless of the number of
vehicles.

After considering all the results of these experiments,
it is apparent that SIM-OPT and HYP-OPT perform
analogously.

Figures 4(a)–(d) show the locations of vehicles found
when SIM-OPT solves the case: DS=1, S=1.5, α=0.8.
The circles filled with black in the corresponding figures
represent ambulances, and they are connected to the nodes
they cover. The nodes surrounded by triangle indicate that
their reliabilities are lower than α. The numbers around
the circles filled with black indicate the utilization of the
corresponding ambulance. The first location of ambu-
lances searched by the optimization model with the initial
settings is depicted in Fig. 4(a). This figure shows a sig-
nificant difference among the utilizations of ambulances,
indicating that greater demand was concentrated on spe-
cific vehicles. This result demonstrates that some vehicles
(especially with utilization≥20 %) were so crowded that
the nodes they covered did not satisfy the reliability re-
quirement. After updating the interaction parameters
based on the first results, the optimization model found
the second solution, as shown in Fig. 4(b). Although the
number of nodes that did not satisfy the required reliabil-
ity was reduced, the reliabilities of three nodes covered by
an ambulance whose utilization was 24.86 % were lower
than required. Once again, the optimization found a third
solution, as shown in Fig. 4(c), with the updated interac-
tion parameters. The maximum utilization of ambulances

Table 5 The efficiency of SIM-OPT in S=1.5

Compared models Feasibility Number of cases Average number of vehicles > SIM-OPT < SIM-OPT

Comparing model SIM-OPT Gap

UBUL O 15 13.800 13.800 0.000 0 0

X 21 21.524 22.000 0.476 2 7

Lim et al. [34] O 34 19.059 18.794 −0.265 7 2

X 2 15.000 15.000 0.000 0 0

> SIM-OPT: the number of cases in which the number of allocated vehicles of SIM-OPT is less than in the compared model

< SIM-OPT: the number of cases in which the number of allocated vehicles of SIM-OPT is more than in the compared model



was reduced from 24.86 to 20.99 %; however, there
remained nodes that did not satisfy the required reliability.
In Fig. 4(d), the first feasible solution was found in the
fourth iteration, showing that all the utilizations of vehi-
cles were lower than 19 %.

Figure 5 shows the MLR and mbf depending on the
iterations of SIM-OPT in the case: DS=4, S=3, and α=
0.925. Looking at the corresponding graph, the optimiza-
tion model found the location of 19 ambulances as the
first solution, and its MLR was lower than α. After

Table 6 The results of
experiment S=3.0 DS α UBUL Lim et al. [34] SIM-OPT

MLR(S) ≥α N MLR(S) ≥α N CT MLR(S) ≥α N CT(*)

1 .80 0.849 ○ 5 0.843 ○ 4 18 0.826 ○ 4 6(1)

.825 0.859 ○ 5 0.842 ○ 4 22 0.837 ○ 4 11(2)

.85 0.861 ○ 5 0.849 X 5 118 0.859 ○ 5 79(10)

.875 0.886 ○ 5 0.877 ○ 5 66 0.878 ○ 5 170(21)

.90 0.906 ○ 6 0.896 X 6 119 0.956 ○ 6 116(10)

.925 0.925 ○ 7 0.948 ○ 6 317 0.955 ○ 6 12(2)

.95 0.966 ○ 7 0.955 ○ 6 24 0.955 ○ 6 9(1)

.975 0.964 X 7 0.964 X 7 99 0.985 ○ 8 383(54)

.99 0.973 X 8 0.990 ○ 8 28 0.991 ○ 8 7(1)

2 .80 0.774 X 6 0.802 ○ 6 389 0.898 ○ 6 7(1)

.825 0.835 ○ 7 0.878 ○ 6 316 0.889 ○ 6 11(2)

.85 0.810 X 7 0.886 ○ 6 36 0.891 ○ 6 10(1)

.875 0.908 ○ 7 0.885 ○ 6 22 0.895 ○ 6 6(1)

.90 0.912 ○ 7 0.903 ○ 7 58 0.905 ○ 7 8(1)

.925 0.913 X 7 0.934 ○ 8 1515 0.928 ○ 8 344(35)

.95 0.928 X 8 0.940 X 8 1644 0.958 ○ 8 139(10)

.975 0.982 ○ 9 0.977 ○ 9 174 0.976 ○ 9 84(8)

.99 0.985 X 10 0.981 X 10 3272 0.993 ○ 11 84(11)

3 .80 0.854 ○ 12 0.804 ○ 11 506 0.832 ○ 11 21(2)

.825 0.827 ○ 12 0.839 ○ 11 331 0.833 ○ 11 61(5)

.85 0.819 X 12 0.851 ○ 12 57 0.872 ○ 12 8(1)

.875 0.869 X 12 0.923 ○ 14 668 0.888 ○ 12 200(14)

.90 0.911 ○ 13 0.925 ○ 13 378 0.913 ○ 13 273(17)

.925 0.917 X 13 0.933 ○ 14 1859 0.935 ○ 14 542(33)

.95 0.916 X 14 0.935 X 15 3536 0.967 ○ 15 262(20)

.975 0.949 X 16 0.982 ○ 17 1885 0.978 ○ 17 535(46)

.99 0.979 X 16 0.976 X 18 820 0.991 ○ 19 1302(112)

4 .80 0.809 ○ 17 0.840 ○ 17 586 0.804 ○ 16 26(3)

.825 0.812 X 18 0.846 ○ 17 422 0.827 ○ 17 17(2)

.85 0.857 ○ 18 0.853 ○ 17 324 0.853 ○ 17 114(11)

.875 0.837 X 19 0.879 ○ 18 369 0.878 ○ 18 155(17)

.90 0.832 X 19 0.916 ○ 19 542 0.903 ○ 19 173(17)

.925 0.858 X 20 0.916 X 20 1059 0.926 ○ 20 520(25)

.95 0.895 X 21 0.955 ○ 22 1080 0.951 ○ 22 284(23)

.975 0.922 X 22 0.958 X 24 1927 0.975 ○ 24 740(54)

.99 0.957 X 23 0.985 X 26 2248 0.991 ○ 27 1323(107)

N Number of ambulances

CT Computation time (sec)

*Number of iterations

MLR(S) Minimum local reliability level from simulation

≥α: Feasibility of solution (○: Feasible, X: Infeasible)

Iterative optimization algorithm with parameter estimation



finding the first solution, the SIM-OPT algorithm contin-
uously found solutions with updated interaction parame-
ters until the first feasible solution was found. Because the
MLR values of the solutions found in the first 14 itera-
tions were lower than required, the mbf gradually de-
creased. In the 15th iteration, the number of allocated
vehicles increased by one, but its MLR was still lower
than required. Finally, the first feasible solution was found
in the 20th iteration, and the mbf increased as much as the
MLR exceeded α. The algorithm terminated when a better
solution (a solution having a lower number of ambu-
lances) was not found in an extra search.

6.3 Comparison experiments of SIM-OPT
and mathematical programming approaches

The purpose of the second comparison experiment is to
show that the suggested model is efficient with respect
to the number of ambulances by comparing it with other
mathematical programming models. The upper-bound
unavailability location (UBUL) approach suggested by
Shariat-Mohaymany et al. [10] and the iterative model
suggested by Lim et al. [34], which have shown com-
petent experimental results for the number of ambu-
lances, were employed for this comparison. The MLR
of each model was obtained via simulation, which pro-
vided similar results as with the hypercube described in
section 6.1. The UBUL model is coded in CPLEX 12.6 to
run. For the time efficiency of experiment, there are two
minor modifications to UBUL in this experiment. Despite
of the modification, the same UBUL model was solved in
this experiment. At first, Shariat-Mohaymany et al. [10]
solved the UBUL model several times with different f set-
tings to the same case for finding an appropriate f. In this
paper, the decision variable rf and the corresponding con-
straint (e.g., Constraint (9), (10) and the left side of Con-
straint (11)) are added for automatically finding the appro-
priate f. Secondly, the solutions of UBUL were obtained
with the constraint that ‘the total number of allocated

ambulances ≥NUBUL’, where NUBUL is the optimal value
shown in Shariat-Mohaymany et al. [10]. This experimen-
tal setting made us possible to obtain the optimal solution
of UBUL in 8~10 s. The computational times for UBUL
are not the time to solve the original UBUL, hence there is
no computational time for the UBUL in Tables 4 and 6.

From the results of the experiments, detailed in Table 4,
SIM-OPT shows a 100 % feasibility satisfaction rate com-
pared to UBUL and Lim et al. [34], which show 46.9 and
94.4 % feasibility satisfaction rates, respectively. To eval-
uate the efficiency of SIM-OPT, the experimental cases
are divided into those solutions of compared models that
are feasible and those that are not. Table 5 shows the
analysis of comparison of the experimental results provid-
ed in Table 4.

The first and second columns in Table 5 list the feasi-
bilities of the compared models. For example, the second
row in Table 5 (compared model=UBUL, feasibility=X)
lists the results of cases in which UBUL finds infeasible
solutions. The conclusions derived from Table 5 are the
following:

& In the 15 cases in which UBUL found feasible solutions,
SIM-OPT also found feasible solutions with the same
numbers of ambulances

& In the 21 cases in which UBUL found infeasible solutions,
SIM-OPT satisfied the required reliability in all the cases
with an increase of only 0.4762 vehicles on average, and it
found solutions that utilized more vehicles in 7 of 21
cases, and fewer vehicles in 2 cases.

& In the 34 cases in which Lim et al. [34] found feasible
solutions, they employed 19.059 ambulances on aver-
age, and fewer vehicles were allocated compared to
SIM-OPT in 2 cases. SIM-OPT used 18.794 ambu-
lances on average, and the number of cases using fewer
vehicles was seven.

& In the 2 cases in which Lim et al. [34] found infeasible
solutions, SIM-OPT found feasible solutions with the
same numbers of ambulances.

Table 7 The efficiency of SIM-OPT in S=3.0

Comparing model Feasibility Number of cases Average number of vehicles > SIM-OPT < SIM-OPT

Comparing model SIM-OPT Gap

UBUL O 16 8.875 8.250 −0.625 10 0

X 20 13.900 14.550 0.650 3 10

Lim et al. [34] O 26 10.885 10.769 −0.115 2 0

X 10 13.900 14.300 0.400 0 4

> SIM-OPT: the number of cases in which the number of allocated vehicles of SIM-OPT is less than in the compared model

< SIM-OPT: the number of cases in which the number of allocated vehicles of SIM-OPT is more than in the compared model



Table 6 lists the comparison experimental results when the
covering distance was 3. The feasibility satisfaction ratios of
UBUL, Lim et al. [34], and SIM-OPTwere 44.44, 72.22, and
100 %, respectively (showing 2.25 and 1.38 times better per-
formance). The results provided in Table 6 were analyzed
according to the feasibilities of the compared model, as shown
in Table 7.

Table 7 presents the efficiency of SIM-OPTwhen S=3. The
findings from Table 7 are the following:

& In the 16 cases in which UBUL found feasible solutions, it
employed 8.875 vehicles on average. In these cases, SIM-
OPT used 8.25 vehicles on average, a decrease of 0.625.
In 10 of the 16 cases, SIM-OPT satisfied the required
reliability with fewer ambulances.

& In the 20 cases in which UBUL found infeasible solutions,
the average number of vehicles used was 13.9. In these
cases, SIM-OPT found feasible solutions using 14.55 ve-
hicles on average, an increase of 0.65 compared to UBUL.
Among these, SIM-OPT used more ambulances in 10
cases, and fewer in 3 cases.

& In the 26 cases in which Lim et al. [34] found feasible
solutions, Lim et al. used 10.885 vehicles and SIM-OPT
used 10.769 vehicles. In 2 of these cases, SIM-OPT per-
formed better.

& In the 10 cases in which Lim et al. [34] found infeasible
solutions, 13.9 ambulances were employed on average.
For the same cases, SIM-OPT used 14.3 vehicles, an in-
crease of 0.4. It found feasible solutions without increas-
ing the number of ambulances in 6 of the 10 cases. In the
other 4 cases, it found feasible solutions with one more
vehicle.

The comparison experimental results support that SIM-
OPT is as efficient as the other mathematical approaches,
while it guarantees a feasible solution to the PLSCP for any
case. When the other models found feasible solutions, SIM-
OPT also found feasible solutions, and these used the same
number or fewer ambulances, except for 2 cases with de-
creases of 0–0.625 vehicles on average. Otherwise, it satisfied
feasibility with increases of 0–0.65 vehicles compared to the
others. Comparing to Lim et al. [34], more information is
delivered from simulation to optimization in the proposed
SYM-OPT. In Lim et al. [34], only zij

hyper is transferred from
simulation to optimization, and the optimization model incor-
porates the information by minimizing the gap between zij

op

and zij
hyper when an ambulance is allocated in node i. Howev-

er, only interacting zij
hyper between simulation and optimiza-

tion cannot assure finding feasible solution. The suggested
model uses mbf as interaction parameters as well as zij

hyper.
Since mbf is closely related to MLR, an adjustment procedure
to mbf is required for assuring MLR≥α. Furthermore, the
information on zij

hyper is incorporated in a different way from

Lim et al. [34]. For instance, it uses the soft-bound constraint
by grouping zij

hyper according to the distance. Based on these
differences, the suggested model can make the better results
than the one by Lim et al. [34].

7 Conclusions

This paper suggested an iterative hypercube and simulation
optimization algorithm for the purpose of finding the locations
of ambulances that satisfy the reliability requirements. The
optimization model of the suggested algorithms finds the
number and locations of ambulances using simple linear con-
straints. The hypercube (simulation) model was used to vali-
date the optimization model results, and a few parameters
required to interact between the models for the purpose of
validation were identified. These interaction parameters were
updated iteratively until satisfaction of the termination condi-
tions, thus ensuring a feasible solution. The comparison ex-
periment of HYP-OPT and SIM-OPT showed that the two
algorithms have approximately equivalent performances.
The experimental results of SIM-OPT were compared with
other mathematical programming algorithms, and it is evident
from the statistics presented that the suggested algorithm is
efficient in terms of the number of allocated vehicles. That
is, it found a lower number of ambulances on average com-
pared to the other algorithms for the cases in which the others
found feasible solutions. In the other cases, it employed only
0.3815 more vehicles than the other models on average while
satisfying the reliability requirement (computational time per
case was observed to be<1 h). The limitations of this paper
include the assumption that the required numbers of ambu-
lances per demand node and the maximum utilizations of each
ambulance are the same. The rules for updating the parameter
zij

hyper could be revised to impose a tight boundary on it in the
optimization model. Future research is suggested to investi-
gate an iterative algorithm that considers travel time and de-
mand per period.

8 Appendix 1: pseudo-code of parameter update
procedure

Data:

Iter index indicating the current iteration number
iterf the number of iterations for which pre_f=f
min_ambf the minimum number of ambulances when rf=1
λ− the step size for adjusting mbf when MLR<α
λ+ the step size for adjusting mbf when MLR≥α
pre_min_zg the min_zg in the previous iteration
pre_max_zg the max_zg in the previous iteration
pre_sum_zg the sum_zg in the previous iteration

Iterative optimization algorithm with parameter estimation





Parameter Update Procedure:
The index iterf, which indicates the number of itera-

tions during rf=1, is initialized in step 1. iterf is used to
update min_ambf and the interaction parameters zij

hyper.
The parameters of rf will be updated in step 2. A
predetermined rf can reduce the computational effort re-
quired for optimization, so this algorithm determines rf
using a specific rule. The first rf is determined using an
optimization model, and this rf remains fixed until the
changing condition is satisfied, because the first rf has
the capability of offering a solution with a minimum
number of ambulances. If the increased number of am-
bulances reaches min_ambpre_f+1, which is the minimum
number of ambulances when rpre_f+1=1, the pre_f will be
changed to pre_f+1. The increased value to pre_f+1 in-
dicates that the number of ambulances covering each
node has increased, which is better for the MLR empiri-
cally. Thus, the pre_f is increased when there is no loss
in the number of ambulances. The procedures of comput-
ing min_ambpre_f+1 and changing pre_f are presented in
steps 2.2 and 2.3.

Updating mbf is presented in step 3 of the procedure.
mbf has a close relationship with the MLR, which is sum-
marized as follows: (1) a decrease in mbf tends to make the
MLR higher and increase the number of ambulances, and
(2) the increase in mbf tends to have the opposite effect.
The rule for adjusting the mbf is that it is decreased by
λ− (α–MLR), if the MLR is lower than α, where λ− is the
step size. Otherwise, it is increased by –λ+ (α–MLR). How
to update the interaction parameter zij

hyper is shown in step
4. If pre_f is changed, the parameters of zij

hyper will then be
initialized. In other cases, the data for the parameters of
zij

hyper are accumulated by computing averages.
Using mbf, the adjustment rule, this algorithm has the ca-

pability of finding a feasible solution. If the condition for the
number of ambulances required to satisfy feasibility at any
ambulance location is satisfied, such as with a large number
M, and the M ambulances could be allocated, then this algo-
rithm will definitely find a feasible solution because the algo-
rithm decreases mbf until it finds a feasible solution, and an
extremely decreased mbf causes it to find a solution with a
number of ambulances larger than M.

Fig. 6 Framework of simulation

Iterative optimization algorithm with parameter estimation



9 Appendix 2: framework of simulation

Index:

i, j indexes for nodes
n index for allocated ambulances
k, l indexes for calls

Given data:

S covering distance
N total number of ambulances
NT total number of nodes
T the mean of the exponential distribution for service time

per call (min)
ei the mean of the Poisson distribution for number of calls

in a minute in node i
dij distance from node i to node j
In node index where ambulance n is located (which can be

defined by xic)
Pin index of ambulance which is the nth closest ambulance

from node i (which is defined by xic)
LC limit of call

Running parameters:

TCN total number of calls
CT current time (min)
NCTi next call time of node i
Orderk index of node where the kth call arose in the current

call list
TCL total number of calls in the call list
AVTn available time of ambulance n

Output data:

tci the total number of calls arising in node i
lci the total number of lost calls in node i
NAij=
0

the number of calls arising in node i and assigned to
an ambulance in node j

zij
hyper the fraction of calls arising in node i and assigned to

an ambulance in node j
lri the local reliability of node i
MLR the minimum local reliability in total nodes
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