
ARTICLE IN PRESS 

JID: EOR [m5G; April 19, 2018;2:11 ] 

European Journal of Operational Research 0 0 0 (2018) 1–11 

Contents lists available at ScienceDirect 

European Journal of Operational Research 

journal homepage: www.elsevier.com/locate/ejor 

Production, Manufacturing and Logistics 

Faster rollout search for the vehicle routing problem with stochastic 

demands and restocking 

Luca Bertazzi a , ∗, Nicola Secomandi b 

a Department of Economics and Management, University of Brescia, Contrada Santa Chiara, 50, Brescia 25122, Italy 
b Tepper School of Business, Carnegie Mellon University, 50 0 0 Forbes Avenue, Pittsburgh, PA 15213, USA 

a r t i c l e i n f o 

Article history: 

Received 22 April 2017 

Accepted 26 March 2018 

Available online xxx 

Keywords: 

Routing 

Rollout algorithms 

Restocking 

Stochastic vehicle routing problem 

a b s t r a c t 

Rollout algorithms lead to effective heuristics for the single vehicle routing problem with stochastic de- 

mands (VRPSD), a prototypical model of logistics under uncertainty. However, they can be computation- 

ally intensive. To reduce their run time, we introduce a novel approach to approximate the expected 

cost of a route when executing any rollout algorithm for VRPSD with restocking. With a sufficiently large 

number of customers its theoretical speed-up factor is of big-o order 1/3. On a set of instances from 

the literature, our proposed technique applied to a known rollout algorithm and three variants thereof 

achieves speed-up factors that range from 0.26 to 0.34 when there are more than fifty customers, de- 

grading only marginally the quality of the resulting routes. Our method also applies to the a priori case, 

in which case it is exact. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Given a set of geographically dispersed customers, a quantity

o deliver to each customer, and a fleet of capacitated vehicles lo-

ated at a depot, the vehicle routing problem consists of determin-

ng a set of minimal cost routes, each starting and ending at the

epot, such that the demand of all the customers is satisfied with-

ut exceeding the capacity of the vehicles. Since its introduction

y Dantzig and Ramser (1959) , this problem and variants thereof

ave been well studied (see Fisher, 1995; Laporte, 1992; Toth &

igo, 2014 ; and Laporte, 2009 for reviews). 

In the vehicle routing problem with stochastic demands

VRPSD), given probability distributions describe the customer de-

ands and the realization of the demand of a customer becomes

nown upon the first visit to this customer. If the realized demand

f a customer exceeds the remaining capacity of a vehicle when

his customer is visited then a route failure occurs and a recourse

ction must be taken. VRPSD is relevant in both strategic distribu-

ion planning, when only estimates of customer demands are typi-

ally available, and tactical and operational decision making, when

here remains residual uncertainty about the demands of the cus-

omers. 
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The extant literature includes three VRPSD solution strategies:

 priori, restocking, and reoptimization (see Bertsimas & Simchi-

evi, 1996; Dror, 2002; Dror, Laporte, & Trudeau, 1989; Gendreau,

aporte, & Séguin, 1996a; Stewart & Golden, 1983 ; and Gendreau,

abali, & Rei, 2016 for reviews). Under the a priori strategy, vehi-

les follow a given set of routes and back-and-forth replenishment

rips to the depot are performed when a failure occurs ( Bertsimas,

992; Bertsimas, Chervi, & Peterson, 1995; Bertsimas, Jaillet, &

doni, 1990; Gendreau, Laporte, & Séguin, 1995; 1996b; Goodson,

hlmann, & Thomas, 2012; Gupta, Viswanath, & Ravi, 2012; Hjor-

ing & Holt, 1999; Jabali, Rei, Gendreau, & Laporte, 2012; Laporte,

ouveaux, & Van Hamme, 2002; Rei, Gendreau, & Soriano, 2010;

ecomandi, 2003 ). The restocking strategy modifies the a priori

pproach by allowing preventing replenishment trips to the de-

ot to avoid potentially costly route failures ( Yee & Golden, 1980,

ertsimas et al., 1995; Secomandi, 2003; Yang, Mathur, & Ballou,

0 0 0 ). With reoptimization, the decisions of which customer to

isit next or whether to replenish depend on the demand ob-

erved and served so far ( Goodson, Ohlmann, & Thomas, 2013;

oodson, Thomas, & Ohlmann, 2016; Novoa & Storer, 2009; Sec-

mandi, 20 0 0; 20 01; Secomandi & Margot, 2009 ). In other words,

s discussed by Secomandi and Margot (2009) , both routing and

eplenishment decisions are static in the a priori case, routing de-

isions are static and replenishment decisions are dynamic in the

estocking case, and both types of decisions are dynamic in the

eoptimization case. Although dominated by reoptimization, the a

riori and restocking strategies are appealing in practice because

tatic routing creates regular service that is appreciated by both
ch for the vehicle routing problem with stochastic demands and 
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customers and drivers ( Bertsimas & Simchi-Levi, 1996 ). Further, the

restocking approach outperforms the a priori approach ( Yee and

Golden 1980; Bertsimas et al., 1995; Secomandi, 2003 ) in terms of

expected delivery cost. We thus focus our attention on the restock-

ing strategy, but our methodological development is also relevant

for the a priori case. 

Heuristics are widespread in the VRPSD literature because ex-

act methods can be used only on moderately-sized instances ( Dror

et al., 1989; Gendreau et al., 1995; Hjorring & Holt, 1999; La-

porte et al., 2002; Bianchi et al., 2006; Jabali et al., 2012 ). Roll-

out search is an approximate dynamic programming approach that

uses the expected cost of a known (base) heuristic to approxi-

mate the optimal value function when making a decision ( Bertazzi,

2012; Bertsekas, 2005; Bertsekas & Castanon, 1999; Bertsekas &

Tsitsiklis, 1996; Goodson, Thomas, & Ohlmann, 2017 ). Secomandi

(20 01, 20 03) , Novoa and Storer (2009) and Goodson et al. (2013 ,

2016) develop rollout methods for VRPSD. 

The nested execution of a base heuristic, a defining element of

rollout algorithms, can make rollout search computationally inten-

sive, especially for instances that feature many customers. Thus, in

this paper we develop a method to reduce the computationally re-

quirement of this heuristic search approach applied to VRPSD un-

der the restocking strategy when there is a single vehicle. In con-

trast to the standard backward dynamic programming evaluation

of the expected cost of a restocking route ( Yee and Golden 1980;

Bertsimas et al., 1995; Secomandi, 2003; Yang et al., 20 0 0 ), we first

derive a novel forward dynamic programming approach to evalu-

ate this cost. We then combine the forward and backward methods

in a hybrid fashion when executing any rollout algorithm for the

VRPSD version that we consider. This hybrid approach eliminates

redundant computations at the expense of additional bookkeep-

ing but approximates the expected cost of a restocking route. Even

if it is outside the scope of our research, our proposed technique

applies without approximation to the a priori strategy; that is, it

yields an exact evaluation of the expected cost of an a priori route.

The computational requirement of this method is theoretically ap-

pealing when applying VRPSD rollout algorithms to instances with

a sufficiently large number of customers, in which case its big-o

order speed-up factor equals 1/3. 

We assess the performance of our proposed approach by apply-

ing it on the instances of Secomandi and Margot (2009) using as

benchmarks the basic rollout algorithm of Secomandi (2003) for

VRPSD with a single vehicle and three variants thereof. One of

these variants bears some similarities with the rollout algorithms

developed by Novoa and Storer (2009) to obtain a rollout policy for

the reoptimization version of VRPSD. Hence, our considered rollout

algorithms loosely represent extant single vehicle VRPSD rollout al-

gorithms. Consistent with our theoretical analysis, across all the

examined rollout algorithms, the observed speed-up factors vary

between 0.26 and 0.34 for instances with at least 50 customers.

These computational savings are associated with only a marginal

degradation of the quality of the resulting routes. Although these

results are specific to the rollout algorithms that are the subject

of our numerical study, our expected cost computation approach is

relevant to other VRPSD rollout algorithms one may design or use.

Other researchers have investigated the possibility of speeding

up rollout search. In the context of the traveling salesman problem,

Guerriero, Mancini, and Musmanno (2002) propose the pruned

and relaxed rollout algorithms, which selectively execute the base

heuristic at each iteration. Ciavotta, Meloni, and Pranzo (2016) de-

velop related techniques for parallel machine scheduling problems.

Guerriero and Mancini (2005) use parallel computing to reduce the

run time of the traditional and pruned rollout algorithms applied

to the traveling salesman and sequential ordering problems. In

contrast, our approach always executes the base heuristic at each

iteration, relies on sequential computing, and deals with a differ-
Please cite this article as: L. Bertazzi, N. Secomandi, Faster rollout sear
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nt application. The rollout policies of Novoa and Storer (2009) for

RPSD use a base heuristic of the a priori type (see also Birattari,

alaprakash, Stützle, & Dorigo, 2008 for the use of Monte Carlo

imulation in local search for stochastic combinatorial optimiza-

ion). These authors obtain improved computational efficiency by

valuating the expected cost of an a priori route using Monte Carlo

imulation, without observing any deterioration in the obtained so-

utions even with small sample sizes. Monte Carlo evaluation can-

ot be applied to estimate the expected cost of a restocking route.

owever, in the a priori case one could combine Monte Carlo sim-

lation and our proposed technique to obtain a possibly even faster

ethod. 

Bianchi et al. (2006) study the effectiveness of approximating

he VRPSD objective function under the a priori strategy with the

ne of deterministic versions of this problem, which is easier to

ompute than the exact one, for various metaheuristics. Whereas

heir focus is on the solution quality of the resulting methods, our

ain attention is on the speed up of the approach that we put

orth (although we observe that it has minimal impact on solution

alue). Moreover, our proposed method does not involve any ap-

roximation when applied to VRPSD under the a priori strategy. 

We introduce VRPSD under the restocking strategy in Section 2 .

e present the backward and forward dynamic programming ap-

roaches to compute the expected cost of a VRPSD restocking route

n Section 3 . We discuss our proposed hybrid approach for the

omputation of the expected cost of such a route for any rollout al-

orithm in Section 4 . We conduct our numerical study in Section 5 .

e conclude in Section 6 . The online supplementary material in-

ludes additional information about our numerical results. 

. VRPSD with a single vehicle 

We formulate VRPSD with a single vehicle as an optimiza-

ion model. Let G ( V , E ) be a given complete graph, where V :=
 0 , 1 , . . . , n } is the set of n + 1 nodes and E is the corresponding

et of edges. The depot is located at node 0 and the customers at

odes 1 through n . The cost to travel from node i to node j is de-

oted by c ( i , j ). Travel costs are symmetric, c(i, j) = c( j, i ) for each i

nd j ∈ V , and satisfy the triangle inequality, c(i, j) ≤ c(i, k ) + c(k, j)

or each i , j , and k ∈ V . A single and fully loaded vehicle with capac-

ty Q is initially located at the depot. The demand of each customer

 is the integer-valued random variable D i . These random variables

re independent. Their probability distributions are known. We de-

ote the probability that the demand of customer i is equal to � i 
s p i ( � i ), that is, p i (� i ) := Pr { D i = � i } . We let L i ≥ 1 , and L i ≤ Q, re-

pectively, be the minimal and maximal values of the support of

he random variable D i . The realization of the demand of a cus-

omer becomes known when, and only when, the vehicle arrives

t the location of this customer. 

A route is feasible if it starts and ends at the depot and visits all

he customers exactly once. A route failure occurs when the vehi-

le does not have enough capacity to fully satisfy the demand of a

ustomer. The VRPSD objective is to find a feasible route with min-

mal expected cost such that the demands of all the customers are

atisfied. Formally, denote a feasible route (tour) by τ and the set

f all feasible routes by T . Let the expected cost of route τ under

he restocking strategy be E [ C τ ] . VRPSD is min τ∈T E [ C τ ] . 

. Expected cost computation for a given route 

In Section 3.1 we present a known backward recursion to com-

ute the expected cost of a given route for the restocking case. In

ection 3.2 we introduce a new forward recursion to compute this

ost. In Section 3.3 we illustrate these recursions using a simple

xample. Given a feasible route τ , for expositional simplicity we
ch for the vehicle routing problem with stochastic demands and 
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enumber the customers of the given route so that it can be rep-

esented as (0 , 1 , 2 . . . , n, n + 1 ≡ 0) . 

.1. Backward recursion 

The material in this section is in part based on Secomandi

2003) and references therein. Let γ i ( q ; τ ) be the expected cost

f serving all customer demands when the vehicle follows route τ
nder the restocking strategy starting from customer i with q units

f available capacity, after the demand of customer i has been sat-

sfied. In dynamic programming terminology, γ i ( · ; τ ) can be given

he interpretation of cost-to-go function when the vehicle follows

he residual part of route τ starting from customer i . With this no-

ation, the quantity γ 0 ( Q ; τ ) corresponds to the expected cost of

oute τ , E [ C τ ] . The function γ i ( · ; τ ) can be computed by the back-

ard recursion (1) –(3) , where we suppress the argument τ for no-

ational simplicity. This recursion, which is based on the two aux-

liary functions γ (1) 
i 

(·) and γ (2) 
i 

, follows: 

n (q ) = c(n, 0) , ∀ q = 0 , . . . , Q − 1 , (1) 

i (q ) = min 

{
γ (1) 

i 
(q ) , γ (2) 

i 

}
, 

∀ i = n − 1 , . . . , 1 , q = 0 , . . . , Q − 1 , (2) 

0 (Q ) = c(0 , 1) + 

L 1 ∑ 

� 1 = L 1 
p 1 (� 1 ) γ1 (Q − � 1 ) , (3) 

ith 

(1) 
i 

(q ) := 

min { q, L i +1 } ∑ 

� i +1 = L i +1 

p i +1 (� i +1 ) [ c(i, i + 1) + γi +1 (q − � i +1 ) ] 

+ 

L i +1 ∑ 

� i +1= q +1 

p i +1 (� i +1 ) [ c(i, i + 1) 

+ 2 c(i + 1 , 0) + γi +1 (q + Q − � i +1 ) ] , 

∀ i = n − 1 , . . . , 1 , q = 0 , . . . , Q − 1 , 

γ (2) 
i 

:= 

L i +1 ∑ 

� i +1 = L i +1 

p i +1 (� i +1 ) [ c(i, 0) + c(0 , i + 1) + γi +1 (Q − � i +1 ) ] , 

∀ i = n − 1 , . . . , 1 . 

xpression (1) is a boundary condition that captures the determin-

stic cost to reach the depot from customer n , c ( n , 0), for all pos-

ible capacity levels after serving this customer demand. The re-

ursive expression (2) sets the cost-to-go for all nodes from n − 1

hrough 1 equal to the minimum between the cost-to-go of trav-

ling directly to the next customer along route τ , γ (1) 
i 

(q ) , which

ccounts for the possibility of a route failure and the corresponding

oundtrip between this customer and the depot, and the cost-to-go

f performing a replenishment trip to the depot on the way to this

ustomer, γ (2) 
i 

. Finally, expression (3) includes the cost of traveling

rom the depot to the first customer in route τ and the cost-to-go

rom this customer with available capacity equal to Q − � 1 . 

Executing recursion (1) –(3) requires O ( nQ ) space and O ( nLQ )

ime, where 

 := 1 + max 
i ∈{ 1 , ... ,n } 

{
L i − L i 

}
. 

oreover, the optimal restocking policy has a threshold structure

n the available capacity ( Yee & Golden, 1980; Secomandi, 1998;

ang et al., 20 0 0 ): at each customer location along a given route,

xcluding the last one, it is optimal to restock provided that the

vailable capacity is equal to or smaller than a critical value, which
Please cite this article as: L. Bertazzi, N. Secomandi, Faster rollout sear
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epends on this customer and this route. Formally, for each cus-

omer i = 1 , 2 , . . . , n − 1 , because γ (1) 
i 

(·) is nonincreasing and γ (2) 
i 

s constant, define ˆ q i as the maximal value of q such that γ (1) 
i 

(q ) ≥
(2) 

i 
; the triangle inequality implies γ (1) 

i 
(0) ≥ γ (2) 

i 
so that ˆ q i be-

ongs to set { 1 , 2 , . . . , Q} . It is optimal to restock whenever the re-

aining vehicle capacity after serving the demand of customer i is

ess than or equal to ˆ q i . This property facilitates the execution of

ecursion (1) –(3) , because the second argument in the minimiza-

ion on the right-hand side of (2) is no larger than the first argu-

ent in this minimization when ˆ q i exceeds q . We also exploit this

roperty in Section 3.2 . 

.2. Forward recursion 

The recursion (1) –(3) computes the expected cost of a route un-

er the restocking strategy in a backward fashion, that is, starting

rom the end of a route. In contrast, we now propose a recursion

hat computes such cost in a forward fashion, that is, starting from

he beginning of a route. 

Starting from the depot and following route τ , we denote by

i ( q ; τ ) and χ i ( q ; τ ), respectively, the probability and expected

ost that the vehicle reaches customer i with q units of remain-

ng capacity after serving the demand of this customer; by Q i −1 (τ )

he vehicle available capacity after serving the demand of customer

 − 1 ; by Q 

i −1 
(τ ) and Q i −1 (τ ) , respectively, the minimal and max-

mal values of Q i −1 (τ ) such that πi −1 (q i −1 ; τ ) is positive. In dy-

amic programming terminology, the functions χ i ( · ; τ ) and π i ( · ;

), respectively, can be interpreted as the cost-to-come and the

robability-to-come to customer i when using route τ . For nota-

ional simplicity, in the ensuing analysis we remove the depen-

ence of these functions on the route. 

The forward recursions that we present below assume that the

apacity threshold values ˆ q i ’s have already been determined by ex-

cuting the recursion (1) –(3) . Although it may seem pointless to

ocus on forward recursions that assume the prior execution of

his backward recursion, such forward recursions can be useful in

peeding up the execution of rollout algorithms for the single ve-

icle VRPSD, as discussed in Section 4 . 

The function π i ( · ) satisfies the following recursion: 

1 (q ) = 0 , ∀ q ∈ { 0 , . . . , Q −L 1 −1 } ∪ { Q −L 1 + 1 , . . . , Q −1 } , (4) 

1 (q ) = p 1 (Q − q ) , ∀ q = Q − L 1 , . . . , Q − L 1 , (5) 

i (q ) = πA 
i (q ) + πB 

i (q ) + πC 
i (q ) , 

∀ i = 2 , . . . , n, q = 0 , . . . , Q − 1 , (6) 

ith 

A 
i (q ) := 

ˆ q i −1 ∑ 

Q i −1 = q i −1 

πi −1 ( Q i −1 ) p i (Q − q ) , 

∀ q = Q − L i , . . . , Q − L i , 

πB 
i (q ) := 

min { Q i −1 ,q + L i } ∑ 

Q i −1 = max { Q 
i −1 

, ̂ q i −1 +1 ,q + L i } 
πi −1 (Q i −1 ) p i (Q i −1 − q ) , 

∀ q = max { 0 , ˆ Q i −1 + 1 − L i , Q 

i −1 
− L i } , . . . , Q i −1 − L i , 

πC 
i (q ) := 

min { Q i −1 ,q −Q+ L i } ∑ 

Q i −1 = max { Q 
i −1 

, ̂ q i −1 +1 ,q −Q+ L i } 
πi −1 (Q i −1 ) p i (Q i −1 + Q − q ) , 

∀ q = max { Q 

i −1 
+ Q − L i , ̂  q i −1 + 1 + Q − L i } , . . . , 

min { Q i −1 + Q − L i , Q − 1 } , 

ch for the vehicle routing problem with stochastic demands and 

i.org/10.1016/j.ejor.2018.03.034 
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Table 1 

Travel costs c ( i , j )’s for the example in Section 3.3 . 

j 

i 0 1 2 3 

0 0 1 
√ 

2 1 

1 1 0 1 
√ 

2 

2 
√ 

2 1 0 1 

3 1 
√ 

2 1 0 

a  

q  

(  

p  

t  

p  

t  

t  

i  

χ  

u  

c  

h  

t  

t  

t  

t  

a

Q

 

i  

i

 

r

3

 

t  

d  

1  

t  

m  

0  

c

 

T  

γ

γ

γ

and πA 
i 
(q ) , πB 

i 
(q ) , and πC 

i 
(q ) set to zero for any other value of

q . Expressions (4) and (5) set the probability of having q units

of available capacity after serving the first customer equal to zero

for q below Q − L 1 or above Q − L 1 , and p 1 (Q − q ) otherwise. For

all customers 2 through n , the probability π i ( q ) in (6) is the sum

of three probabilities corresponding to mutually exclusive and ex-

haustive events: πA 
i 
(q ) , πB 

i 
(q ) , and πC 

i 
(q ) , which are, respectively,

the probability of reaching customer i when the vehicle restocks

after serving customer i − 1 ; does not restock after serving cus-

tomer i − 1 and no failure is experienced at customer i ; and does

not replenish after serving customer i − 1 and a failure occurs at

customer i . We now describe how to obtain each of these prob-

abilities given that the function πi −1 (·) is available. The idea is to

condition on the value of the vehicle capacity that is available after

serving customer i − 1 , that is, Q i −1 . 

The vehicle replenishes after serving customer i − 1 if Q 

i −1 
≤

Q i −1 ≤ ˆ q i −1 . Because the vehicle is full after replenishment, the

probability πA 
i 
(q ) can exceed zero only when Q − L i ≤ q ≤ Q −

L i . For each such value of q , the corresponding demand at cus-

tomer i is Q − q . Thus, πA 
i 
(q ) is the sum of the probabilities

πi −1 (Q i −1 ) p i (Q − q ) when Q i −1 varies from Q 

i −1 
through ˆ q i −1 , in-

clusive. 

There is no replenishment after serving customer i − 1

if max { Q 

i −1 
, ̂  q i −1 + 1 } ≤ Q i −1 ≤ Q i −1 . If no failure occurs at

customer i , the probability πB ( q ) can be greater than zero

only when max { 0 , ̂  q i −1 + 1 − L i , Q 

i −1 
− L i } ≤ q ≤ Q i −1 − L i . Be-

cause for each of these values of q it holds that q + L i ≤
Q i −1 ≤ q + L i , the probability πB 

i 
(q ) is the sum of the prob-

abilities πi −1 (Q i −1 ) p i (Q i −1 − q ) for values of Q i −1 between

max { Q 

i −1 
, ̂  q i −1 + 1 , q + L i } and min { Q i −1 , q + L i } , inclusive. If a

failure does occur at customer i , the probability πC ( q ) can ex-

ceed zero only when max { Q 

i −1 
+ Q − L i , ̂  q i −1 + 1 + Q − L i } ≤ q ≤

min { Q i −1 + Q − L i , Q − 1 } . Because for each of these values of q we

have q − Q + L i ≤ Q i −1 ≤ q − Q + L i , the probability πC 
i 
(q ) is the

sum of the probabilities πi −1 (Q i −1 ) p i (Q i −1 + Q − q ) when Q i −1 is

between max { Q 

i −1 
, ̂  q i −1 + 1 , q − Q + L i } and min { Q i −1 , q − Q + L i } ,

inclusive. 

Availability of the function π i ( · ) allows us to obtain the follow-

ing forward recursion for the function χ i ( · ): 

χ1 (q ) = 0 , ∀ q ∈ { 0 , . . . , Q − L 1 − 1 } ∪ 

{ Q − L 1 + 1 , . . . , Q − 1 } , (7)

χ1 (q ) = c(0 , 1) p 1 (Q − q ) , ∀ q = Q − L 1 , . . . , Q − L 1 , (8)

χi (q ) = χA 
i (q ) + χB 

i (q ) + χC 
i (q ) , 

∀ i = 2 , . . . , n, q = 0 , . . . , Q − 1 , (9)

χn +1 (q ) = χn (q ) + c(n, 0) πn (q ) , ∀ q = 0 , . . . , Q − 1 , (10)

with 

χA 
i (q ) := 

ˆ q i −1 ∑ 

Q i −1 = Q i −1 

{ χi −1 (Q i −1 ) + [ c(i − 1 , 0) + c(0 , i )] πi −1 (Q i −1 ) } 

p i (Q − q ) , 

∀ q = Q − L i , . . . , Q − L i , 

χB 
i (q ) := 

min { Q i −1 ,q + L i } ∑ 

Q i −1 = max { Q 
i −1 

, ̂ q i −1 +1 ,q + L i } 
[ χi −1 (Q i −1 ) + c(i − 1 , i ) πi −1 (Q i −1 )

p i (Q i −1 − q ) , 

∀ q = max { 0 , ˆ Q i −1 + 1 − L i , Q 

i −1 
− L i } , . . . , Q i −1 − L i , 
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χC 
i (q ) := 

min { Q i −1 ,q −Q+ L i } ∑ 

Q i −1 = max { Q i −1 
, ̂ q i −1 +1 ,q −Q+ L i } 

{ χi −1 (Q i −1 ) 

+ [ c(i − 1 , i ) + 2 c(i, 0)] πi −1 (Q i −1 ) } p i (Q i −1 + Q − q ) , 

∀ q = max { Q 

i −1 
+ Q − L i , ̂  q i −1 + 1 + Q − L i } , . . . , 

min { Q i −1 + Q − L i , Q − 1 } , 
nd χA 

i 
(q ) , χB 

i 
(q ) , and χC 

i 
(q ) set to zero for any other value of

 . Because the vehicle leaves the depot fully loaded, expressions

7) and (8) set to zero and c(0 , 1) p 1 (Q − q ) , respectively, the ex-

ected cost of having an amount of available capacity after serving

he demand of the first customer that is incompatible and com-

atible with the possible realizations of this demand. For all cus-

omers 2 through n , the expected cost χ i ( q ) in (9) is the sum of

he expected costs of reaching such a customer when restocking

s performed after serving the demand of the previous customer,
A 
i 
(q ) , and when no such restocking is performed and a route fail-

re at the current customer does not occur, χB 
i 
(q ) , and does oc-

ur, χC 
i 
(q ) , respectively. Expression (10) sets the expected cost of

aving an amount of available capacity q when the vehicle returns

o the depot after serving the last customer equal to the sum of

he expected cost of having such capacity available after serving

his customer, χn ( q ), and the cost of traveling from this customer

o the depot, c ( n , 0), multiplied by the probability of having such

vailable capacity at this juncture. The expression 

−1 ∑ 

q =0 

χn +1 (q ) (11)

s the expected cost of route τ under the restocking strategy, that

s, E [ C τ ] . 

Executing each of the forward recursions (4) –(6) and (7) –(10)

equires O ( nQ ) space and O ( nLQ ) time. 

.3. Example 

We consider the following instance: the depot and three cus-

omers are located at the corners of a unit square. Specifically, the

epot location is (0 , 0) and the respective locations of customers

, 2, and 3 are (0 , 1) , (1 , 1) , and (1 , 0) . Travel costs correspond

o Euclidean distances. Table 1 displays them. The customer de-

and probability mass functions are p 1 (1) = p 1 (2) = 0 . 5 ; p 2 (1) =
 . 2 and p 2 (2) = 0 . 8 ; and p 3 (1) = 0 . 8 and p 3 (2) = 0 . 2 . The vehicle

apacity Q equals 3 units. We focus on route τ = (0 , 1 , 2 , 3 , 0) . 

Backward recursion : we first execute the backward recursion.

he terminal conditions, which correspond to customer 3, are

3 (q ) = c(3 , 0) = 1 for each q = 0 , 1 , 2 . For customer 2 we have 

(1) 
2 

(1) = c(2 , 3) + p 3 (1) γ3 (0) + p 3 (2)[2 c(3 , 0) + γ3 (2)] 

= 1 + 0 . 8 · 1 + 0 . 2(2 + 1) = 1 + 0 . 8 + 0 . 6 = 2 . 4 , 

(1) 
2 

(2) = c(2 , 3) + p 3 (1) γ3 (1) + p 3 (2) γ3 (0) 

= 1 + 0 . 8 · 1 + 0 . 2 · 1 = 2 , 

γ (2) 
2 

= c(2 , 0) + c(0 , 3) + p 3 (1) γ3 (2) + p 3 (2) γ3 (1) 

= 

√ 

2 + 1 + 0 . 8 · 1 + 0 . 2 · 1 = 2 + 

√ 

2 ≈ 3 . 4142 . 
ch for the vehicle routing problem with stochastic demands and 
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t follows that γ2 (0) = 2 + 

√ 

2 , because the triangle inequality im-

lies γ (1) 
2 

(0) ≥ γ (2) 
2 

, γ2 (1) = 2 . 4 , γ2 (2) = 2 , and ˆ q 2 = 0 . For cus-

omer 1 it holds that 

(1) 
1 

(1) = c(1 , 2) + p 2 (1) γ2 (0) + p 2 (2)[2 c(2 , 0) + γ2 (2)] 

= 1 + 0 . 2( 
√ 

2 + 2) + 0 . 8(2 

√ 

2 + 2) = 3 + 1 . 8 

√ 

2 ≈ 5 . 5456 , 

(1) 
1 

(2) = c(1 , 2) + p 2 (1) γ2 (1) + p 2 (2) γ2 (0) 

= 1 + 0 . 2 · 2 . 4 + 0 . 8( 
√ 

2 + 2) = 3 . 08 + 0 . 8 

√ 

2 ≈ 4 . 2114 , 

γ (2) 
1 

= c(1 , 0) + c(0 , 2) + p 2 (1) γ2 (2) + p 2 (2) γ2 (1) 

= 1 + 

√ 

2 + 0 . 2 · 2 + 0 . 8 · 2 . 4 = 3 . 32 + 

√ 

2 ≈ 4 . 7342 . 

e thus have γ1 (0) = 3 . 32 + 

√ 

2 , given that γ (1) 
2 

(0) ≥ γ (2) 
2 

holds

y the triangle inequality, γ1 (1) = 3 . 32 + 

√ 

2 , γ1 (2) = 3 . 08 +
 . 8 

√ 

2 , and ˆ q 1 = 1 . The expected cost of the given tour τ , E [ C τ ] ,

orresponds to 

0 (3) = c(0 , 1) + p 1 (1) γ1 (2) + p 1 (2) γ1 (1) 

= 1 + 0 . 5(0 . 8 

√ 

2 + 3 . 08) + 0 . 5(1 . 8 

√ 

2 + 3) = 4 . 2 + 0 . 9 

√ 

2 .

Forward recursion: we first evaluate the probabilities of having

 = 0 , 1 , 2 units on board the vehicle after serving the demand of

ustomer i = 1 , 2 , 3 , that is, the quantities π i ( q )’s. Because the ve-

icle is fully loaded at the depot, Q = 3 , L 1 = 1 , and L 1 = 2 , we

ave π1 (0) = 0 , π1 (1) = p 1 (2) = 0 . 5 , and π1 (2) = p 1 (1) = 0 . 5 . For

ach customer i = 2 , 3 , the quantity π i ( q ) is the sum of 

1. πA 
i 
(q ) : the probability of having q units left after serving the

demand of customer i when the vehicle restocks on its way to

this customer; 

2. πB 
i 
(q ) : the probability of having q units left after serving the

demand of customer i when the vehicle does not restock on its

way to this customer and there is no failure at this customer;

and 

3. πC 
i 
(q ) : the probability of having q units left after serving the

demand of customer i when the vehicle does not restock on its

way to this customer and there is failure at this customer. 

Given that ˆ q 1 = 1 , that is, restocking after serving the demand

f customer 1 occurs when the residual number of units is 0 or 1,

 2 = 1 , and L 2 = 2 , it holds that 

A 
2 (0) = 0 , 

A 
2 (1) = π1 (1) p 2 (2) = 0 . 5 · 0 . 8 = 0 . 4 , 

A 
2 (2) = π1 (1) p 2 (1) = 0 . 5 · 0 . 2 = 0 . 1 , 

πB 
2 (0) = π1 (2) p 2 (2) = 0 . 5 · 0 . 8 = 0 . 4 , 

πB 
2 (1) = π1 (2) p 2 (1) = 0 . 5 · 0 . 2 = 0 . 1 , 

πB 
2 (2) = 0 , 

πC 
2 (0) = πC 

2 (1) = πC 
2 (2) = 0 . 

t follows that 

2 (0) = 0 + 0 . 4 + 0 = 0 . 4 , 

2 (1) = 0 . 4 + 0 . 1 + 0 = 0 . 5 , 

2 (2) = 0 . 1 + 0 + 0 = 0 . 1 . 

e have ˆ q 2 = 0 , that is, the vehicle restocks if and only if it is

mpty after serving the demand of customer 2, L 2 = 1 , and L 2 = 2 .

ence, it holds that 

A 
3 (0) = 0 , 

A 
3 (1) = π2 (0) p 3 (2) = 0 . 4 · 0 . 2 = 0 . 08 , 

A 
3 (2) = π2 (0) p 3 (1) = 0 . 4 · 0 . 8 = 0 . 32 , 

πB 
3 (0) = π2 (1) p 3 (1) + π2 (2) p 3 (2) = 0 . 5 · 0 . 8 

+ 0 . 1 · 0 . 2 = 0 . 4 + 0 . 02 = 0 . 42 , 

πB 
3 (1) = π2 (2) p 3 (1) = 0 . 1 · 0 . 8 = 0 . 08 , 
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πB 
3 (2) = 0 , 

πC 
3 (0) = πC 

3 (1) = 0 , 

πC 
3 (2) = π2 (1) p 3 (2) = 0 . 5 · 0 . 2 = 0 . 1 . 

onsequently, we have 

3 (0) = 0 + 0 . 42 + 0 = 0 . 42 , 

3 (1) = 0 . 08 + 0 . 08 + 0 = 0 . 16 , 

3 (2) = 0 . 32 + 0 + 0 . 1 = 0 . 42 . 

We now evaluate the expected cost χ i ( q ) of serving the de-

and of customers 1 through i and having q units left in the ve-

icle for i = 1 , 2 , 3 and q = 0 , 1 , 2 , as well as the expected cost

4 ( q ) of reaching the depot with q units on board the vehicle af-

er satisfying the demand of all the three customers for q = 0 , 1 , 2 .

iven that the vehicle starts full, Q = 3 , L 1 = 1 , and L 1 = 2 , it holds

hat χ1 (0) = 0 , χ1 (1) = c(0 , 1) p 1 (2) = 1 · 0 . 5 = 0 . 5 , and χ1 (2) =
(0 , 1) p 1 (1) = 1 · 0 . 5 = 0 . 5 . For each customer i = 2 , 3 , the term

i ( q ) is the total of 

1. χA 
i 
(q ) : the expected cost of having q units on board after serv-

ing the demand of customer i when the vehicle restocks right

before reaching this customer; 

2. χB 
i 
(q ) : the expected cost of having q units on board after serv-

ing the demand of customer i when the vehicle does not re-

stock right before reaching this customer and there is no failure

at this customer; and 

3. χC 
i 
(q ) : the expected cost of having q units on board after serv-

ing the demand of customer i when the vehicle does not re-

stock after serving this customer and there is failure at this cus-

tomer. 

We have ˆ q 1 = 1 , L 2 = 1 , and L 2 = 2 . It follows that 

A 
2 (0) = 0 , 

A 
2 (1) = { χ1 (1) + [ c(1 , 0) + c(0 , 2)] π1 (1) } p 2 (2) 

= 

[
0 . 5 + (1 + 

√ 

2 )0 . 5 

]
0 . 8 = 0 . 8 + 0 . 4 

√ 

2 , 

A 
2 (2) = { χ1 (1) + [ c(1 , 0) + c(0 , 2)] π1 (1) } p 2 (1) 

= [0 . 5 + (1 + 

√ 

2 0 . 5]0 . 2 = 0 . 2 + 0 . 1 

√ 

2 , 

χB 
2 (0) = [ χ1 (2) + c(1 , 2) π1 (2) ] p 2 (2) = (0 . 5 + 1 · 0 . 5)0 . 8 = 0 . 8 , 

χB 
2 (1) = [ χ1 (2) + c(1 , 2) π1 (2) ] p 2 (1) = (0 . 5 + 1 · 0 . 5)0 . 2 = 0 . 2 , 

χB 
2 (2) = 0 , 

χC 
2 (0) = χC 

2 (1) = χC 
2 (2) = 0 , 

nd 

2 (0) = 0 + 0 . 8 + 0 = 0 . 8 , 

2 (1) = 0 . 8 + 0 . 4 

√ 

2 + 0 . 2 + 0 = 1 + 0 . 4 

√ 

2 , 

2 (2) = 0 . 2 + 0 . 1 

√ 

2 + 0 + 0 = 0 . 2 + 0 . 1 

√ 

2 . 

Given that ˆ q 2 = 0 , L 2 = 1 , and L 2 = 2 , we have 

A 
3 (0) = 0 , 

A 
3 (1) = { χ2 (0) + [ c(2 , 0) + c(0 , 3)] π2 (0) } p 3 (2) 

= [0 . 8 + ( 
√ 

2 + 1)0 . 4]0 . 2 = 0 . 24 + 0 . 08 

√ 

2 , 

A 
3 (2) = { χ2 (0) + [ c(2 , 0) + c(0 , 3)] π2 (0) } p 3 (1) 

= [0 . 8 + ( 
√ 

2 + 1)0 . 4]0 . 8 = 0 . 96 + 0 . 32 

√ 

2 , 

χB 
3 (0) = [ χ2 (1) + c(2 , 3) π2 (1)] p 3 (1) 

+ [ χ2 (2) + c(2 , 3) π2 (2)] p 3 (2) 

= (1 + 0 . 4 

√ 

2 + 1 · 0 . 5)0 . 8 + (0 . 2 + 0 . 1 

√ 

2 + 1 · 0 . 1)0 . 2 

= 1 . 2 + 0 . 32 

√ 

2 + 0 . 06 + 0 . 02 

√ 

2 = 1 . 26 + 0 . 34 

√ 

2 , 

χB 
3 (1) = [ χ2 (2) + c(2 , 3) π2 (2)] p 3 (1) 

= (0 . 2 + 0 . 1 

√ 

2 + 1 · 0 . 1)0 . 8 = 0 . 24 + 0 . 08 

√ 

2 , 
ch for the vehicle routing problem with stochastic demands and 
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p  
χB 
3 (2) = 0 , 

χC 
3 (0) = χC 

3 (1) = 0 , 

χC 
3 (2) = { χ2 (1) + [ c(2 , 3) + 2 c(3 , 0)] π2 (1) } p 3 (2) 

= [1 + 0 . 4 

√ 

2 + (1 + 2 · 1)0 . 5]0 . 2 = 0 . 5 + 0 . 08 

√ 

2 , 

and 

χ3 (0) = 0 + 1 . 26 + 0 . 34 

√ 

2 + 0 = 1 . 26 + 0 . 34 

√ 

2 , 

χ3 (1) = 0 . 24 + 0 . 08 

√ 

2 + 0 . 24 + 0 . 08 

√ 

2 + 0 = 0 . 48 + 0 . 16 

√ 

2 , 

χ3 (2) = 0 . 96 + 0 . 32 

√ 

2 + 0 . 5 + 0 . 08 

√ 

2 = 1 . 46 + 0 . 4 . 

Finally, we obtain 

χ4 (0) = χ3 (0) + c(3 , 0) π3 (0) = 1 . 26 + 0 . 34 

√ 

2 + 1 · 0 . 42 

= 1 . 68 + 0 . 34 

√ 

2 , 

χ4 (1) = χ3 (1) + c(3 , 0) π3 (1) = 0 . 48 + 0 . 16 

√ 

2 + 1 · 0 . 16 

= 0 . 64 + 0 . 16 

√ 

2 , 

χ4 (2) = 1 . 46 + 0 . 4 

√ 

2 + 1 · 0 . 42 = 1 . 88 + 0 . 4 

√ 

2 , 

so that the expected cost of tour τ , E [ C τ ] , evaluates to 

2 ∑ 

q =0 

χ4 (0) = 1 . 68 + 0 . 34 

√ 

2 + 0 . 64 + 0 . 16 

√ 

2 + 1 . 88 

+ 0 . 4 

√ 

2 = 4 . 2 + 0 . 9 

√ 

2 . 

4. Proposed expected cost computation approach for rollout 

algorithms 

In this section we integrate the forward and backward recur-

sions introduced in Sections 3.1 and 3.2 into a hybrid recursion

that approximately computes the expected cost of a route in the

restocking case, and establish its theoretical benefit for any roll-

out algorithm for VRPSD with a single vehicle under the restock-

ing strategy. We present a general rollout algorithm for this VRPSD

version in Section 4.1 . We discuss our proposed method and its

role for such algorithm in Section 4.2 . 

4.1. General rollout algorithm 

Rollout algorithms build a feasible route in an iterative fashion.

At each iteration, they add a customer right after the last customer,

if any, in the current partial (infeasible) route, which is interpreted

as the head of a complete route. Specifically, assume we have avail-

able a base heuristic H that can generate a complete (feasible)

route starting from any current partial route with 0 ≤ u < n cus-

tomers by adding to this partial route all the remaining n − u cus-

tomers. Let τu = (0 , i 1 , i 2 , . . . , i u ) be the current partial route, with

τ 0 := (0); N(n − u ) the set of customers not in τ u ; and H ( i , τ u ) the

expected cost under the restocking strategy of the feasible route

obtained by inserting node i ∈ N(n − u ) in position u + 1 in τ u and

then applying heuristic H to the resulting partial route. At itera-

tion u = 0 , . . . , n − 1 the rollout algorithm based on this heuristic

appends a new customer i ′ ∈ N(n − u ) in position u + 1 in τ u to

generate a new partial route τu +1 by selecting i ′ as follows: 

i ′ ∈ arg min 

i ∈ N(n −u ) 

H(i, τu ) . (12)

If u + 1 = n, this rollout algorithm terminates by appending the de-

pot to partial route τu +1 to obtain a complete route. Otherwise, the

algorithm proceeds to iteration u + 1 . In Section 5.1 we describe

four rollout algorithms by specifying the base heuristic that they

use. 
Please cite this article as: L. Bertazzi, N. Secomandi, Faster rollout sear
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.2. Hybrid recursion and its role for rollout algorithms 

The backward recursion (1) –(3) and the forward recursion (7) –

10) have the same computational complexity. However, the back-

ard recursion is computationally more efficient than the forward

ecursion: the forward recursion requires that the backward re-

ursion be executed first, the forward recursion involves comput-

ng two functions rather than one function, and the computational

omplexity of determining each of these functions is the same. Use

f the backward recursion when executing a rollout algorithm for

RPSD with a single vehicle and restocking is thus preferable to

sing the forward recursion. However, combining the forward and

ackward recursions into a hybrid recursion provides a potentially

omputationally advantageous, yet approximate, alternative to im-

lement such algorithms. 

Recall that τ u denotes the partial route available at iteration

 ≥ 1 of a rollout algorithm, that is, (0 , i 1 , i 2 , . . . , i u ) . Let τ� be

he best feasible route obtained by this algorithm at this itera-

ion; that is, τ u is the head of τ�. Applying the forward recur-

ion to route τ� yields the probability-to-come and cost-to-come

unctions πu ( · ; τ�) and χu ( q ; τ�). The u th iteration of the roll-

ut algorithm involves computing the expected costs of a number

f complete routes proportional to n − u, each with head equal to

he partial route τ u but with different tails (the exact number of

omplete routes that need to be evaluated depends on the cho-

en rollout algorithm). The tail of each of these routes can be rep-

esented as a partial route τ u +1 that starts from some customer

 u +1 , includes all the customers in set N(n − u ) , and ends at the

epot. Denote by τ� the complete route obtained by joining the

ead partial route τ u and the tail partial route τ u +1 . The backward

ecursion can be applied to the tail partial route that results from

oining i u and τ u +1 to determine γ u ( · ; τ�). The expected restock-

ng cost of the route τ�, E [ C τ� ] , can then be computed as 

−1 ∑ 

q =0 

[
χu (q ; τ �) + πu (q ; τ �) γu (q ; τ�) 

]
. (13)

Expression (13) suggests executing any rollout algorithm using

 hybrid recursion: a version of the forward recursion based on

pproximate replenishment thresholds incrementally approximates

he probability-to-come and cost-to-come functions for the head

f the route being constructed, whereas the backward recursion

omputes the cost-to-go from the last customer in the head of

his route and gives the replenishment threshold associated with

his customer for any complete route that includes this route head.

his approach approximates the probability-to-come and cost-to-

ome functions because when the rollout algorithm adds a cus-

omer to a partial route the replenishment threshold correspond-

ng to this customer, which is used by the incremental forward re-

ursion at the completion of the next rollout iteration, is fixed to

e the one determined by the application of the backward recur-

ion at this rollout iteration. In other words, when the incremental

orward recursion evaluates the probability-to-come and cost-to-

ome functions for the customer that the rollout algorithm adds to

 partial route, it does not recompute the replenishment thresh-

lds of the other customers in this route; that is, the values of

hese thresholds are the ones obtained when these customers were

dded in their respective previous iterations of the rollout algo-

ithm. Formally, letting π̌u (·; τ �) and χ̌u (·; τ �) be these approxi-

ate probability-to-come and cost-to-come functions for customer

 u in route τ�, our approach approximates (13) with 

−1 ∑ 

q =0 

[
χ̌u (q ; τ �) + π̌u (q ; τ �) γu (q ; τ�) 

]
. (14)

At iteration u , a rollout algorithm evaluates a number of routes

roportional to n − u . With the backward recursion the computa-
ch for the vehicle routing problem with stochastic demands and 
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Fig. 1. Illustration of the theoretical (i) computational requirements g 1 ( n ) and g 2 ( n ), (ii) speed-up �g ( n ), and (iii) speed-up factor �g ( n )/ g 1 ( n ). 
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ional effort exerted to evaluate a single route is proportional to

 . Consequently, the computational onus of implementing a rollout

lgorithm using the backward recursion is proportional to 

 1 (n ) = 

n −1 ∑ 

u =0 

n (n − u ) = 

n 

2 (n + 1) 

2 

, (15)

here we use the formula 
∑ n −1 

u =0 u = (n − 1) n/ 2 . With the hybrid

ecursion the computational burden required to evaluate the ex-

ected cost of a given route at iteration u of a rollout algorithm

s proportional to n − u . Moreover, computing the probability-to-

ome and the cost-to-come functions throughout the execution of

his algorithm requires work proportional to 2 n . The computational

equirement of executing a rollout algorithm using the hybrid re-

ursion is then proportional to 

 2 (n ) = 2 n + 

n −1 ∑ 

u =0 

(n − u ) 2 = 

n (2 n 

2 + 3 n + 13) 

6 

, (16)

here we employ the formula 
∑ n −1 

u =0 u 
2 = n (n − 1)[2(n − 1) + 1] / 6 .

Theoretically, executing a rollout algorithm based on (14) rather

han (3) is computationally advantageous in a big-o order sense

hen the function g 1 ( n ) is larger than the function g 2 ( n ). Panel (i)

f Fig. 1 illustrates these theoretical computational requirements.

he corresponding theoretical speed-up is the difference function

g(n ) := g 1 (n ) − g 2 (n ) = n (n 2 − 13) / 6 . Panel (ii) of Fig. 1 displays

his speed-up. Thus, roughly, there should be an advantage from
Please cite this article as: L. Bertazzi, N. Secomandi, Faster rollout sear

restocking, European Journal of Operational Research (2018), https://do
sing (14) rather than (3) when the number of customers n ex-

eeds 4, because 
√ 

13 ≈ 3 . 6 , and this advantage increases non-

inearly in this number. Further, the theoretical speed-up factor

s the function �g(n ) /g 1 (n ) = (n − 13 /n ) / [3(n + 1)] , which quickly

ncreases to and remains constant at 1/3, as displayed in panel (iii)

f Fig. 1 . This analysis suggests that there should be a substantial

eduction of the computational effort from implementing a roll-

ut algorithm using the hybrid recursion rather than the backward

ecursion for a sufficiently large number of customers, with a cor-

esponding theoretical speed up factor of 1/3, which should ensue

ven when this number is moderate. 

. Computational study 

In this section we assess the performance of our expected cost

valuation method proposed in Section 4.2 applied to the basic

ollout algorithm of Secomandi (2003) and three variants thereof

n the instances of Secomandi and Margot (2009) . We introduce

hese rollout algorithms in Section 5.1 and these instances in

ection 5.2 . We discuss our results in Section 5.3 . 

.1. Specific rollout algorithms 

The basic rollout algorithm of Secomandi (2003) , which we

abel RA1, uses as base heuristic the computational inexpensive

yclic heuristic ( Bertsimas, 1992 ). Given the route (0 , 1 , . . . , n, 0) ,

here the customers have been reordered for convenience, the
ch for the vehicle routing problem with stochastic demands and 

i.org/10.1016/j.ejor.2018.03.034 

https://doi.org/10.1016/j.ejor.2018.03.034


8 L. Bertazzi, N. Secomandi / European Journal of Operational Research 0 0 0 (2018) 1–11 

ARTICLE IN PRESS 

JID: EOR [m5G; April 19, 2018;2:11 ] 

Fig. 2. The observed computational requirement of the various rollout algorithms as a function of the number of customers on the corner instances with low f . 
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route obtained by this heuristic starting from customer i is (0 , i, i +
1 , . . . , n, 1 , . . . , i − 1 , 0) . When applied to the partial route τ u after

having inserted customer i in position u + 1 , this heuristic skips

customers that are already included in τ u . For example, if n = 3

and the initial route is (0 , 1 , 2 , 3 , 0) , the routes generated at the

first iteration are (0 , 1 , 2 , 3 , 0) , (0 , 2 , 3 , 1 , 0) , and (0 , 3 , 1 , 2 , 0) . De-

note as H 1( i , τ u ) the expected cost of the route generated by the

cyclic heuristic when appending customer i to partial route τ u . RA1

is the rollout algorithm corresponding to replacing H ( i , τ u ) with

H 1( i , τ u ) in (12) . 

The first variant of RA1 uses as base heuristic the reversed

cyclic heuristic. This heuristic simply travels a given route from

right-to-left rather than left-to-right. Denote by H 2( i , τ u ) the ex-

pected cost of the route obtained by the reversed cyclic heuris-

tic when appending customer i to partial route τ u . The rollout

algorithm based on the reversed cyclic heuristic corresponds to

using H 2( i , τ u ) instead of H ( i , τ u ) in (12) . We label as RA2 this

variant of RA1. For example, if n = 3 and the given route is τ =
(0 , 1 , 2 , 3 , 0) , then RA2 considers the following routes at the first

iteration: (0 , 1 , 3 , 2 , 0) , (0 , 2 , 1 , 3 , 0) , and (0 , 3 , 2 , 1 , 0) . 

The second rollout algorithm variant runs both RA1 and RA2

and picks the best of the two resulting routes. We label this roll-

out algorithm as RA1-2. This algorithm is related to the “stostat”

rollout algorithm of Novoa and Storer (2009) . 

We obtain a third variant of RA1 by using as base heuristic both

the original cyclic heuristic and its reversed version. Specifically,

this base heuristic runs both versions of the cyclic heuristic and
Please cite this article as: L. Bertazzi, N. Secomandi, Faster rollout sear

restocking, European Journal of Operational Research (2018), https://do
icks the best of the two routes so obtained. Formally, define H 3( i ,

u ) as the smallest of H 1( i , τ u ) and H 2( i , τ u ): H 3( i , τ u ) := min { H 1( i ,

u ), H 2( i , τ u )}. Our third rollout algorithm variant corresponds to

sing H 3( i , τ u ) in lieu of H ( i , τ u ) in (12) . We dub it RA3. This al-

orithm resembles the “combi” and “stostat” rollout algorithms of

ovoa and Storer (2009) . 

.2. Instances 

The distinguishing features of the instances of Secomandi and

argot (2009) follow: 

• Number of customers, n : values from 10 to 100 in increments

of 5. 
• Customer locations: random points, with integer coordinates, in

a square with side equal to 10 0 0. 
• Depot location: the southwest corner, (0,0), or the center,

(50 0,50 0), of this square. 
• Customer demands: low, medium, and high discrete uni-

form random variables with respective supports { 1 , 2 , . . . , 5 } ,
{ 6 , 7 , . . . , 10 } , and { 11 , 12 , . . . , 15 } . The demand of each cus-

tomer is assigned to one of these random variables with equal

probability. 
• Expected filling rate (total expected demand divided by vehicle

capacity), f := 

∑ n 
i =1 E [ D i ] /Q: values of 1.6 and 1.9, referred to

as low and high in the ensuing discussion. 
ch for the vehicle routing problem with stochastic demands and 
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Fig. 3. The observed speed-up of the hybrid expected cost computation for the various rollout algorithms as a function of the number of customers on the corner instances 

with low f . 
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Table 2 

Average expected cost of the different rollout algorithms. 

Instances RA1B RA2B RA1-2B RA3B 

Center 6739 6755 6687 6688 

Corner 7886 7892 7815 7810 

All 7312 7324 7251 7249 

RA1H RA2H RA1-2H RA3H 

Center 6747 6756 6692 6696 

Corner 7886 7893 7815 7820 

All 7317 7324 7254 7258 

t  

m  

t  

R  

c  

a  

a  

f  

t  

0  

R  

o  

p  

e  

t  

t  
• Vehicle capacity, Q : the value taken by the ratio 8 n/ f rounded

off to the nearest integer (the average of the means of the low,

medium, and high demand random variables is 8). 

There are ten randomly generated instances for each combina-

ion of these parameters. The total number of instances is thus 760.

ach instance includes an initial route through all the customers

tarting and ending at the depot. This route is generated by heuris-

ically solving a traveling salesman problem, that is, ignoring cus-

omer demands, using a nearest neighbor algorithm followed by a

-Int procedure, as in Secomandi (2003) . All the considered rollout

lgorithms use this route as the initial one. 

.3. Results 

Before presenting the computational requirements, speed-ups,

nd speed-up factors observed when applying our proposed ex-

ected cost evaluation method on the considered instances, we

iscuss the quality of the routes obtained by the rollout algorithms

hat we analyze—detailed results are available in the online sup-

lementary material. This discussion sheds light on the magnitude

f the effect of the expected cost evaluation error incurred by our

roposed method on the quality of the resulting routes. 

We denote by RA1B and RA1H, respectively, the versions of

A1 executed with the backward and hybrid evaluations of the

xpected cost of a route. We use the same labeling convention

or RA2, RA1-2, and RA3. Table 2 reports the average expected

ost of all these rollout algorithms on the center, corner, and all
Please cite this article as: L. Bertazzi, N. Secomandi, Faster rollout sear

restocking, European Journal of Operational Research (2018), https://do
he instances. The entries corresponding to RA1-2B/H are not the

inimum of their respective RA1B/H and RA2B/H entries because

he average of the minimum of the expected costs of RA1B/H and

A2B/H is not the minimum of the average of these two expected

osts. Even though the hybrid evaluation of the expected cost of

 route can affect the quality of the route obtained by a rollout

lgorithm, the observed effect of this approximation on the ef-

ectiveness of these algorithms is marginal. Specifically, the addi-

ional expected costs resulting from this approximation are 0.12%,

.01%, and 0.06% on the center, corner, and all the instances for

A1 (the average expected costs that are compared here are the

nes corresponding to RA1H and RA1B; analogous comparisons are

erformed next for the other three rollout algorithms); 0.01% on

ach type of instance for RA2; 0.08%, 0.00%, and 0.04% on the cen-

er, corner, and all the instances for RA1-2; and 0.12% on each

ype of instance for RA3. This finding is consistent with the one of
ch for the vehicle routing problem with stochastic demands and 
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Fig. 4. The observed speed-up factor of the hybrid expected cost computation for the various rollout algorithms as a function of the number of customers on the corner 

instances with low f . The observed speed-up factors for n equal to 10 are not displayed because they are undefined (the CPU seconds of both the backward and hybrid 

expected cost computation approaches are essentially zero). 
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Yang et al. (20 0 0 , p. 104) established in the context of a different

approximation of (the change in) the expected cost of a restocking

tour as a consequence of inserting or deleting a string of nodes

in such tour when executing Or-opt-type heuristics. Incidentally,

compared to their respective RA1 versions overall the considered

RA2 versions yield routes with moderately inferior quality, whereas

the examined RA1-2 and RA3 versions generate routes with supe-

rior, and roughly comparable, quality. 

All the considered rollout algorithms are coded in C and run

on an Intel Core i3 CPU M 350, 2.27 gigahertz, 4 gigabytes RAM

computer. Figs. 2–4 , respectively, display the observed computa-

tional requirement of each of these rollout algorithms executed

under both the backward and hybrid expected cost computation

approaches, the observed speed-up achieved by each of the hy-

brid versions of these algorithms, and the corresponding observed

speed-up factor when varying the number of customers for the

corner instances with low f . The analogous charts for all the other

cases are similar to the ones reported here. We omit them for

brevity. 

The plots in Figs. 2 –4 resemble at least qualitatively their re-

spective plots in panels (i)–(iii) of Fig. 1 ; as discussed below, there

is also a quantitative resemblance between Fig. 4 and panel (iii)

of Fig. 1 , despite some notable variation in the charts displayed

in Fig. 4 that is absent from the graph of the function given in

r  

Please cite this article as: L. Bertazzi, N. Secomandi, Faster rollout sear

restocking, European Journal of Operational Research (2018), https://do
anel (iii) of Fig. 1 . Specifically, there is a computational advan-

age in using the hybrid rather than the backward computation

f the expected cost of a route with about 30 customers. In con-

rast, the two approaches require similar computational effort with

ewer customers. The observed benefit from using the hybrid ap-

roach becomes noticeable with about 40–50 customers and, with

 few exceptions, raises at an increasing rate thereafter. With more

han 50 customers the observed speed-up factors vary between

.26 and 0.34. These ranges include the limiting value of 1/3 estab-

ished in Section 4 for the theoretical big-o order speed-up factor

g ( n )/ g 1 ( n ). Overall, these findings (i) are consistent with our the-

retical analysis conducted in Section 4 and (ii) suggest that the

ybrid approach yields substantial computational benefits for in-

tances with a moderate to large number of customers, albeit at

he cost of a minor degradation in solution quality. 

. Conclusions 

Rollout algorithms are known to yield good solutions for VRPSD

ith a single vehicle, an important model for research and appli-

ations in logistics under uncertainty. Nonetheless, their computa-

ional burden can be substantial. To alleviate this issue, we develop

 novel approach to approximate the expected cost of a VRPSD

oute under the restocking strategy that applies to any rollout al-
ch for the vehicle routing problem with stochastic demands and 

i.org/10.1016/j.ejor.2018.03.034 

https://doi.org/10.1016/j.ejor.2018.03.034


L. Bertazzi, N. Secomandi / European Journal of Operational Research 0 0 0 (2018) 1–11 11 

ARTICLE IN PRESS 

JID: EOR [m5G; April 19, 2018;2:11 ] 

g  

t  

t  

i  

t  

o  

t  

1  

T  

i

 

a  

B  

l  

c  

(  

m  

m  

p  

a  

o  

o  

r  

n

A

 

l

S

 

f

R

B  

B  

B  

B  

B  

B  

B  

B  

 

B  

 

 

B  

 

 

C  

 

D  

D  

 

 

 

D  

F  

 

G  

 

G  

 

G  

G  

 

G  

 

G  

 

G  

 

G  

 

G  

G  

 

G  

H  

J  

 

L  

L  

L  

 

N  

 

R  

 

S  

 

S  

 

S  

S  

S  

S  

T  

Y  

Y  
orithm. We establish that the theoretical speed-up factor of our

echnique is of big-o order equal to 1/3 when the number of cus-

omers is sufficiently large. Our numerical study, based on a set of

nstances from the literature and a known rollout algorithm and

hree variants thereof, indicates that our proposed method yields

bserved speed-up factors that vary between 0.26 and 0.34 when

here are at least 50 customers. These ranges are in line with the

/3 limiting value for the theoretical big-o order speed-up factor.

hese savings are achieved by only marginally degrading the qual-

ty of the resulting restocking routes. 

Additional research could investigate extending our proposed

pproach to other heuristics for VRPSD under restocking (see, e.g.,

ianchi et al., 2006; Yang et al., 20 0 0 ) or variants of this prob-

em that feature both multiple vehicles and restrictions on the tour

ost (see, e.g., Yang et al., 20 0 0 ) or different objective functions

see, e.g., Goodson et al., 2013; Goodson et al., 2016 ); compare the

ethod put forth in this paper against techniques that approxi-

ate the objective function of the model that we study (e.g., a

ossible extension of the approach of Bianchi et al., 2006 from the

 priori to the restocking case); and shed some light on the small

bserved impact of the approximate restocking thresholds used by

ur proposed method on the quality of the solutions found by the

ollout algorithms that we consider when executed using this tech-

ique. 
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