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Abstract This paper proposes a scenario-based ambulance location model which

explicitly computes the availability of ambulances with stochastic call arrivals under a

dispatching policy. The model utilizes two-stage stochastic programming to represent

the temporal variations in call arrivals as a set of call arrival sequences. Constraints are

embedded in the model to ensure that available ambulances are assigned to incoming

calls following a dispatching policy. A logic-based Benders decomposition algorithm

is presented to solve the model. The advantage of using our algorithm is demonstrated

by comparing its performance with those of other location models.

Keywords Ambulance location problem � Stochastic programming � Stochastic call
arrivals � Dispatching policy � Logic-based Benders decomposition

1 Introduction

The ambulance location problem arises because of the need to determine the best

locations to base ambulances so as to minimize the time required to respond to

emergency medical service (EMS) requests. The location of available ambulances is

a major factor determining the response times to call arrivals. Extensive research

has been performed in this regard since as early as the 1970s (Church and Velle

1974; Toregas et al. 1971).

Ambulance location problems are often formulated as covering problems. A

demand site is considered covered if it can be reached from an ambulance station
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within a specified time standard. The problem involves finding the optimal number

of and locations for ambulances such that the sum of the covered demand sites is

maximized. The covering problem consists of two major parts: the location set

covering problem (LSCP) and the maximal covering location problem (MCLP).

LSCP minimizes the number of facilities that are required to cover all demands,

whereas MCLP maximizes the number of covered demands with a given number of

facilities.

Another class of location problems is the location-allocation problem, which

determines the locations of ambulances subject to a constraint that all demands are

assigned to ambulances. One of the actively studied problems in this class is the P-

median problem, which locates ambulances and allocates all the service demands to

the ambulances such that the total (or average) travel time experienced by

p ambulances is minimized (Hakimi 1964). Another stream of the location-

allocation problem is the P-center problem, which locates p ambulances to

minimize the maximum coverage distance (or time) while covering all demands.

The classic ambulance location models for both the covering and location-

allocation problems were based on the deterministic approach. These modes assume

that ambulances are always available to respond to emergency calls. With the

assumption, a demand is considered covered if at least one ambulance is located

within a certain time standard, or can be assigned to any ambulances.

Recently, the ambulance location models were extended to incorporate the

stochastic characteristics of an EMS system. In particular, much research has been

conducted to take into account the availability of ambulances by using the concept

of a busy fraction, i.e., the probability of being unavailable to respond to a call.

From relatively simple calculations to queueing theory, various models have been

developed to properly estimate the busy fraction of ambulances (Marianov and

ReVelle 1996; Pereira et al. 2015; ReVelle and Hogan 1989). Based on

predetermined busy fractions, the models either calculate the expected value of

coverage or use a chance constraint to represent the probability of at least one

ambulance being available to serve a particular request.

However, it is difficult to assume or approximate appropriate values for the busy

fraction. The busy fraction is an output of the location model and cannot be known a

priori. Moreover, to analytically model the busy fraction, most of the work in

respect of busy fraction models assumes stationary call arrivals and uses the average

call arrival rate in the models, whereas actual EMS call data shows that the volume

of call arrivals varies significantly during the course of a day, on weekdays versus

weekends, and between seasons (Matteson et al. 2011).

In this study, as an alternative, we propose an ambulance location model which

explicitly computes the availability of an ambulance by determining when an

ambulance is dispatched in response to an incoming call and when it is available to

serve next call (when it returns to its home station). Specifically, given a call arrival

data, which contains information for when and where a call is arrived, the proposed

model determines ambulance location and dispatching decisions so as to maximize

the number of covered calls. It allows us to make a strategic level of decision (i.e.,

ambulance locations) considering decisions made during the process of EMS

operations (i.e., ambulance dispatching to calls).
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We construct the model by applying a stochastic programming approach.

Stochastic programming is a solution framework for solving an optimization

problem with two types of decisions, here-and-now and recourse. A here-and-now

decision is a proactive and planning decision that should be made before observing

specific outcomes (e.g., production cost or future demands). A recourse decision is

made in reaction against the observations on the outcome and depends upon the

here-and-now decision made earlier. In our problem, an ambulance location and a

dispatching decision correspond to the here-and-now and recourse decisions,

respectively.

In the stochastic programming approach, the uncertainties are represented as a set

of scenarios (i.e., possible future). With the decision structure, stochastic

programming derives a solution that performs well across all scenarios. In our

problem, a scenario is defined by a sequence of call arrivals. Then, we derive

ambulance location and dispatching solutions that maximize the number of covered

calls across all possible call arrival sequences.

It should be noted that, in the model, the ambulance dispatching decisions to

demands are determined following a specific dispatching policy. A dispatching

policy determines which of the ambulances available at a given moment is sent to

serve an incoming call. The choice made for the current call determines the

available ambulances and their coverage for the next call that arrives. This implies

that there is an interaction effect between the location decision and dispatching

policy; an optimal location solution under one dispatching policy may not be

optimal for another policy. Therefore, ambulance locations should be determined by

considering an ambulance dispatching policy. Our model is designed to explicitly

incorporate the effect of a dispatching policy on the solution of the ambulance

location problem.

The remainder of this paper is structured as follows. In Sect. 2, we present related

work on scenario-based ambulance location models. Section 3 describes the

proposed model for the ambulance location problem. Solution methods for the

model are discussed in Sect. 4. Then using EMS call data for the city of Daejeon in

Korea, we demonstrate the performance of the proposed model in Sect. 5, followed

by a detailed discussion in Sect. 6. Finally, we conclude our paper in Sect. 7.

2 Related literature

Since the early 1970s, various ambulance location models have been developed

ranging from a relatively simple, deterministic model—set covering/P-median/P-

center—to probabilistic models—availability/reliability models—, and to dynamic

models—the relocation/redeployment problem. The large volume of literature in

this area of research has compelled us to review only the most closely related papers

describing the application of a scenario-based model to ambulance location

problems. We refer readers to Brotcorne et al. (2003), Daskin and Dean (2005),

Farahani et al. (2012), Jia et al. (2007), Li et al. (2011), Owen and Daskin (1998),

ReVelle and Eiselt (2005) for a comprehensive review of ambulance location

problems.
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We first review the literature that incorporates scenarios involving deterministic

ambulance location models. To the best of our knowledge, Schilling (1982) was the

first to attempt to apply a scenario-based approach to the ambulance location

problem. The study extended the models for the LSCP and MCLP by incorporating

scenarios and a common facility concept, where the latter is defined as a facility

determined to be opened for all possible scenarios. The proposed models were

designed to maximize the number of common facilities and covered demands. In Jia

et al. (2007), the authors applied the scenario-based approach to the MCLP, the P-

median, and P-center problems. These authors used an objective function to

minimize the expected regret associated with a scenario, which is a measure for the

difference in the objective values of the optimal solution for the scenario and the

compromising solution. In the scenario-based approach, the best compromising

solution that performs well across all scenarios may not be the optimal solution for a

particular scenario. Carson and Batta (1990) relied on the use of scenarios to

represent changing daily demand conditions and suggested the relocation of

ambulances for each scenario to ensure that the total response time is minimized.

The P-median problem was applied to each scenario to find the best ambulance

locations.1 Nickel and Reuter-Oppermann (2016) presented a two-stage program

based on a simple set covering formulation, which minimizes total cost associated

with base locations and ambulances. In Nickel and Reuter-Oppermann (2016),

uncertainties in the number of ambulance requests at demand sites were represented

as a set of scenarios.

A scenario-based approach has also been applied to probabilistic ambulance

location models. For example, Beraldi and Bruni (2009) proposed a stochastic

programming model for ambulance locations, which incorporates probabilistic

constraints to determine the reliability of the coverage. The constraints ensure that

the probability of each demand point being covered by an ambulance is greater than

a certain threshold level. The model uses the constraints to determine the locations

of ambulances so as to minimize the expected total travel cost (time) over all

scenarios and fixed cost for opening ambulance sites. In addition, Huang and Fan

(2011) applied the scenario-based approach to the maximum availability location

problem (MALP), in which a demand was considered covered if a multiple number

of ambulances are located within a specified time standard. The number for each

demand point is determined by a simple reliability constraint (ReVelle and Hogan

1989). In Huang and Fan (2011), the numbers for a demand point were varied

among scenarios. The model uses the setting to determine ambulance locations to

maximize the expected coverage for all scenarios.

In this paper, we aim to provide a model which determines an ambulance

location solution by using stochastic programming. While the approach we take in

our work follows the prior scenario-based ambulance location models, the

contributions of this study can be noted as follows. First most of the work on

scenario-based ambulance location models is based on the classical ambulance

location models (e.g., MALP). It is known that these models have problems with

1 In a strict sense, the model of Carson and Batta (1990) is not a scenario planning model because the

location decisions for each scenario are not linked.
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respect to properly estimating the availability of ambulances. Instead of using

exogenously assumed busy fraction, we make ambulance assignment decisions

within our model, thereby allowing the model to compute the exact availability of

ambulances. Next, the existing ambulance location models ignore or simplify a

dispatching policy which has an impact on the availability of ambulances. In our

model, a dispatching policy is explicitly incorporated to assign an available

ambulance to an incoming call. This allows us to derive an ambulance location

solution under a consideration of a target EMS system in a more precise fashion.

Following sections present the model and solution techniques in detail.

3 Problem statement

Consider the problem of locating p ambulances to maximize covered demands in a

region. In this problem we assume that uncertainties arise in the arrival of temporal

and geographical demands. Let us represent the uncertainties as a set of scenarios, in

which case our objective would be to determine the ambulance locations that

perform well across all scenarios.

Let n denote a random vector for call arrivals with a support N and known

distribution P. We assume that n has a finite support, and there are N realizations nr,
r 2 f1; . . .;Ng. A realization of the random vector is considered as a scenario. The

stochastic program for the ambulance location problem can be written as follows:

max
XN

r¼ 1

pr � f ðx; nrÞ : x 2 X � Zþ

( )
; ð1Þ

where x is a decision vector for ambulance locations, pr is the probability of sce-

nario r, and f ðx; nrÞ is the sum of demands covered by solution x under scenario nr.
In this paper, a scenario is defined as a sequence of call arrivals, which contains

the temporal and geographical information of the calls. We let Dr denote the set of

call arrivals in scenario nr, indexed by d 2 f1; . . .; jDrjg. In the set, the calls are

sorted according to their arrival time, ad such that a call that arrives earlier has a

smaller index. Set V refers to a set of all stations we can locate an ambulance at. We

let x
j
d denote the integer variable indicating the number of available ambulances at

station j 2 V when call d arrives. The ambulance dispatching decision is denoted by

a 0–1 integer variable y
j
d, which equals 1, if an ambulance located at j station is

dispatched to call d; otherwise, y
j
d equals 0. We useW

j
d to specify whether call d can

be covered by station j. W
j
d equals 1 if travel time between call d and station j is less

than a specified time standard for coverage; otherwise, W
j
d equals 0. Thus W

j
d � y

j
d

represents the coverage of call d. W
j
d � y

j
d equals 1 if an ambulance located at station

j is dispatched to the call and the ambulance can arrive at the call d’s location within

the time standard; otherwise W
j
d � y

j
d equals 0.

As noted earlier, the dispatching decision y
j
d is determined by a chosen

dispatching policy. The most evident dispatching policy is the nearest-available
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policy. Under the nearest-available policy, a dispatcher sends an ambulance from

the station nearest to the incoming call. Other dispatching policies include a

jurisdiction-based dispatching or likelihood dispatching policy. To incorporate a

dispatching policy in the optimization model, we introduce a priority set L
j
d for each

demand. Given a dispatching policy, L
j
d is a set of ambulance stations to serve

demand d with higher priority (responsibility) than station j. For example, with the

nearest-available dispatching policy, L
j
d contains all ambulance stations that are

located closer to demand d than ambulance station j. In addition to representing a

dispatching policy in the model, we also need to keep track of availability of

ambulances at each station. To do that, we introduce a demand set

A
j
d ¼ fe 2 Drjad�1\ae þ Rj

e � adg. ae is the arrival time of call e and Rj
e is the

time to serve call e by an ambulance dispatched from station j. That is, A
j
d is a list of

ambulances that are expected to return to—hence become available at—station

j before a dispatching decision for an imminent call d is made.

By using this notation, we propose a two-stage stochastic programming

formulation for (1) as follows:

max
XN

r¼ 1

pr � f ðx0; nrÞ ð2Þ

s:t:
X

j2V

x
j
0 � p; ð3Þ

x
j
0 2 Zþ 8j 2 V ; ð4Þ

where f ðx0; nrÞ ¼ max
X

d 2Dr

X

j2V

W
j
d � y

j
d ð5Þ

s:t:
X

j2V

y
j
d � 1 8d 2 Dr; ð6Þ

y
j
d � x

j
d 8d 2 Dr; j 2 V ; ð7Þ

x
j
d ¼ x

j
d�1 � y

j
d�1 þ

X

e2A
j

d

yje 8d 2 Dr; j 2 V ; ð8Þ

p � yjd � x
j
d � p �

X

i2L
j

d

xid 8d 2 Dr; j 2 V; ð9Þ

x
j
d 2 Zþ 8d 2 Dr; j 2 V ; ð10Þ

y
j
d 2 f0; 1g 8d 2 Dr; j 2 V : ð11Þ

Before describing the formulation we introduce two assumptions. First, ambulances

on their way back to their home station are not available to respond to a next service
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request until they have returned to the station. This seems to be a standard opera-

tional practice for most ambulance systems. It should also be pointed out that

chance of such event is most likely very slim unless an ambulance system is

tremendously overloaded. Second, a call that arrives at a moment when all ambu-

lances are busy is lost. If this happens, instead of waiting for a next ambulance to

become available, patients will find other means of transportation such as self-

transport or public transportation. Given a typical level of utilization for ambulance

systems, chance of all ambulances being busy is also very slim under normal

circumstances.

The first stage of the problem (2–4) determines the ambulance locations to

maximize the expected number of covered demands for all scenarios. Note that x
j
0

defines the ambulance location at the beginning of a planning horizon; hence, it is

the solution for our location problem. The solution is determined subject to

constraint (3), which limits the total number of ambulances to be located at p.

The second stage of the problem (5–11) involves the recourse decisions, x
j
d and

y
j
d. Once the location decisions are made, the model determines the availabilities of

the ambulances (x
j
d) and ambulance dispatching decisions (y

j
d) given a scenario. The

objective function (5) maximizes the covered demands in scenario nr. Constraint (6)
ensures that at most one ambulance is dispatched to serve a call. Constraint (7)

guarantees that a task to respond to call d can be assigned to an ambulance station

only when the station currently has at least one ambulance.

Constraints (8) and (9) ensure that ambulances are assigned based on a

predetermined dispatching policy. Constraint (8) determines the number of available

ambulances at location jwhen call d arrives. From the number of ambulances at jwhen

call ðd � 1Þ arrived, we subtract the number of ambulances (0 or 1) dispatched from

station j to call ðd � 1Þ, and add the number of ambulances returning to the station

before call d arrives. Constraint (9) uses the priority set L
j
d and the availability of

ambulances therein to make the dispatching decision, y
j
d . By constraint (9), incoming

call d is assigned to an available ambulance at station j if and only if station j has at least

one available ambulance (i.e., x
j
d � 1) and there is no available ambulance that has a

higher priority for call d than station j (i.e.,
P

i2Lj
d
xid ¼ 0). For example, suppose that

ambulance station j has the highest priority for incoming call d, and thus L
j
d is empty.

Then, as long as station j has at least one available ambulance, constraint (9) requires

y
j
d ¼ 1 to assign call d to station j.

4 Solution methods

In this section, we discuss methods for solving the proposed model. Our model is a

stochastic integer program, and it involves integer variables for the first and second

stages. Existing solution techniques for stochastic program are designed mostly for

problems with continuous variables and deemed ineffective for stochastic integer

program due to the integrality restrictions (Birge and Louveaux 2011).
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We solve the difficulty by developing an algorithm that utilizes logic-based

Benders decomposition. Unlike nominal Benders decomposition, which requires the

duality of a sub-problem to generate a cut, logic-based Benders decomposition uses

a relatively simple cut. Theoretically the algorithm can produce an optimal solution

for the optimization problem in a finite number of steps. Unfortunately, our initial

numerical experience indicates that the rate of convergence is too slow for our

problem. We addressed this problem by introducing a few approximation schemes

for the implementation of the algorithm.

4.1 Proposed approach: logic-based Benders decomposition

A Benders decomposition is a solution framework for solving a large-sized

optimization problem. Application of the Benders decomposition involves the

structural decomposition of a problem into a master problem and one or more of its

sub-problems. The master problem temporarily allows some decision variables to be

computed, i.e., to obtain a trial solution, which renders the remaining problems

more tractable. In turn, the remaining problems, i.e., the sub-problems, are solved

given the trial solution. The sub-problems evaluate the feasibility and optimality of

the trial solution and provide this information to the master problem as a cut. If the

sub-problems determine the trial solution to be infeasible, a cut to exclude the

particular solution is added to the master problem, i.e., a feasibility cut. When the

solution is found to be feasible by the sub-problems, a cut is generated to create a

tighter bound for the master problem, i.e., an optimality cut. The master problem is

then re-solved with the updated cuts. These procedures are repeated until the

objective value of the master problem is either sufficiently close to the bounds

determined by the sub-problems or the master problem becomes infeasible.

The Benders decomposition was extended by Slyke and Wets (1969). Slyke and

Wets (1969) proposed an L-shaped method to solve a stochastic programming

model. In stochastic programming, the first and second stage problems correspond

to the master and sub-problems of the Benders decomposition, respectively. Here it

should be noted that, to generate the cut, the Benders decomposition and L-shaped

method use the duality of the sub-problems. As mentioned earlier, our problem is a

stochastic integer program, which means the duality of the sub-problems is lost;

thus, existing solution methods are difficult to apply.

In terms of addressing the difficulty, Hooker and Yan (1995) proposed a logic-

based Benders decomposition, which is structurally similar to a Benders decom-

position, except that it uses relatively simple logical expressions, i.e., no good cuts,

to represent the feasibility and optimality of a trial solution. When [x1; x2; . . .]
represents a 0–1 variable for a master problem, an example of a no good cut

intended to exclude an infeasible solution ~x is shown below:
X

i2T

xi �
X

i2F

xi � jTj � 1; ð12Þ

where, T ¼ fij~xi ¼ 1g; and F ¼ fij~xi ¼ 0g (Jain and Grossmann 2001). The algo-

rithm also uses a logical expression to generate the optimality cut and it generally

depends on the problem-specific properties of a target problem.
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In this work, we apply a logic-based Benders decomposition to solve our problem

(2–11). The approach involves the use of a master problem to determine an initial

location solution without considering the actual coverage of the solution. The

solution is then evaluated by solving the sub-problems (5–11) for all scenarios,

given the solution. The results of the sub-problems are delivered to the master

problem as cuts, which provide bounds on the objective values of the location

solutions of the master problem. Accordingly, the master problem is re-solved with

the updated cuts. These procedures are repeated until the optimal solution of the

master problem is equal or close to the bounds determined by the cuts. The master

problem in iteration K has the following form:

ðPmaster
K Þ max h

s:t: ð3Þ; ð4Þ
ð13Þ

h�
X

j2 Jk

ckj � x
j
0 þ

X

j2 JnJk
M � xj0 8k 2 f1; . . .;K � 1g; ð14Þ

h�BðkÞ 8k 2 f1; . . .;K � 1g: ð15Þ

The master problem determines a solution for the location of ambulances subject to

the original constraints (3) and (4), and two types of optimality cuts (14) and (15).

We note that the master problem does not contain a feasibility cut because all

possible locations for p ambulances are feasible in our problem; hence, the sub-

problems only generate optimality cuts.

Optimality cut (14) sets the objective value of the trial location solutions

generated before the current iteration. Let Jk denote a set of locations for the

location solution of the master problem in iteration k, i.e., fj 2 V jxj;k0 [ 0g. Here,
x
j;k
0 represents the location solution for station j in iteration k and ckj is the expected

number of covered demands by an ambulance located at station j. Given an

ambulance location solution and a scenario, it is straightforward to assign the

available ambulances to incoming calls following a specific dispatching policy.

Based on the assignments, we calculate ckj in (14), where M is a sufficiently large

number. By using this notation, (14) provides the actual objective values of the

solutions generated until the current iteration.

Cut (15) is the Benders optimality cut generated following Slyke and Wets

(1969). Based on LP relaxation and the duality theory, cut (15) provides the upper

bound on the ðPmaster
K Þ. Relaxing the integrality condition on x

j
d and y

j
d enables us to

generate the Benders optimality cut proposed in Slyke and Wets (1969). Given the

master problem solution �x ¼ ½�x10; . . .; �x
jJj
0 � at an iteration, the LP-relaxed sub-

problem for scenario nr is written as follows:

ðLPsub
r ð�xÞÞ max

X

d 2D

X

j2V

W
j
d � y

j
d

s:t: ð6Þ � ð9Þ
ð16Þ
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x
j
0 ¼ �xj0 8j 2 V; ð17Þ

x
j
d � p 8d 2 Dr; j 2 V; ð18Þ

y
j
d � 1 8d 2 Dr; j 2 V; ð19Þ

x
j
d; y

j
d � 0 8d 2 Dr; j 2 V: ð20Þ

Note that ðLPsub
r ðxÞÞ is finite. Then the current optimal dual solution for ðLPsub

r ð�xÞÞ
is a feasible solution for the dual of ðLPsub

r ðxÞÞ for all x which satisfies constraints

(3) and (4). In addition, the current dual solution is not necessarily an optimal

solution for the dual of ðLPsub
r ðxÞÞ. Hence, by the duality theory we have an upper

bound on the ðLPsub
r ðxÞÞ. We also note that ðLPsub

r ðxÞÞ is an upper bound of the

second stage of problem (5–11) by the LP relaxation. Then based on the conditions,

we generate the cut for the next iteration by solving the LP relaxed sub-problems for

all scenarios and using the optimal dual multipliers, that is,

h�BðkÞ ¼
XN

r¼ 1

pr
X

j2V

aj;r � xj0 þ
X

d 2Dr

X

j2V

p � bj;rd þ cj;rd
� �

( )
; ð21Þ

where aj;r; bj;rd ; and cj;rd are dual variables of ðLPsub
r ð�xÞÞ for constraints (17), (18), and

(19), respectively. For more details on the Benders cut, we refer the reader to Slyke

and Wets (1969).

4.2 Implementation

As described in Sect. 4.1, a logic-based Benders decomposition iteratively tightens

the gap between the upper and lower bounds on the optimal value, by adding the

optimality cuts. Therefore, for problems with a finite number of solutions, a logic-

based Benders decomposition theoretically yields an optimal solution of the

problem in a finite number of iterations. However, our initial tests show that the

algorithm is unable to provide an optimal solution within a practically feasible

computation time.

Reduction of the computation time requires the generation of strong cuts that

incorporate the structure of the target problem. Unfortunately, the optimality cuts

(14) and (15) do not have the required strength for the following reasons. Cut (14)

only evaluates a current trial solution and does not provide information for other

solutions with similar characteristics to the solution. Moreover, cut (15) provides

information for the LP-relaxed objective value of a location solution, rather than for

the original problem.

We decided to resolve the difficulty by applying a few approximation schemes to

the algorithm. First, we use variable neighborhood search (VNS) to generate an

initial trial solution of the master problem. This ensures that the algorithm has a

tight lower bound on the optimal value. Next, we terminate the algorithm if the

current incumbent solution is not improved after a certain number of iterations.
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In VNS, we first define several neighborhood structures, N kðk ¼ 1; . . .; kmaxÞ. A
neighborhood structure specifies the distance between two candidate solutions,

which is used to identify neighbors for the current solution x. VNS uses several

neighborhood structures to avoid local optima by exploring a large solution space,

including distant neighborhoods of the current solution. The solution structure for

the location problem is simple and allows for easy measurement of the distance

between two feasible solutions. For these reasons, the VNS algorithm can readily be

implemented for location problems. We follow the basic structure of VNS described

in Hansen and Mladenović (2001), as set out in Algorithm 1.

In Algorithm 1, we first define the set of neighborhood structures as follows:

N kðxÞ ¼ fx0 : jx n x0j ¼ jx0 n xj ¼ kg:

If a location solution x0 differs from x in k locations, i.e., jx n x0j ¼ jx0 n xj ¼ k, then

x0 belongs to a neighborhood of x in neighborhood structure N k. Shakingðx; kÞ
randomly generates a solution x0 from the kth neighborhood of x. After the solution
x0 is obtained, a local search method LocalSearchðx0Þ is applied to improve solution

x0. In our implementation, we search all neighborhoods of x0 in N 2 and return the

best solution among them. Then, the resulting solution x00 is accepted if x00 is an

improvement of the current incumbent solution.

5 Computational experiments

We test our algorithm on problem instances generated from the real EMS call data.

We use the EMS call data from Daejeon, a major city in Korea. Daejeon’s

population is approximately 1.5 million, and the area is 540 km2. In 2010, there

were total of 59,359 EMS calls in the city. The map of Daejeon with the EMS call

locations in the city is shown in Fig. 1.

To obtain ambulance location solutions by our algorithm, we first generate

scenarios for the model. We randomly select 50 days from year 2010, and use the

actual EMS call arrival data for those days to construct 50 scenarios. So each

scenario corresponds to a sequence of actual call arrivals on a particular day. Using

the 50 scenarios, our model determines optimal ambulance locations.

For comparison, we also obtain ambulance location solutions by using two

classical ambulance location models, a model for the backup coverage problem

(BACOP2) (Hogan and ReVelle 1986) and MALP II (ReVelle and Hogan 1989).

BACOP2 maximizes the weighted sum of two types of objective functions. The first

objective function maximizes the number of demands covered at least once, and the

second objective function maximizes the number of demands covered twice, i.e.,

back-up coverage. MALP II is an extension of MALP, obtained by relaxing an

assumption in MALP, i.e., the busy fractions for all ambulances are identical. As a

result, the number of ambulances required to cover a demand with a certain

reliability level differs for each demand.
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In the experiments, we arbitrarily chose 30 candidate sites for ambulance

locations. For a dispatching policy, we apply the nearest available policy. 8 min is

used as the time standard for successful response; if an EMS call is responded (i.e.,

an ambulance arrives at the call location) within 8 min, it is considered a successful

response. Using this setting, we implement the three location models in Java, and

used CPLEX v.12.5 to solve the models. We varied the number of ambulances p,

and compared the performance from the location solutions by the three approaches.

Evaluations of the obtained location solutions are done by a simple, deterministic

simulation as follows. For each evaluation of a location solution, we first set the

number of ambulances at each station as given by the location solution. Then we

sequentially generate calls at a specific time and location according to the actual

data for the entire year. For each arriving call, we use a specified dispatching policy

to select an ambulance to send to the call. Then for each response, we record its

response time by computing the travel time by the ambulance to the call location.

After a predetermined turnaround time, the dispatched ambulance returns to its

home station and becomes available for a next service task. Finally, the simulation

model reports the percentage of covered demands based on the records.

Table 1 lists the results for p = 8, 10, 15, and 20. Note that solving BACOP2 and

MALP II requires some model parameter values: weighting factor between single

and back-up coverage objectives in BACOP2, and service reliability level in MALP

II, respectively. Instead of arbitrarily setting these parameters, we solve BACOP2

and MALP II multiple times by varying their values, and report the best results

Fig. 1 Demand nodes in Daejeon 2010
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obtained. For BACOP2, we increase the weights from 0 to 1 by an increment of 0.1.

For MALP II, we use 85, 90, and 95% for the reliability level following ReVelle and

Hogan (1989).

In Table 1, we report the percentage of successful responses by solutions from

the three approaches. The results indicate that our algorithm outperforms the other

location models. BACOP2 model performs far worse than the other two models.

BACOP2 model tends to spread out ambulances to maximize the deterministic

coverage. But its deterministic approach, even with the back-up coverage

requirement, does not effectively incorporate the availability issue of ambulances.

On the other hand, MALP II model tends to collocate ambulances due to the

reliability constraint in the model. This collocation strategy may not be very

effective particularly when there are only a small number of ambulances; it

increases the level of service for possibly small volume of demand at the cost of

very low level of service for larger areas. Table 1 shows that the gap between

MALP II and the proposed model is slightly larger when the number of ambulances

p is smaller.

6 Discussion

The performance gain achieved by our model is attributed by the fact that our model

explicitly computes the availability of ambulances in computing location solutions.

It incorporates two key factors into the ambulance location model: temporal

variations in call arrivals and a dispatching policy. Most probabilistic location

models handles the availability of ambulances by using its busy fraction, and

appropriately estimating busy fractions is a fundamental challenge (ReVelle and

Hogan 1989). Furthermore, they typically model it as a constant with respect to the

time of day, as in a homogeneous Poisson process. However, there clearly exists a

temporal variation in call arrivals throughout a day. More calls arrive in the late AM

and early PM, and fewer calls arrive in the middle of the night. This temporal

variation makes the estimation of the busy fraction deviate further from the true

value. It is known that the availability of ambulances is also affected by a

dispatching policy as well, and there are several studies that develop optimal

dispatching policies (Aboueljinane et al. 2013; Andersson and Värbrand 2007;

Jagtenberg et al. 2016; Lee 2011; Lim et al. 2011). As will be shown in this section,

dispatching policies change optimal locations of ambulances, and an inappropriate

assumption about dispatching policy can negatively affect the performance of the

location solution.

Table 1 Percentage (%) of

covered demands
p Proposed BACOP2 MALP II

8 61.8 44.3 57.6

10 73.5 57.3 66.7

15 89.2 76.6 86.0

20 94.6 84.4 93.9
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Let us first examine the busy fraction of ambulances computed in our model.

Since our model makes dispatching decisions and keeps track of availability of

ambulances at each station, we can compute the busy fraction of ambulances from

the model. Specifically, we have y
j
d that describes the history of ambulance

operation from which we can compute the busy fraction for ambulances. Note that

since we use sampled call data to generate call arrival scenarios, the computed busy

fraction is an approximation for the ‘‘actual’’ busy fraction. The actual busy fraction

can be easily computed by the same simulation described in Sect. 5 using entire call

data of 2010.

Figure 2 shows the busy fraction values computed from the model (solid line)

versus from the actual 1-year operation (dotted line). Results shown in Fig. 2 clearly

demonstrate that the busy fraction in our location model does match the actual busy

fraction from one-year of operation under the obtained solution. Recall that it is a

typical problem in a probabilistic location model that the busy fraction assumed in a

location model is indeed different from the resulting busy fraction when the

obtained location solution is used. Figure 2 suggests that our model determines a

location solution based on the accurately represented availability of ambulances.2 In

addition, our model adequately captures the dynamics of the ambulance operation

due to the temporal variations in call arrivals. As shown in Fig. 2b, busy fraction

during the peak hours is quite higher than the average value in Fig. 2a, and it closely

follows the actual busy fraction as well.

Next, we examine the effects of the dispatching policy on the ambulance location

solution. As we mentioned earlier, there exists an interaction between a dispatching

policy and a location solution of ambulances. We investigate this interaction by

deriving ambulance location solutions under different dispatching policy. For this

test, we use the least likelihood dispatching policy proposed in Repede and

Bernardo (1994). The least likelihood dispatching policy works as follows; it sends

the nearest available ambulance to an arriving call when that ambulance can arrive

at the call location within the time standard. Otherwise it dispatches an ambulance

that has the least likelihood of receiving a call. In the experiments, location

Fig. 2 Busy fraction of ambulances from our model (solid) and from one-year operation (dotted) for
10-ambulance case a average busy fraction, b busy fraction for peak hours (9 AM–12 PM)

2 Note that unlike a probabilistic location model our model does not utilize the busy fraction to compute

a location solution. They are only implicit in the model.
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solutions for each dispatching policy when p ¼ 10 are derived, and these solutions

are evaluated by a simulation model under the two different dispatching policies.

The results are presented in Fig. 3.

In Fig. 3, x-axis is a dispatching policy used in the simulation model. Then

simulated results (i.e., the percentage of covered demands) for each location

solution obtained under the nearest available dispatching policy (solid line) and the

least likelihood dispatching policy (dotted line), are plotted on y-axis. From Fig. 3,

we first see the interaction effect between a dispatching policy and an ambulance

location solution. A solution derived under one dispatching policy is not the best

Fig. 3 Interaction effect between a dispatching policy and an ambulance location solution

Fig. 4 Map of Daejeon with location solutions for a nearest available dispatching policy, b least
likelihood dispatching policy
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solution when the other policy is in fact used for actual operation. The performance

of an ambulance location solution is quite sensitive to a dispatching policy. For the

location solution under the least likelihood dispatching policy, the percentage of

covered demands is decreased by almost 6% when the other policy was used in the

operation. As such, the performance of a location solution critically depends on

which dispatching policy is used in the actual operation of ambulances.

Configurations of the ambulance locations for each dispatching policy are also

quite different. Figure 4 shows the ambulance location solutions obtained under the

two dispatching policies. Under the least likelihood dispatching policy, more

ambulances are collocated at some stations whereas in the nearest available

dispatching policy, the location solution tends to locate a single ambulance at a

station. These results verify that considering a dispatching policy is crucial for

determining ambulance locations.

7 Conclusion

In this paper, we propose an ambulance location model designed to explicitly

compute the availability of ambulances while considering the two key factors in

ambulance location decisions: temporal variations in call arrivals and a dispatching

policy. The model is based on a stochastic programming approach and the temporal

variations in call arrivals are represented as a set of scenarios. Moreover we

explicitly incorporate the ambulance dispatching policy into the ambulance location

problem such that the interaction between two decisions, i.e., ambulance dispatch-

ing and locations, is considered. It allows us to incorporate ambulance availability

in a more precise fashion than classical probabilistic location models. The proposed

model was solved by developing an algorithm based on a logic-based Benders

decomposition. The algorithm theoretically guarantees the optimality of the

solution. However, as the algorithm required a significant amount of time to obtain

an optimal location solution, we implemented a few approximation schemes using a

meta-heuristic algorithm. The experiments demonstrate that the proposed model

outperforms some of the classic location models.

Let us conclude this paper by discussing potential difficulties in implementing

the proposed algorithm. When the number of demand sites increases or when a

random vector for call arrivals has a large number of possible realizations, the

number of scenarios required to properly represent the call arrivals is likely to

increase substantially. It results in excessive computational burden, making the

scenario-based approach potentially intractable. This is one of the primary

challenges in stochastic programming. To resolve this issue, we need research to

develop techniques to effectively generate scenarios within the allowed computa-

tional budget and to evaluate the goodness of the generated scenarios.
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