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Abstract – This paper describes a new diagnosis approach, the
Root-MUSIC (RM) method, for identification of the progressive
cracking in the bearing of induction motors. This approach has
several advantages compared to the stator current spectral
analysis using the conventional Periodogram method. Indeed, the
main advantage of this approach is its very good frequency
resolution for a very short acquisition time, something impossible
to achieve with the conventional method. However, in order to
reduce the computation time which is the main drawback of the
RM method, this method will be applied to only a specified
frequency band; one that carries information about the sought
fault. Experimental results show the effectiveness of RM method
on the reliability of the incipient bearing fault detection.
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I. INTRODUCTION

The induction motor is the most common electric machine
in the industry. Its main advantage is the absence of sliding
electrical contacts, which leads to a simple and robust structure
easy to build with low cost. However, various faults can appear
on the induction motor making the fault detection procedure
necessary to prevent the interruption of the industrial process.
Several reliability studies conducted on a large number of
induction motors, show that the bearing faults account for 52%
of all failures. For that, early detection of bearing faults
increases the life of the motors and thus avoids unnecessary
financial losses [1-3]. To identify these faults, several methods
have been elaborated. Amongst the existing analysis methods,
the Power Spectral Density estimation (PSD) by Periodogram
of the stator current, is considered as a very popular technique
and is widely used in industry. Several studies [4-8] have
demonstrated the reasons for its durability in the field of
diagnosis and its preference to other recent methods. The main
reasons are:

 Easy programming.

 Easy implementation (microcontroller or FPGA).

 Fast computation time.

However, this method presents two major drawbacks:

 Frequency resolution conditioned by the acquisition
time: Indeed, in order to have an efficient diagnosis,
we must increase the acquisition time to be able to
distinguish two close harmonics from each other.

 Identification for low harmonics quasi impossible [4]-
[6] : Indeed, the presence of side-lobes related to the
type of the window function used in the PSD
estimation by Periodogram [5] risks masking the
frequency signatures of incipient faults. Hence the
importance of the adequate choice of this window.

Unfortunately, even an adequate choice of this window
does not improve the diagnosis for certain operating modes of
the motor, such as the rotor faults diagnosis at very low load.
Indeed, in this case, the incipient fault signature is embedded in
that of the fundamental. To eliminate this effect from the
fundamental, some studies use the combined information found
in the current and voltage, in order to calculate the
instantaneous power [9-10]. However, this solution is not
always accurate and, in addition, it is expensive, because it
requires the use of sensors of currents and voltages.

For this reason, many researchers have focused their work
towards using the Hilbert method to avoid fundamental effect
on the analysis of the current spectrum and avoid the problem
of the choice of the window function [11-12]. The Hilbert
method is certainly suitable for diagnosis of rotor faults, but it
is not very effective for other types of faults. Moreover, both
approaches are unable to distinguish two close harmonics from
each other with a very short acquisition time. That means a
mediocre frequency resolution. To improve this resolution
frequency and therefore the diagnosis reliability, in recent
years, several advanced signal processing methods such as
High Resolution Spectral Analysis have been applied to
diagnose induction motor faults. These methods, as MUSIC

[4], [6] and [13] and ESPRIT [14-15], use the
decomposition of the covariance matrix of the signal analyzed
in two separate subspaces: signal subspace and noise
subspace. They are more robust to noise but require an
important computation time, due to the complexity of their

algorithms. On other hand, the PRONY method [16], which is
not based on the decomposition of space, is faster compared to
MUSIC, but more sensitive to measurement noise.
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Note that all these methods that we have just mentioned are
inappropriate in the case of a signal analysis in the presence of
a speed variation or load change. Indeed, for these two
operating modes, signals are non-stationary and therefore
require the use of other methods such as time-frequency
methods and time-scale methods.

For the time-frequency methods, the most common
approach because easy to program, is the Short Time Fourier
Transform (STFT) [17-18]. This method allows monitoring
the useful information of the signal depending on the speed
variation for example. However its main disadvantage is its
low resolution time-frequency. In the same family, another
method based on the Wigner-Ville Distribution (WVD) [19]
improves time-frequency resolution at the expense of the
appearance of interference terms or cross terms around the
frequencies of the signal, mainly due to noise contained in this
signal. These cross terms can be mitigated by eliminating the
noise effects thanks to a variant of the WVD called Smoothed
Pseudo Wigner-Ville Distribution (SPWVD) [20].
Unfortunately, this procedure causes a relocation of
frequencies, key parameter in the faults diagnosis. Finally
among the time-scale methods, the most known method is
undoubtedly, that based on the wavelet transform [21-24].
This method is very effective in the case of change of speed or
load, but its major drawback is the complexity of interpreting
the resulting spectra and the long computation time, in
addition to the importance of the choice of the used wavelet.

In this paper, we are interested in fault diagnosis of
induction motor bearings, operating at constant load and
constant speed, by using a variant of the MUSIC method
(Multiple SIgnal Classification), namely the Root-MUSIC
method. Yet, the disadvantage of this method is the long
computation time required for the motor diagnosis. In fact, if
the model orders (that is the number of sought harmonics)
and/or the number of used samples are important this will lead
to an increase of the used memory size and consequently to an
increase of the computation time.

Furthermore, we know that the signature of each type of
faults is localized in a well specified frequency band of the
stator current spectral [4]-[6]. Hence, the basic idea we are
proposing in this paper, consists of not applying the RM
method in the complete stator current spectrum, but only within
certain frequencies bands susceptible to inform us on the
presence or not of the sought faults in the motor. This will
enable us to reduce the used memory space and consequently
the computation time [4], [6]-[13]. From this fact, the
experimental results obtained with this approach will be
compared to the PSD classical method to illustrate the merits of
this proposed method.

II. STATOR CURRENT SPECTRUM CONTENTS

The application of the proposed Root-MUSIC method
requires, like all spectral analysis methods regardless of the
technique used (the current or the vibration), prior knowledge
of the bearing dimensions to diagnose, in order to locate and
interpret the frequency signature of sought fault.

For this purpose, it should be known that the rolling-
element bearings act as an electromechanical interface between
the stator and the rotor. In addition, they represent the holding
element from the axis of the machine to ensure proper rotation
of the rotor. The bearings are constituted by two races, the
inner race and the outer race, balls and the cage which ensures
equidistance between the balls as is shown in Fig. 1 [25].

Fig. 1. Geometry of a rolling-element bearing.

Failures may affect the bearing on both races, on the ball or
on the cage. Several studies have shown that the failure of each
bearing element is manifested by a vibrational frequency
characterizing the fault type [25-26].

 Characteristic frequency of the outer race fault
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 Characteristic frequency of the inner race fault
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 Characteristic frequency of the ball fault
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 Characteristic frequency of the cage fault
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Where Nb is the number of bearing balls, BD and CD are the ball
and the cage diameter respectively,  the contact angle and fr

the mechanical rotor frequency.

Furthermore, Schoen showed in [26] that bearing faults
signatures appear in the stator current spectrum at the following
frequencies:

  vsbear fkfHzf  with k = 1, 2,3… (5)

Where fs is the supply frequency and fv the fault characteristic
frequency (fo, fi, fcage or fball)

It should be noted, that a preliminary calculation of these
frequencies allows an optimization of the fault diagnosis of
bearings because it enables us to know in advance the
frequency bands where the fault signature is likely to appear.
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III. ROOT-MUSIC METHOD

A. Data Model

The RM method is defined as a high resolution method. It
is a variant of the MUltiple SIgnal Classification (MUSIC) [4],
[6]-[27]. This method assumes that the discrete-time signal
is(n) can be represented by L complex sinusoids in a noise
w(n), as follows:
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Where fsf is the sampling frequency, N is the sampling number.
Ii, fi, i represent the amplitude, frequency, and initial phase
angle of the ith harmonic respectively, w(n) is a white noise. We
note that (6) represents well the stator current model in the
discrete time-domain.

B. Principle of Root-MUSIC method

The principle of this method also known as the subspace
method is based on the Eigen decomposition of the
autocorrelation matrix of the signal to be processed [4], [6],
[16]-[27]. The estimated autocorrelation matrix Ri of
measurement signal is(n), represented by (7), is the sum of two
autocorrelation matrices, these are the signal matrix Rs and the
noise matrix Rw.
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 A is the powers matrix of harmonics.
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 H represents the Hermitian operator. 2
w , and I are the noise

variance of the white noise and the identity matrix of size
(N x N) respectively.

The Eigen decomposition of the autocorrelation matrix of
the signal Ri is given by the following relation [6]:
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Where the matrices Us and Uw are composed by the Eigen
vectors uk related to Eigen values arranged in descending order
k. The matrices Ds and Dw are diagonal matrices made by
Eigen values k.
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Equations (10) and (11) show that, we can divide the global
space into two groups or subspaces [6]:

 Signal subspace: composed of the Eigen values
corresponding to the L largest Eigen values.

 Noise subspace: composed of the Eigen values
corresponding to the N-L remaining Eigen values.

Theoretically, all Eigen values corresponding to the noise

subspace are equal to 2
w . For this reason, Dw is written in the

form given by (11). By comparing (7), (10) and (11) we can
write:

w
2
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This implies that: 0U.S w
H  (13)

The problem comes down therefore to compute the
solutions of (13). These solutions or roots appear accordingly
on (or near) the unit circle. Unfortunately in reality, this is not
too simple since the localization is not easy in the noise signal
presence, because the roots corresponding to the sought
frequencies are no more situated on the unit circle but mixed
with the other solutions. To keep away the parasites roots from
the unit circle and hence decrease the error probability, RM
method considers that the whole set of the Eigen vectors are
associated to the noise space Ew in order to obtain a better
robustness with respect to the noise. We have therefore to solve
the following equation [6], [15]-[27]:
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H
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H
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The phases of the L closest roots to the unit circle will
correspond to the sought frequencies. These frequencies will be
computed directly from the following relation [6]:
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Knowing the frequencies of the sought harmonics, we can
therefore determine the amplitudes of these components by
using the following equation:
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We notice that it is easier to inverse Rs rather than to
inverse S. In these conditions, the amplitudes are estimated by
[4], [6]:

SRS

1
A

1
s

H

1



  (17)

Where:





























N

1Lk
k

2
w

L

1k

H
kk2

wk

1
s

LN

1

u.u
1

R




(18)

IV. IMPROVEMENTS OF THE ROOT-MUSIC METHOD

The major drawbacks of RM method are [4], [27]:
 The computation time which is very important and that

increases with the samples number and the model order
L. Note that in our paper, L represents the sought faults.

 The number of the sought harmonics estimation (L).
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To solve these drawbacks, we propose the following solutions:

A. First Solution:

Several studies have demonstrated that the signature of
each type of faults are localized on a well precise frequency
band of the stator current spectrum; the suggested idea consists
therefore in processing the data on a given frequency band and
not on all the spectrum of the stator current. This solution will
hence enable us to reduce the length of the spectrum and
consequently will reduce the computation time [4], [6]-[13].

Hence, RM method will be applied solely to a frequency
band defined by a low cut-off frequency fl and a high cut-off
frequency fh. These cutoff frequencies will be selected on the
spectrum width [0, fsf /2], depending on the type of the studied
fault. With this solution, the processing will be done on

sfp f/f.N.2 samples where lhp fff  and not on the N

samples, these reducing the computation time.

To confirm the positive contribution of this solution with
respect to the computation time, several tests have been carried
out [4], [6]. Thus, on the basis of several new tests, the
computation time is equal to 147.53 s for the fundamental
identification only (L=1), with the original Root-MUSIC
method, see Table I. Note that we obtained these results by
considering a signal of 10000 samples and using a PC equipped
with a dual-core processor of 2 GHZ and 3 GB of RAM.

TABLE I
SPEED COMPUTATION COMPARISON

Method Data

length

Fundamental Identification

(Frequency / Magnitude)

Computation

time (s)

Original Root-

MUSIC

10000 50.003 Hz / 16.44 dB 147.53

Improved

Root-MUSIC

136 50.004 Hz/ 16.15 dB 0.4

Unfortunately if the size of the signal increases a hundred
thousand samples, then the computation time quickly becomes
prohibitive. This problem occurs because of the roots
calculation (see equation (14)) and the matrix inversion (see
equation (17)). This problem becomes even more complex, if
the number of the sought harmonics (L) is higher.

By cons, our solution, which is to seek the desired
harmonics only within a defined band, avoids this problem. In
fact, Table I shows that the improved Root-MUSIC allows to
reduce the data length (136 samples) and the computation time
(0.4 s) by considering an analysis band [40 Hz 60 Hz] for the
identification of the fundamental (L = 1).

B. Second Solution:

The RM performances can be completely deteriorated by
choosing a wrong value of the model order L. In fact, if L is too
small, then we can lose the harmonics of low amplitudes. By
cons, if L is too large, then the spectrum may contain spurious
harmonics. To determine this parameter, various estimation
criterions have been developed [6], [27-28].

As a solution, we propose in this paper to set the number of
the sought harmonics to 1 (L = 1). In fact, the proper selection

of the frequency band to be processed, enables the
identification of a single harmonic, that of the sought fault.

The next procedure describes the steps to follow for the
analysis and processing of the phase stator current using the
proposed approach:

1. Acquisition of the phase current.

2. Determination of the processed frequency band, the band
which is likely to show the signature of the sought fault.

3. Choice of the sought harmonics number (in this paper,
L=1).

4. Application of the Root-MUSIC to the 2.N.fp/fsf

samples.

5. Verification if the localized frequency corresponds to
that obtained by calculation.

V. EXPERIMENTAL RESULTS

A. Test rig and acquisition parameters

The main experimental tests that are being presented in this
paper are carried out by the diagnosis group in the laboratory of
development of electrical drives “LDEE”. The motor used in
the experimental investigation is a three-phase squirrel cage
motor coupled to a DC generator. The motor parameters are:
3kW, 1410 rpm, 50Hz, 4 poles. The measuring system includes
two current Hall Effect sensors (Fluck i30s), an anti-aliasing
filter AAF (realized in our laboratory) with a 400 Hz adjustable
cut-off frequency chosen for our tests, and an acquisition card
(NI-6330). The whole set is connected to a computer for
viewing the processed sensed signal as shown in Fig. 2. In
addition, a tachometer (Ono Sokki HT-341) is used for
measuring the actual shaft speed of the motor.

a. Synoptic diagram of test rig

b. Photo of test rig

Fig. 2. Realised test rig
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All acquisitions were performed at 1440 rpm and in steady
state. The acquisition time is of 40 seconds, with a sampling
frequency of 3 KHz. In these conditions, the signal length is
equal to 120000 samples and the frequency resolution is equal
to 0.025 Hz.

The bearing in the motor to be diagnosed is of ball bearing
type of reference 6205-ZZ “opposite side to coupling”. The
bearing specifications are: BD =7.835 mm, CD=38.5 mm, Nb =9
and = 0. Fig. 3 illustrates the faults created in the bearings
used in our experimental tests.

(a) (b) (c)

Fig.3. Artificial bearing faults. (a) and (b) Outer race fault (6mm and 3mm
holes), (c) Cage and ball fault.

The bearing faults dealt with are artificially created by the
Electrical Discharge Machining “EDM” in order to simulate
the same situations as real ones. The holes dimensions are
6mm and 3mm in diameter and 2.5 mm in depth.

In this paper, we consider the hole of 03 mm diameter as an
incipient fault:

 Compared with other holes and grooves made on other
bearings in our laboratory ''for example 6mm diameter
holes, breaks in the cage on 4mm, grooves on the outer
ring 3mm across its width etc.''

 But, essentially, on the fact that the classical method of
the PSD estimation by the periodogram technique, widely
used in industry, is unable to detect any frequency
signature of this hole of 03 mm diameter and of 2.5 mm
depth, as we shall see it thereafter in this paper.

The various modes of operation performed to validate the
diagnostic procedure are:

 Motor operation with healthy bearings,

 Motor operation with outer race fault (6 and 3 mm holes)

 Motor operation with cage fault,

 Motor operation with cage and balls faults

For a more reliable analysis and due to the randomness of
the measured signals, several acquisitions were made for each
operation.

Theoretically, the frequencies signatures of an outer race,
cage and balls faults are determined by the geometric
parameters of the bearing based on (1), (3), (4) and (5). The
following table shows the frequencies signatures of each fault
that may appear on the current spectrum at 1440 rpm
(fr=24 Hz).

TABLE II
THEORETICAL BEARING FAULTS FREQUENCIES AT 1440 RPM AND K=1

Faults
frequencies

Lower sideband:

  vsbear ffHzf 

Upper sideband:

  vsbear ffHzf 

Outer race fault 36.02 Hz 136.02 Hz

Cage fault 40.44 Hz 59.55 Hz

Balls fault 63.04 Hz 163.04 Hz

Knowing the theoretical frequency position of the bearing
faults dealt with in this paper (see Table II), it is also necessary
to choose properly the frequency bands to be analyzed, to
detect experimentally these faults signatures. The choice of
these bands must take into account possible variations of the
load. Indeed, any load variation affects the mechanical
frequency measured which affects of course the frequency
positions of the bearing faults. The following two tables show
the two extreme cases of the operating motor at very low load
and overload.

TABLE III
THEORETICAL BEARING FAULTS FREQUENCIES AT OVERLOAD:

MOTOR SLIP 7% ‘’ 23.25 HZ’’ AND K=1

Faults
frequencies

Lower sideband:

  vsbear ffHzf 

Upper sideband:

  vsbear ffHzf 

Outer race fault 33.33 Hz 133.33 Hz

Cage fault 40.74 Hz 59.25 Hz

Balls fault 59.51 Hz 159.51 Hz

TABLE IV
THEORETICAL BEARING FAULTS FREQUENCIES AT VERY LOW LOAD:

MOTOR SLIP 1% ‘’ 24.75 HZ’’ AND K=1

Faults
frequencies

Lower sideband:

  vsbear ffHzf 

Upper sideband:

  vsbear ffHzf 

Outer race fault 38.70 Hz 138.70 Hz

Cage fault 40.14 Hz 59.85 Hz

Balls fault 66.58 Hz 166.58 Hz

Based on the tables (III) and (IV), if we are interested in
tracking faults harmonics according to the ''lower sideband''
then we will choose the following frequencies bands analysis:

 [30 Hz, 45 Hz] to search for the outer ring faults and
the cage faults.

 [55 Hz, 70 Hz] to search for the balls faults.

If by cons, we are interested in monitoring faults harmonics
according to the ''upper sideband'', then we must choose the
following frequencies bands analysis:

 [130 Hz, 145 Hz] to search for the outer ring faults.

 [55 Hz, 70 Hz] to search for the cage faults.

 [155Hz, 170 Hz] to search for the balls faults.
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Note that the choice of these frequencies bands takes into
account the entire range of possible load variations to enable
the diagnosis of the three types of faults treated. In addition,
by choosing these frequencies bands, we avoid the known
strong harmonics such as slot harmonics, third harmonic or the
fundamental that can hide the sought fault harmonic. Thus, in
this paper, we have chosen the lower sideband for these
bearing faults diagnosis.

In this paper, we analyzed only the first Lower Sideband
(for k = 1). We would have been able to also choose to analyze
the first Upper Sideband (for k = 1). As we can also analyze
other bands (k = 2, 3 ...). The choice of the band does not affect
diagnostic reliability knowing that the frequency signature of
the bearing fault appears on the entire current spectrum
depending on the chosen variable k (see (5)).

B. Motor operation with healthy bearings

In these first tests, we will analyze the stator current in the
case where the two bearings “the opposite side to coupling and
the coupling side” are healthy.

To note, what we call healthy bearing in this paper, it is a
bearing that does not present any visually apparent faults. This
does not exclude the existence of imperfections related to either
its manufacturing phase or to the existence of scratches
associated with its use.

This first identification step is very important and
necessary, because all the next set of tests are going to be
compared to that first identification step known as ‘the
reference step’. Fig. 4 shows the results obtained by the
classical PSD at 1440 rpm. We can notice that except the
fundamental, no other significant harmonic appears on the two
selected frequencies bands.
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Fig.4. Stator current analysis by classical PSD method - Healthy bearings-

In the light of these first results, we remark that there is no
particular harmonic presence in the spectrum this confirms that
our bearings are healthy.

By cons, by analyzing the stator current with improved RM
method, we note that on the first frequency band (Fig.5.a), the
appearance of a harmonic of frequency 36.59 Hz and
magnitude -36.97 dB.
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Fig.5. Stator current analysis by RM method - healthy bearings-

Comparing this result with Table II, we can suppose that
this harmonic represents an anomaly or a simple scratch on the
outer race of the bearing, supposed to be healthy ''. The
presence of this scratch can be explained by the repetitive
process of the assembly/disassembly of the bearing during the
various tests (several dozen experiments carried with the same
bearing). Indeed, the outer race is the part of the bearing which
is most exposed to a failure with regard to its geometrical
position. This scratch can be also considered to be an incipient
fault.

Furthermore, on the second frequency band (Fig.5.b), there
is the appearance of a harmonic of frequency 69.13 Hz. The
existence of this harmonic is due to the number L chosen for
our algorithm. This harmonic can be considered insignificant
given its magnitude (-47.48 dB).

C. Motor operation with outer race fault

In this second set of tests. Fig.6 represents graphically the
obtained experimental results by the classical PSD method for
the case of an outer race fault. According to table II, the
harmonic characterizing the fault of the outer race should
appear at a frequency of 36.02 Hz, which is on the first selected
frequency band.

According to Fig. 6.a, we find that this method shows a
very low harmonic at 36.6 Hz, in the case of a 6 mm hole on
the outer race of the bearing. Fig. 6.b shows that the
conventional method of the PSD is unable to identify the
frequency signature of sought fault.
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Fig.6. Stator current analysis by classical PSD method - Outer race fault -
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Fig.7. Stator current analysis by RM method - Outer race fault –

Otherwise, the RM method can identify the frequency
signature of the sought fault, namely 36.84 Hz for the case of a
6mm hole and 36.37 Hz for the case of a 3mm hole as shown
in Fig.7. Note that this slight difference between the theoretical
frequency (36.02 Hz) and those obtained (36.84 Hz and 36.37
Hz) is probably linked to a slight variation of the motor
mechanical speed. Furthermore, the assumption we made about
the existence of an early crack of the outer race (see section
V.B) is justified since the magnitude of this harmonic increases
with the cases studied:

 Supposed healthy (36.59Hz, -36.97 dB) (see Fig.5.a)

 A 3mm hole (36.37 Hz, -27.09 dB) (see Fig.7.b)

 A 6mm hole (36.84Hz, -21.02 dB) (see Fig.7.a).

In the light of these results, we can say that Root-MUSIC
with the proposed improvements, allows not only to detect
incipient faults but especially to monitor their evolutions as
shown in Fig. 8:

Healthy Case Faulty Case( 3mm Hole) Faulty Case ( 6mm Hole)
-38

-36

-34

-32

-30

-28

-26

-24

-22

-20

Bearing condition

M
a

g
n

it
u

d
e

s
ig

n
a

tu
re

(d
B

)

Severity Factor of the outer race fault

Fig.8. Severity Factor of the outer race fault

D. Motor operation with cage fault

The following figures represent graphically the obtained
experimental results by both the classical PSD and RM
methods for the case of a cage fault.
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Fig.9. Stator current analysis by classical PSD method - Cage fault-

From Fig.9, we find that the classical method of the PSD by
Periodogram is still unable to identify the frequency signature
of the sought fault which is supposed to appear, according to
Table II, at the frequency of 40.44 Hz. This result was
predictable given the diameter of the hole.
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Fig.10. Stator current analysis by RM method - Cage fault-

Otherwise by using the RM method, see Fig.10, we can
note that this technique arrives at estimating not only the
sought harmonic over the specified frequency band but also
exhibiting this harmonic in a very clear manner to be easily
detectable (39.86 Hz).

E. Motor operation with cage and balls faults

In these last tests, we will see the effectiveness of the RM
method with the proposed solutions in the case of a double
fault: fault of the cage and the ball at the same time. From Fig.
11, we see that classical PSD method is unable to diagnose the
two types of faults on the two selected frequencies bands
(Fig.11.a and Fig.11.b). Again, this finding was predictable
given the size of the holes made.
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Fig.11. Stator current analysis by classical PSD method - Cage and Balls
faults-
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Fig.12. Stator current analysis by RM method - Cage and Balls faults-

Fig. 12 shows us the sought harmonics over the specified
frequencies bands (Fig12.a and Fig12.b) by using the RM
method. We notice that these harmonics reflect well the cage
and ball faults presence in comparison to the obtained
theoretical frequencies (see table II).

In fact, Fig. 12.a shows the frequency signature of the cage
fault (40.94 Hz), and the Fig. 12.b gives us the signature of the
balls fault (63.74 Hz). This slight difference between the
theoretical values and that obtained is certainly due to the error
on the measurement of the mechanical speed by the tachometer
or to a slight variation of the motor mechanical speed.

We notice again, that the obtained results by the use of the
RM method are very exploitable. In fact, we can easily note
that this technique presents a very good identification (good
estimation of frequencies and magnitudes) of all the sought
harmonics over the specified frequencies bands.

In the light of the results obtained, we can say that this
method can be applied to real cases, provided to properly
define the frequency band to be analyzed which likely shows
the frequency signature of the sought fault. Because it is well
known that each fault has a particular signature localized at a
particular frequency.

Finally, we can mention another advantage of the
improved Root-MUSIC compared to the classical method of
the PSD estimation by the Periodogram technique aside from
the frequency resolution and the spectrum clarity. Indeed, the
classical method gives a spectral expanded, and it is the user
who has to search the frequency signature representing the
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existing faults. By cons, with our approach, we define the
frequency band to analyze according to the type of the sought
fault, that which is easier and faster, in our opinion. Moreover,
if we look for several types of faults at the same time, we have
only to define several frequencies bands to analyze according
to possible frequency position of the sought fault.

VI. CONCLUSION

In this paper, we prove that the classical PSD method by
Periodogram allows a fast harmonics estimation; but it does not
allow the detection of low magnitude faults such as incipient
fault. However, the obtained sets of results based on
experimental data, clearly indicate that the Root-MUSIC
method has better discrimination capability and is more robust
compared to the classical PSD method. The proposed solution
in this paper, and which consists of treating only the frequency
band likely to reveal the signature of the sought fault, has made
the Root-MUSIC method faster and more efficient.

This method has positively contributed in the readability of
the stator current spectrum and significantly facilitated its
analysis. Also, this method has enabled us to verify the
correlation between the frequency signatures of the bearing
faults obtained experimentally and those calculated
theoretically. These results also prove that the improved Root-
MUSIC method is very effective not only to detect the
incipient faults, but also to monitor the evolution of the faults
severity
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