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Introduction
Healthcare in the United States (U.S.) is important in the lives of many citizens, but 
unfortunately the high costs of health-related services leave many patients with lim-
ited medical care. In response, the U.S. government has established and funded pro-
grams, such as Medicare [1], that provide financial assistance for qualifying people to 
receive needed medical services [2]. There are a number of issues facing healthcare and 
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medical insurance systems, such as a growing population or bad actors (i.e. fraudulent 
or potentially fraudulent physicians/providers), which reduces allocated funds for these 
programs. The United States has experienced significant growth in the elderly popu-
lation (65 or older), in part due to the improved quality of healthcare, increasing 28% 
from 2004 to 2015 compared to 6.5% for Americans under 65 [3]. Due, in part, to the 
increase in population, especially for the elderly demographic, as well as advancements 
in medical technology, U.S. healthcare spending increased, with an annualized growth 
rate between 1995 and 2015 of 4.0% (adjusted for inflation) [4]. Presumably, spending 
will continue to rise, thus increasing the need for an efficient and cost-effective health-
care system. A significant issue facing healthcare is fraud, waste and abuse, where even 
though there are efforts being made to reduce these [5], they are not significantly reduc-
ing the consequent financial strain [6]. In this study, we focus our attention on fraud, 
and use the word fraud in this paper to include the terms waste and abuse. The Fed-
eral Bureau of Investigation (FBI) estimates that fraud accounts for 3–10% of healthcare 
costs [7], totaling between $19 billion and $65 billion in financial loss per year. Medicare 
accounts for 20% of all U.S. healthcare spending [8] with a total possible cost recovery 
(with the potential application of effective fraud detection methods) of $3.8 to $13 bil-
lion from Medicare alone. Note that Medicare is a federally subsidized medical insur-
ance, and therefore is not a functioning health insurance market in the same way as 
private healthcare insurance companies [9]. There are two payment systems available 
through Medicare: Fee-For-Service and Medicare Advantage. For this study, we focus on 
data within the Fee-For-Service system of Medicare where the basic claims process con-
sists of a physician (or other healthcare provider) performing one or more procedures 
and then submitting a claim to Medicare for payment, rather than directly billing the 
patient. The second payment system, Medicare Advantage, is obtained through a private 
company contracted with Medicare, where the private company manages the claims and 
payment processes [10]. Additional information on the Medicare process and Medicare 
fraud is provided within [1, 11–13].

The detection of fraud within healthcare is primarily found through manual effort by 
auditors or investigators searching through numerous records to find possibly suspicious 
or fraudulent behaviors [14]. This manual process, with massive amounts of data to sieve 
through, can be tedious and very inefficient compared to more automated data mining 
and machine learning approaches for detecting fraud [15, 16]. The volume of informa-
tion within healthcare continues to increase due to technological advances allowing for 
the storage of high-volume information, such as in Electronic Health Records (EHR), 
enabling the use of “Big Data.” As technology advances and its use increases, so does the 
ability to perform data mining and machine learning on Big Data, which can improve the 
state of healthcare and medical insurance programs for patients to receive quality medi-
cal care. The Centers for Medicare and Medicaid Services (CMS) joined in this effort 
by releasing “Big Data” Medicare datasets to assist in identifying fraud, waste and abuse 
within Medicare [17]. CMS released a statement that “those intent on abusing Federal 
health care programs can cost taxpayers billions of dollars while putting beneficiaries’ 
health and welfare at risk. The impact of these losses and risks magnifies as Medicare 
continues to serve a growing number of people [18].” There are several datasets available 
at the Centers for Medicare and Medicaid Services website [8].
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In this study, we use three Public Use File (PUF) datasets: (1) Medicare Provider Utili-
zation and Payment Data: Physician and Other Supplier (Part B), (2) Medicare Provider 
Utilization and Payment Data: Part D Prescriber (Part D), and (3) Medicare Provider 
Utilization and Payment Data: Referring Durable Medical Equipment, Prosthetics, 
Orthotics. and Supplies (DMEPOS). We chose these parts of Medicare because they 
cover a wide range of possible provider claims, the information is presented in similar 
formats, and they are publicly available. Furthermore, the Part B, Part D, and DMEPOS 
dataset comprise key components of the Medicare program and by incorporating all 
three aspects of Medicare for fraud detection, this study provides a comprehensive view 
of fraud in the Medicare program. Information provided in these datasets includes the 
average amount paid for these services and other data points related to procedures per-
formed, drugs administered, or supplies issued. We also create a dataset combining all 
three of these Medicare datasets, which we refer to as the Combined dataset. The last 
dataset examined in our study is the List of Excluded Individuals and Entities (LEIE) [19], 
provided by Office of the Inspector General, which contains real-world fraudulent physi-
cians and entities.

The definition of Big Data is not universally agreed upon throughout the literature 
[20–24], so we use an encompassing definition by Demchenko et  al. [25] who define 
Big Data by five V’s: Volume, Velocity, Variety, Veracity and Value. Volume pertains 
to vast amounts of data, Velocity applies to the high pace at which new data is gener-
ated/collected, Variety pertains to the level of complexity of the data (e.g. incorporat-
ing data from different sources), Veracity represents the genuineness of the data, and 
Value implies how good the quality of the data is in reference to the intended results. 
The datasets released by CMS exhibit many of these Big Data qualities. These datasets 
qualify for Big Volume as they contain annual claim records for all physicians submit-
ting to Medicare within the entire United States. Every year, CMS releases the data for a 
previous year increasing the Big Volume of available data. The datasets contain around 
30 attributes each, ranging from provider demographics and the types of procedures to 
payment amounts and the number of services performed, thus qualifying as Big Variety. 
Additionally, the Combined dataset used in our study inherently provides Big Variety 
data, because it combines the three key (but different) Medicare data sources. As CMS 
is a government program with transparent quality controls and detailed documentation 
for each dataset, we believe that these datasets are dependable, valid, and representa-
tive of all known Medicare provider claims indicating Big Veracity. Through research 
conducted by our research group and others, it is evident that this data can be used to 
detect fraudulent behavior giving it Big Value. Furthermore, the LEIE dataset could also 
be considered as Big Value since it contains the largest known repository of real-world 
fraudulent medical providers in the United States.

The contributions of this study are twofold. First, we provide detailed discussions 
on Medicare Big Data processing and exploratory experiments and analyses to show 
the best learners and datasets for detecting Medicare provider claims fraud. Our 
unique data processing steps consist of data imputation, determining which varia-
bles (dataset features) to keep, transforming the data from the procedure-level to the 
provider-level through aggregation to match the level of the LEIE dataset for fraud 
label mapping, and creating the Combined dataset. Note that the fraud labels are 
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used to assess fraud leveraging historical exclusion information, as well as payments 
made by Medicare to currently excluded providers. Second, the resulting processed 
datasets are considered Big Data and thus, for our fraud detection experiments, we 
employ Spark [26] on top of a Hadoop [27] YARN cluster which can effectively han-
dle these large dataset sizes. For our experiments, the four Medicare datasets were 
trained and validated using fivefold cross-validation, and the process was repeated 
ten times. From the Apache Spark 2.3.0 [28] Machine Learning Library, we build the 
Random Forest (RF), Gradient Tree Boosting (GTB) and Logistic Regression (LR) 
models, and use the Area under the ROC Curve (AUC) metric to gauge fraud detec-
tion performance. We chose these learners, as they and commonly used and provide 
reasonably good performance, for our exploratory analysis to assess fraud detec-
tion performance using Big Data in Medicare. In order to add robustness around the 
results, we estimate statistical significance with the ANalysis Of VAriance (ANOVA) 
[29] and Tukey’s Honest Significant Difference (HSD) tests [30]. Our results indicate 
that the Combined dataset with LR resulted in the highest overall AUC with 0.816, 
while the Part B dataset with LR was the next best with 0.805. Additionally, the Part 
B dataset had the best results for GBT and RF with both resulting in a 0.796 AUC. 
The worst fraud detection results were attributed to the DMEPOS dataset, with 
RF having the lowest overall AUC of 0.708. The results for the Combined dataset 
using LR, indicate better performance than any individual Medicare dataset; thus, 
the whole in this case is better than the sum of its parts. This, however, is not the 
case for RF or GBT with Part B having the highest average AUC. Even so, the Com-
bined dataset showed no statistical difference when compared to the Part B dataset 
results. Therefore, the high fraud detection results, paired with our assumption that 
Medicare fraud can be committed in any or all parts of Medicare, demonstrates the 
potential in using the Combined dataset to successfully detect provider claims fraud 
across learners. To summarize, the unique contributions of this paper are as follows:

• • Detailing Medicare Part B, Part D, and DMEPOS data processing and real-world 
fraud label mapping.

• • Combining the three Medicare big datasets into one Combined dataset to dem-
onstrate high fraud detection performance that takes into account the different 
key parts of Medicare.

• • Exploring fraud detection performance and learner behavior for each of the four 
big datasets.

The rest of the paper is organized as follows. “Related works” section covers related 
works, focusing on works employing multiple CMS branches of Medicare. “Datasets” 
section discusses the different Medicare datasets used, how the data is processed, 
and the fraud label mapping approach. “Methods” section details the methods used 
including the learners, performance metric, and hypothesis testing. “Results and dis-
cussion” section discusses the results of our experiment. Finally, we conclude and 
discuss future work in “Conclusion” section.
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Related works
There have been a number of studies conducted, by our research group and others, 
using Public Use Files (PUF) data from CMS in assessing potential fraudulent activi-
ties through data mining and other analytics methods. The vast majority of these stud-
ies use only Part B data [17, 31–37], neglecting to account for other parts of Medicare 
when detecting fraudulent behavior. Within the healthcare system, anywhere money is 
being exchanged, there is an opportunity for a bad actor to manipulate the process and 
siphon funds, affecting the efficiency and effectiveness of the Medicare healthcare pro-
cess. There is limited prior information as to where (in the Medicare system) a physician 
will commit fraud, so choosing a single part of Medicare could miss fraud committed 
elsewhere. In this study, we focus on the processing and labeling of each Medicare data-
set and fraud detection performance. Therefore, we generally limit our discussion in this 
section to the small body of works attempting to identify fraudulent behavior using mul-
tiple CMS datasets. As of this study, we only found two works  [38, 39] that fall under 
that category.

In [38], Branting et  al. use the Part B (2012–2014), Part D (2013) and LEIE dataset. 
They do not specifically mention how they preprocess the data or combine Part B and 
Part D, but they do take attributes from both Part B and Part D datasets, treating drugs 
and HCPCS codes in the same way. They matched 12,153 fraudulent physicians using 
the National Provider Identifier (NPI) [40] with their unique identity-matching algo-
rithm. They decided against distinguishing between LEIE exclusion rules/codes and 
instead used every listed physician. It is unclear whether the authors accounted for waiv-
ers, exclusion start dates or the length of the associated exclusion during their fraud label 
mapping process. These details are important in reducing redundant and overlapping 
exclusion labels and for assessing accurate fraud detection performance. Therefore, due 
to this lack of clarity in the exclusion labeling methodology, the results from their study 
cannot be reliably reproduced and can be difficult to compare to other research. They 
developed a method for pinpointing fraudulent behavior by determining the fraud risk 
through the application of network algorithms from graphs. Due to the highly imbal-
anced nature of the data, the authors used a 50:50 class distribution, retaining 12,000 
excluded providers while randomly selecting 12,000 non-excluded providers. They put 
forth a few groups of algorithms and determined their fraud detection results based on 
the real-world fraudulent physicians found in the LEIE dataset. One set of algorithms, 
which they denote as Behavior–Vector similarity, determines similarity in behavior for 
real-world fraudulent and non-fraudulent physicians using nominal values such as drug 
prescriptions and medical procedures. Another group of algorithms makes up their risk 
propagation, which uses geospatial co-location (such as location of practice) in order to 
estimate the propagation of risk from fraudulent healthcare providers. An ablation anal-
ysis showed that most of this predictive accuracy was the result of features that measure 
risk propagation through geospatial collocation.

Sadiq et al. [39] use the 2014 CMS Part B, Part D and DMEPOS datasets (using only 
the provider claims from Florida) in order to find anomalies that possibly point to fraud-
ulent or other interesting behavior. The authors do not go into detail on how they pre-
processed the data between these datasets. From their study, we can assume the authors 
use, at minimum, the following features: NPI, gender, location (state, city, address etc.), 



Page 6 of 21Herland et al. J Big Data  (2018) 5:29 

type, service number, average submitted charge amount, the average allowed amount in 
Medicare and the average standard amount in Medicare. It is also unclear as to whether 
they used the datasets together or separately or which attributes are used and which 
are not, making the reproduction of these experiments difficult. The authors determine 
that when dealing with payment variables, it is best to go state-by-state as each state’s 
data can vary. However, in this paper, we found that good results can be achieved by 
using Medicare data encompassing the entire U.S. The framework they employ is the 
Patient Rule Induction Method based bump hunting method, which is an unsupervised 
approach attempting to determine peak anomalies by spotting spaces of higher modes 
and masses within the dataset. They explain that by applying their framework, they can 
characterize the attribute space of the CMS datasets helping to uncover the events pro-
voking financial loss.

We note a number of differences from these two studies [38, 39] including data pro-
cessing methods, the process for data combining and comparisons made between the 
three Medicare datasets both individually and combined. We provide a detailed account 
of the data processing methods for each Medicare dataset as well as the mapping and 
generation of fraud labels using the LEIE dataset. To the best of our knowledge, this is 
the first study to compare fraud detection within three different Medicare big datasets, 
as well as a Combined version of the three primary Medicare datasets, with no other 
known related studies. Even though our experiments are exploratory in nature, we pro-
vide a more complete and comprehensive study, with in-depth data processing details, 
than what is currently available in this area, using three different learners and four data-
sets. Additionally, we incorporate all available years in each CMS dataset covering the 
entire United States, requiring us to incorporate software which can handle such Big 
Data.

Datasets
In this section, we describe the CMS datasets we use (Part B, Part D and, DMEPOS). 
Furthermore, the data processing methodology used to create each dataset, including 
processing, fraud label mapping between the Medicare datasets and the LEIE, and one-
hot encoding for categorical variables is discussed. The information within each data-
set is based on CMS’s administrative claims data for Medicare beneficiaries enrolled 
in the Fee-For-Service program. Note, this data does not take into account any claims 
submitted through the Medicare Advantage program [41]. Since CMS records all claims 
information after payments are made [42–44], we assume the Medicare data is already 
cleansed and is correct. Note that NPI is not used in the data mining step, but rather for 
aggregation and identification. Additionally, for each dataset, we added a year variable 
which is also used for aggregation and identification.

Medicare dataset descriptions

Part B

The Part B dataset provides claims information for each procedure a physician performs 
within a given year. Currently, this dataset is available on the CMS website for the 2012 
through 2015 calendar years (with 2015 being released in 2017) [45]. Physicians are 
identified using their unique NPI [40], while procedures are labeled by their Healthcare 
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Common Procedure Coding System (HCPCS) code [46]. Other claims information 
includes average payments and charges, the number of procedures performed and medi-
cal specialty (also known as provider type). CMS decided to aggregate Part B data over: 
(1) NPI of the performing provider, (2) HCPCS code for the procedure or service per-
formed, and (3) the place of service which is either a facility (F) or non-facility (O), such 
as a hospital or office, respectively. Each row, in the dataset, includes a physician’s NPI, 
provider type, one HCPCS code split by place of service along with specific information 
corresponding to this breakdown (i.e. claim counts) and other non-changing attributes 
(i.e. gender). We have found that in practice, physicians perform the same procedure 
(HCPCS code) at both a facility and their office, as well as a few physicians that practice 
under multiple provider types (specialties) such as Internal Medicine and Cardiology. 
Therefore, for each physician, there are as many rows as unique combinations of NPI, 
Provider Type, HCPCS code and place of service and thus Part B data can be considered 
to provide procedure-level information. Table 1 provides an example of one physician 
with NPI = 1649387770 sampled from the 2015 Part B dataset.

Part D

The Part D dataset provides information pertaining to the prescription drugs they 
administer under the Medicare Part D Prescription Drug Program within a given year. 
Currently, this data is available on the CMS website for the 2013 through 2015 calendar 
years (with 2015 being released in 2017) [47]. Physicians are identified using their unique 
NPI within the data while each drug is labeled by their brand and generic name. Other 
information includes average payments and charges, variables describing the drug quan-
tity prescribed and medical specialty. CMS decided to aggregate the Part D data over: (1) 
the NPI of the prescriber, and (2) the drug name (brand name in the case of trademarked 
drugs) and generic name. Each row in the Part D dataset lists a physician’s NPI, provider 
type and drug name along with specific information corresponding to this breakdown 
(i.e. claim counts) and other static attributes (i.e. gender). Same as with Part B, we found 
a few physicians that practice under multiple specialties, such as Internal Medicine and 
Cardiology. Therefore, for each physician, there are as many rows as unique combina-
tions of NPI, Provider Type, drug name and generic name and thus, Part D data can 
be considered to provide procedure-level information. In order to protect the privacy 
of Medicare beneficiaries, any aggregated records, derived from 10 or fewer claims, are 
excluded from the Part D data. Table 2 provides an example of one physician with NPI = 
1649387770 sampled from the 2015 Part D dataset.

Table 1  Sample of the Part B dataset

Npi ... Provider_type ... Place_of 
_service

Hcpcs _code ... Line_srvc _cnt ... Average_
submitted 
_chrg_amt

...

1649387770 ... Ophthalmology ... O 66821 ... 28 ... 1200 ...

1649387770 ... Ophthalmology ... F 66984 ... 154 ... 2400 ...

1649387770 ... Ophthalmology ... O 67820 ... 45 ... 105 ...

1649387770 ... Ophthalmology ... O 76514 ... 11 ... 80 ...

1649387770 ... Ophthalmology ... O 92004 ... 205 ... 175 ...
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DMEPOS

The DMEPOS dataset provides claims information about Medical Equipment, Pros-
thetics, Orthotics and Supplies that physicians referred patients to either purchase 
or rent from a supplier within a given year. Note, this dataset is based on supplier’s 
claims submitted to Medicare while the physician’s role is referring the patient to 
the supplier. Currently this data is available on the CMS website for 2013 through 
2015 calendar years (with 2015 being released in 2017) [48]. Physicians are identified 
using their unique NPI within the data while products are labeled by their HCPCS 
code. Other claims information includes average payments and charges, the num-
ber of services/products rented or sold and medical specialty (also known as pro-
vider type). CMS decided to aggregate Part B data over: (1) NPI of the performing 
provider, (2) HCPCS code for the procedure or service performed by the DMEPOS 
supplier, and (3) the supplier rental indicator (value of either ‘Y’ or ‘N’) derived from 
DMEPOS supplier claims (according to CMS documentation). Each row provides a 
physician’s NPI, provider type, one HCPCS code split by rental or non-rental with 
specific information corresponding to this breakdown (i.e. number of supplier claims) 
and other non-changing attributes (i.e. gender). We have found that some physicians 
place referrals for the same DMEPOS equipment, or HCPCS code, as both rental and 
non-rental as well as a few physicians that practice under multiple specialties such as 
Internal Medicine and Cardiology. Therefore, for each physician, there are as many 
rows as unique combinations of NPI, Provider Type, HCPCS code and rental status, 
and thus the DMEPOS data also can be considered to provide procedure-level infor-
mation. Table 3 provides an example of one physician with NPI = 1649387770 from 
the 2015 DMEPOS dataset.

Table 2  Sample of Part D dataset

Npi ... Provider_type ... Drug_name Total_drug _cost Total_claim 
_count_
ge65

Ge65 
_suppress 
_flag

...

1649387770 ... Ophthalmology ... ALPHAGAN P 11811.27 57 NA ...

1649387770 ... Ophthalmology ... AZASITE 3410.56 25 NA ...

1649387770 ... Ophthalmology ... AZOPT 8336.27 27 NA ...

1649387770 ... Ophthalmology ... BRIMONIDINE TAR​
TRA​TE

1769.25 12 NA ...

1649387770 ... Ophthalmology ... COMBIGAN 25434.18 127 NA ...

Table 3  Sample of DMEPOS

Referring_npi ... Referring 
_provider_
type

... Hcpcs_code ... Supplier 
_rental 
_indicator

Number_of 
_supplier 
_claims

Avg_supplier 
_submitted 
_charge

...

1649387770 ... Ophthalmol-
ogy

... V2020 ... N 44 67.4 ...

1649387770 ... Ophthalmol-
ogy

... V2203 ... N 21 66.0 ...

1649387770 ... Ophthalmol-
ogy

... V2303 ... N 18 87.5 ...
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LEIE

In order to accurately assess fraud detection performance as it appears in real-world 
practice, we require a data source that contains physicians that have committed real-
world fraud. Therefore, we employ the List of Excluded Individuals and Entities (LEIE) 
[19], which contains the following information: reason for exclusion, date of exclusion 
and reinstate/waiver date for all current physicians found unsuited to practice medi-
cine and thus excluded from practicing in the United States for a given period of time. 
This dataset was established and is maintained monthly by the Office of Inspector 
General (OIG) [49] in accordance with Sections  1128 and 1156 of the Social Secu-
rity Act [50]. The OIG has authority to exclude individuals and entities from feder-
ally funded healthcare programs, such as Medicare. Unfortunately, the LEIE is not 
all-inclusive where 38% of providers with fraud convictions continue to practice med-
icine and 21% were not suspended from medical practice despite their convictions 
[51]. Moreover, the LEIE dataset only contains the NPI values for a small percentage 
of physicians and entities. An example of four different physicians and how they are 
portrayed within the LEIE is shown in Table 4, where any physician without a listed 
NPI has a value of 0.

The LEIE is aggregated at the provider-level and does not have specific information 
regarding procedures, drugs or equipment related to fraudulent activities. There are 
different categories of exclusions, based on severity of offense, described by various 
rule numbers. We do not use all exclusions, but rather filter the excluded providers by 
selected rules indicating fraud was committed [34]. Table 5 gives the codes that cor-
respond to fraudulent provider exclusions and the length of mandatory exclusion. We 
have determined that any behavior prior to and during a physician’s “end of exclusion 
date” constitutes fraud.

Table 4  Sample of LEIE

Specialty ... Npi ... Excltype Excldate ...

GENERAL PRACTICE/FP ... 0 ... 1128b6 19770701 ...

EMPLOYEE ... 0 ... 1128b6 19780124 ...

GENERAL PRACTICE ... 1003016742 ... 1128a1 20170720 ...

NURSE/NURSES AIDE ... 1003011644 ... 1128b4 20091220 ...

Table 5  LEIE rules involving fraud

Rule number Description

1128(a)(1) Conviction of program-related crimes

1128(a)(2) Conviction relating to patient abuse or neglect

1128(a)(3) Felony conviction relating to health care fraud

1128(b)(4) License revocation or suspension

1128(b)(7) Fraud, kickbacks and other prohibited activities

1128(c)(3)(g)(i) Conviction of two mandatory exclusion offenses 10 years

1128(c)(3)(g)(ii) Conviction of 3 mandatory exclusion offenses indefinite
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Data processing

For each dataset (Part B, Part D and DMEPOS), we combined the information for all 
available calendar years  [52]. For our research, Part B was available for 2012 through 
2015, while Part D and DMEPOS were available for 2013 through 2015. For Part B and 
DMEPOS, the first step was removing all attributes not present in each available year. 
The Part D dataset had the same attributes in all available years. For Part B, we removed 
the standard deviation variables from 2012 and 2013 and standardized payment vari-
ables from 2014 and 2015 as they were not available in the other years. For DMEPOS, 
we removed a standard deviation variable from 2014 and 2015 as it was not available 
in 2013. For all three datasets, we removed all instances that either were missing both 
NPI and HCPCS/drug name values or had an invalid NPI (i.e. NPI = 0000000000). For 
Part B, we filtered out all instances with HCPCS codes referring to prescriptions. These 
prescription-related codes are not actual medical procedures, but instead are for specific 
services listed on the Medicare Part B Drug Average Sales Price file [11]. Keeping these 
instances would muddy the results as the line_srvc_cnt feature in these cases represents 
weight or volume of a drug, rather than simply quantifying procedure counts.

For this study, we are only interested in particular attributes from each dataset in 
order to provide a solid basis for our experiments and analyses. For the Part B dataset, 
we kept eight features while removing the other twenty-two. For the Part D dataset, we 
kept seven and removed the other fourteen. For the DMEPOS dataset we kept nine and 
removed the other nineteen. The excluded attributes provide no specific information 
on the claims, drugs administered, or referrals, but rather encompass provider-related 
information, such as location and name, as well as redundant variables like text descrip-
tions which can be represented by using the variables containing the procedure or drug 
codes. For Part D, we also did not include variables that provided count and payment 
information for patients 65 or older as this information is encompassed in the kept vari-
ables. In this case, the claim count variable (total_claim_count) contains counts for all 
ages to include patients 65 or older. Tables 6, 7 and 8 detail the features we chose from 
the datasets, including a description and feature type (numerical or categorical) along 
with the exclusion attribute (fraud label) derived from the LEIE.

The data processing steps are similar for Part B, Part D and DMEPOS. All three unal-
tered datasets are originally at the HCPCS or procedure level, meaning they were aggre-
gated by NPI and HCPCS/drug. To meet our needs of mapping fraud labels using the 

Table 6  Description of features chosen from the Part B dataset

Feature Description Type

Npi Unique provider identification number Categorical

Provider_type Medical provider’s specialty (or practice) Categorical

Nppes_provider_gender Provider’s gender Categorical

Line_srvc_cnt Number of procedures/services the provider performed Numerical

Bene_unique_cnt Number of distinct Medicare beneficiaries receiving the service Numerical

Bene_day_srvc_cnt Number of distinct Medicare beneficiary/per day services Numerical

Average_submitted_chrg_amt Average of the charges that the provider submitted for the 
service

Numerical

Average_medicare_payment_amt Average payment made to a provider per claim for the service Numerical

Exclusion Fraud labels from the LEIE dataset Categorical
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LEIE, we reorient each dataset, aggregating to the provider-level where all information 
is grouped by and aggregated over each NPI (and other specific features). For Part B, the 
aggregating process consists of grouping the data by NPI, provider type, gender and year, 
aggregating over HCPCS and place of service. Part D was grouped by NPI, provider type 
and year aggregating over drugs. DMEPOS was grouped by NPI, provider type, gender 
and year, aggregating over HCPCS and rental status. For the Part D and DMEPOS data-
sets, their beneficiary counts are suppressed to 0 if originally below 11, and in response 
we imputed the value of 5 as recommended by CMS.

In an effort to bypass information loss due to aggregating these datasets, we gener-
ated six numeric features for each chosen numeric feature outlined in the previous sub-
section for each dataset (“Medicare dataset descriptions” section). Therefore, for each 
numeric value, per year, in each dataset, we replace the original numeric variables with 
the aggregated mean, sum, median, standard deviation, minimum and maximum values, 
creating six new features for each original numeric feature. The resulting features are all 
complete except for standard deviation which contains NA values. These NA values are 
generated when a physician has performed/prescribed a HCPCS/drug once in a given 
year. Therefore, the population standard deviation for one unique instance is 0, and thus 
we replace all NA values with 0 representing that this single instance has no variability 
in that particular year. Two other features included are the categorical features: provider 
type and gender (Part D does not contain a gender variable).

Table 7  Description of features chosen from the Part D dataset

Feature Description Type

Npi Unique provider identification number Categorical

Specialty_description Medical provider’s specialty (or practice) Categorical

Bene_count Number of distinct Medicare beneficiaries receiving the 
drug

Numerical

Total_claim_count Number of drug the provider administered Numerical

Total_30_day_fill_count Number of standardized 30-day fills Numerical

Total_day_supply Number of day’s supply Numerical

Total_drug_cost Cost paid for all associated claims Numerical

Exclusion Fraud labels from the LEIE dataset Categorical

Table 8  Description of features chosen from the DMEPOS dataset

Feature Description Type

Referring_npi Unique provider identification number Categorical

Referring_provider_type Medical provider’s specialty (or practice) Categorical

Referring_provider_gender Provider’s gender Categorical

Number_of_suppliers Number of suppliers used by provider Numerical

Number_of_supplier_beneficiaries Number of beneficiaries associated by the supplier Numerical

Number_of_supplier_claims Number of claims submitted by a supplier from a referring 
order

Numerical

Number_of_supplier_services Number of services/products rendered by a supplier Numerical

Avg_supplier_submitted_charge Average payment submitted by a supplier Numerical

Avg_supplier_medicare_pmt_amt Average payment awarded to suppliers Numerical

Exclusion Fraud labels from the LEIE dataset Categorical
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Combined dataset

The Combined dataset is created after processing Part B, Part D, and the DMEPOS 
datasets, containing all the attributes from each, along with the fraud labels derived 
from the LEIE. The combining process involves a join operation on NPI, provider 
type, and year. Due to there not being a gender variable present in the Part D data, 
we did not include this variable in the join operation conditions and used the gen-
der labels from Part B while removing the gender labels gathered from the DMEPOS 
dataset after joining. In combining these datasets, we are limited to those physicians 
who have participated in all three parts of Medicare. Even so, this Combined dataset 
has a larger and more encompassing base of attributes for applying data mining algo-
rithms to detect fraudulent behavior, as demonstrated in our study.

Fraud labeling

For all four datasets, we use the LEIE dataset for generating fraud labels, where only 
physicians within are considered fraudulent, otherwise they are considered non-
fraudulent. In order to obtain exact matches between the Medicare datasets and the 
LEIE, we determined that the NPI value is the only way to match physicians exactly, 
assuring our data the utmost reliability. The LEIE gives specific dates (month/day/
year) for when the exclusion starts and the length of the exclusion period, where 
we use only month/year (no rounding within a month, i.e. May 1st through 31st is 
considered May). For example, if a provider breaks rule number 1128(a)(3) (‘felony 
conviction due to healthcare fraud’) carrying a minimum exclusion period of 5 years 
beginning February 2010, then the end of the exclusion period would be February 
2015. Note that we used the earliest date between the exclusion end date (based on 
minimum exclusion period summed with start date), waiver, and reinstatement date. 
Therefore, continuing this example, if there is also a waiver date listed as October 
2014 and a reinstatement date of December 2014, the exclusion period would be 
between February 2010 and October 2014. This accounts for providers that may still 
be in their exclusion period but received a waiver or reinstatement to use Medicare, 
thus no longer considered fraudulent on or after this waiver or reinstatement date.

Contrary to the LEIE data, the Medicare datasets are released annually where all 
data is provided for each given year. In order to best handle the disparity between 
the annual and monthly dates, we round the new exclusion end date to the nearest 
year based on the month. If the end exclusion month is greater than 6 (majority of the 
year), then the exclusion end year is increased to the following year; otherwise, the 
current year is used. We do not want a physician to be considered fraudulent during 
a year unless more than half that year is before their exclusion end date. Continu-
ing the above example, we determined that the end exclusion date was October 2014, 
therefore since October is the tenth month and 10 is greater than 6, the end exclusion 
year would be rounded up to 2015. Therefore, translating this to the Medicare data, 
any activity in 2014 or earlier would be considered fraudulent when creating fraud 
labels. For further clarification, if the waiver date would have been March 2014, the 
end exclusion year would be 2014 and only activity from 2013 or earlier would be 
labeled fraudulent.
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The LEIE dataset is joined to all four datasets based on NPI. We create an exclusion 
feature which is the final categorical attribute discussed in previous sections, which 
indicates either fraud or non-fraud instances. Any physician practicing within a year 
prior to their exclusion end year is labeled fraudulent. With an exclusion year of 2015, 
from the physician in our previous example, for Part B, the years 2012 through 2014 
would be labeled fraudulent, while for Part D, DMEPOS, and the Combined data-
sets, 2013 and 2014 would be marked fraudulent (as 2012 is not available for these 
datasets). Through this process, we are accounting for two types of fraudulent behav-
ior: (1) actual fraudulent behavior, and (2) payments made by Medicare based on 
submissions from excluded providers, where both drain funds from Medicare inap-
propriately. For the former, we assume any activity before being caught/excluded is 
fraudulent behavior. We also include the latter as fraud because, according to the 
False Claims Act (FCA), this is a form of fraudulent behavior [53]. The final four data-
sets include all known excluded providers marked via the categorical exclusion fea-
ture. Table 9 shows the distribution of fraud to non-fraud within all four datasets. All 
four datasets are considered highly imbalanced, ranging between 0.038% and 0.074% 
of instances being labeled as fraud. In this exploratory work, we do not apply tech-
niques to address class imbalance [54–56], leaving this as future work.

One‑hot encoding

In order to build our models with a combination of numerical and categorical fea-
tures, we employ one-hot encoding, transforming the categorical features. For exam-
ple, one-hot encoding gender would first consist of generating extra features equaling 
the number of options, in this case two (male and female). If the physician is male, 
the new male feature would be assigned a 1 and the female feature would be 0; while 
for female, the male would be assigned a 0 and the female assigned a 1. If the original 
gender feature is missing then both male and female are assigned a 0. This process 
is done for all four datasets for gender and provider type/specialty. Table  10 sum-
marizes all four datasets after data processing and after the categorical features have 
been one-hot encoded. Note that NPI is not used for building models and is removed 
from each dataset after this step.

Table 9  Distribution of fraud labels

Dataset Non-fraudulent Fraudulent % Fraudulent

Part B 3,691,146 1409 0.038

Part D 2,098,715 1018 0.048

DMEPOS 862,792 635 0.074

Combined 759,267 473 0.062
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Methods
Learners

For running and validating models, we used Spark on top of a Hadoop Yarn cluster 
due to the Big Volume of the datasets. We used three classification models available 
in the Apache Spark 2.3.0 Machine Learning Library: Logistic Regression, Gradient 
Boosted Trees and Random Forest. In this section, we briefly describe each learner 
and note any configuration changes that differ from the default settings.

Logistic Regression (LR) [57] predicts probabilities for which class a categorical 
dependent variable belongs to by using a set of independent variables employing a 
logistic function. LR uses a sigmoidal (logistic) function to generate values that can be 
interpreted as class probabilities. LR is similar to linear regression but uses a different 
hypothesis class to predict class membership [58–61]. The bound matrix was set to 
match the shape of the data (number of classes and features) so the algorithm knows 
the number of classes and features the dataset contains. The bound vector size is 
equal to 1 for binomial regression, and no thresholds are set for binary classification.

Random Forest (RF) [62, 63] is an ensemble learning method that generates a large 
number of trees. The class value appearing most frequently among these trees is the 
class predicted as output from the model. As an ensemble learning method, RF is an 
aggregation of various tree predictors. Each tree within the forest is dependent upon 
the values dictated by a random vector that is independently sampled and where each 
tree is equally distributed among the forest [60, 64]. The RF ensemble inserts ran-
domness into the training process which can minimize overfitting and is fairly robust 
to imbalanced data [65, 66]. We build each RF learner with 100 trees as our research 
group has found little to no benefit using more trees. The parameter that caches node 
IDs for each instance, was set to true and the maximum memory parameter was set to 
1024 MB in order to minimize training time. The setting that manipulates the num-
ber of features to consider for splits at each tree node was set to one-third, since this 
setting provided better results upon initial investigation. The maximum bins param-
eter, which is the max number of bins for discretizing continuous features, is set to 2 
because we no longer have categorical features since they were converted using one-
hot encoding.

Gradient Boosted Trees (GBT) [62, 63] is another ensemble of decision trees. Unlike 
RF, GBT trains each decision tree one at a time in order to minimize loss determined 
by the algorithm’s loss function. During each iteration, the current ensemble is used to 

Table 10  Summary of Medicare datasets

Part B Part D DMEPOS Combined

Instances Features Instances Features Instances Features Instances Features

After pro-
cessing 
and fraud 
labeling

3,692,555 35 2,099,733 34 863,427 41 759,740 102

After 
one-hot 
encoding

3,692,555 126 2,099,733 126 863,427 145 759,740 173
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predict the class for each instance in the training data. The predicted values are evalu-
ated with the actual values allowing the algorithm to pinpoint and correct previously 
mislabeled instances. The parameter that caches node IDs for each instance, was set to 
true and the maximum memory parameter was set to 1024 MB to minimize training 
time.

Performance metric

In assessing Medicare fraud, we are presented with a two-class classification problem 
where a physician is either fraudulent or non-fraudulent. In our study, the positive class, 
or class of interest, is fraud and the negative class is non-fraud. Spark presented us with 
a confusion matrix for each model and is commonly used to assess the performance of 
learners. Confusion matrices provide counts comparing actual counts against predicted 
counts. From the resultant matrices, we employ AUC [67, 68] to measure fraud detec-
tion performance. AUC is the Area under the Receiver Operating Characteristic (ROC) 
curve, where ROC is the comparison between false positive (fall-out) and true positive 
(recall). Recall is calculated by TP

TP+FN
 and fall-out is calculated by FP

FP+TN
 . The definitions 

for TP, TN, FP and FN, which can be directly calculated from the confusion matrix are 
as follows:

• • True positive (TP): number of actual positive instances correctly predicted as posi-
tive.

• • True negative (TN): number of actual negative instances correctly predicted as nega-
tive.

• • False positive (FP): number of negative instances incorrectly classified as positive.
• • False negative (FN): number of positive instances incorrectly assigned as negative.

The AUC curve is an encompassing evaluation of a learner as it depicts performance 
across all decision thresholds. The AUC results in a single value ranging from 0 to 1, 
where a perfect classifier results in an AUC of 1, an AUC of 0.5 is equivalent to random 
guessing and less than 0.5 demonstrates bias towards a given class. AUC has been found 
to be effective for class imbalance [69].

Cross‑validation

We employ stratified k-fold cross-validation in evaluating our models, where k = 5. 
Stratification ensures all folds have class representation matching the ratio of the origi-
nal data, which is important when dealing with largely imbalanced data. The training 
data is evenly divided into fivefold where fourfold will be used for training the model and 
the remaining fold tests the model. This process is repeated 5 times allowing each fold 
an opportunity as the test fold, ensuring the entire dataset is fully leveraged being used 
in training and validation. Spark will automatically create different folds each time the 
learner is run, and to validate our results we ran each model 10 times for each learner/
dataset pair. The use of repeats helps to reduce bias due to bad random draws when cre-
ating the folds where the final performance for every presented result is the average over 
all 10 repeats.
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Significance testing

In order to provide additional rigor around our AUC performance results, we use 
hypothesis testing to show the statistical significance of the Medicare fraud detection 
results. Both ANOVA and post hoc analysis via Tukey’s HSD tests are used in our study. 
ANOVA is a statistical test determining whether the means of several groups (or factors) 
are equal. Tukey’s HSD test determines factor means that are significantly different from 
each other. This test compares all possible pairs of means using a method similar to a 
t-test, where statistically significant differences are grouped by assigning different letter 
combinations (e.g. group a is significantly different than group b).

Results and discussion
This section discusses the results of our study, assessing dataset and learner perfor-
mance for Medicare fraud detection. The practices of individual physicians are unique, 
where a given physician might only submit claims to Medicare through Part B, Part D, 
DMEPOS, or to all three. Therefore, we show learner performance in relation to each of 
the Medicare datasets to establish the best fraud detection combinations. In Table 11, 
we show the AUC results for each dataset and learner combination. The italicized values 
depict the highest AUC scores per dataset, whereas the underlined values are the highest 
per learner. LR produces the two highest overall AUC scores for the Combined data-
set with 0.816 and Part B with 0.805. The Combined dataset has the best overall AUC, 
but the Part B dataset shows the lowest variation in fraud detection performance across 
learners, which includes having the highest AUC scores for GBT and RF. The Part D and 
DMEPOS datasets have the lowest AUC values for all three learners, but show improve-
ment when using LR and GBT compared to RF.

The favorable results using LR with each of the datasets may be due to the squared-
error loss function with the application of L2 regularization, also known as Ridge 
Regression, penalizing large coefficients and improving the generalization perfor-
mance, making LR fairly robust to noise and overfitting. Even though LR performs 
well on the Part B and Combined datasets, additional testing is required to deter-
mine whether the Part D and DMEPOS datasets have particular characteristics con-
tributing to their lower fraud detection performance. The poor performance of the 
tree-based methods, particularly RF, may be due to the lack of independence between 
individual trees or the high cardinality of the categorical variables. The Combined 
dataset contains features across the three parts of Medicare creating a robust pool 
of attributes, presumably allowing for better model generalization and overall fraud 
detection performance. In particular, the Combined dataset using LR has the highest 
AUC with better performance versus each of its individual Medicare parts. This is not 

Table 11  Learner AUC results by dataset

Dataset Logistic Regression Gradient Boosted Trees Random Forest

Combined 0.81554 0.79047 0.79383

Part B 0.80516 0.79569 0.79604

Part D 0.78164 0.74851 0.70888

DMEPOS 0.74063 0.73129 0.70756
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the case with RF or GBT, with Part B indicating the highest AUC scores. Interest-
ingly, the Part B dataset has the lowest variability across the learners and within each 
individual learner, which could be due, in part, to having the largest number of fraud 
labels. The Part D and DMEPOS datasets not only show poor learner performance, 
but exhibit generally higher AUC variability across individual learners. This could 
indicate possible adverse effects of high class imbalance or less discriminatory power 
in the selected features. With regards to our above discussions, Fig.  1 shows a box 
plot of our experimental results over all 50 AUC values from the ten runs of fivefold 
cross-validation for each dataset/learner pair.

Table 12 presents the results for the two-factor ANOVA test over each Dataset and 
Learner, as well as their interaction (Dataset:Learner). The ANOVA test shows that these 
factors and their interactions are statistically significant at a 95% confidence interval. In 
order to determine statistical groupings, we perform a Tukey’s HSD test on the results 
for the Medicare datasets, which corroborates the high performance of the LR learner 
and the Combined dataset for Medicare fraud detection (as seen in Table 11).

In Table 13, the results for each learner across all datasets show that LR is significantly 
better than GBT and RF. Moreover, LR and GBT have similar AUC variability, but LR 
has the highest minimum and maximum AUC scores which, again, substantiate the 

Fig. 1  AUC values for 10 runs of fivefold cross-validation for each learner and dataset combination

Table 12  Two-factor ANOVA test results

Df Sum Sq Mean Sq F value Pr(>F)

Dataset 3 0.6257 0.20855 594.15 < 2e−16

Learner 2 0.1174 0.05868 167.17 < 2e−16

Dataset:Learner 6 0.0658 0.01097 31.26 < 2e−16

Residuals 588 0.2064 0.00035 – –
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good performance of LR for each dataset. Table 14 summarizes the significance of data-
set performance across each learner. We notice that the Combined and Part B datasets 
show significantly better performance than either the Part D or DMEPOS datasets, and 
that the DMEPOS dataset is significantly worse than Part D dataset. Since the Part B 
and Combined results are not significantly different, we consider the Combined data-
set preferable for general fraud detection since we do not necessarily know beforehand 
exactly which part of the Medicare system a physician/provider will target any fraudu-
lent behavior (e.g. medical procedures/services, drug submissions, or prosthetic rental). 
With the Combined dataset, we have a larger web for monitoring fraudulent behavior 
as opposed to monitoring only one part of Medicare for a given healthcare provider. 
Additionally, the Combined dataset with LR provides the only results where the Com-
bined dataset produces the best performance, greater than the results for the individual 
Medicare datasets. Therefore, based on these exploratory performance results, we dem-
onstrate that when a physician has participated in Part B, Part D, and DMEPOS, the 
Combined dataset, using LR, indicates the best overall fraud detection performance.

Conclusion
The importance of reducing Medicare fraud, in particular for individuals 65 and older, 
is paramount in the United States as the elderly population continues to grow. Medicare 
is necessary for many citizens, and therefore, the importance placed on quality research 
into fraud detection to keep healthcare costs fair and reasonable. CMS has made avail-
able several Big Data Medicare claims datasets for public use over an ever-increasing 
number of years. Throughout this work, we provide a unique approach (combining mul-
tiple Medicare datasets and leverage state-of-the-art Big Data processing and machine 
learning approaches) for determining the fraud detection capabilities of three Medicare 
datasets, individually and combined, using three learners, against real-world fraudulent 
physicians and other medical providers taken from the LEIE dataset.

We present our methods for processing each dataset from CMS, the Combined data-
set, as well as the mapping of provider fraud labels. We ran experiments on all four data-
sets: Part B, Part D, DMEPOS, and Combined. Each dataset was considered Big Data, 

Table 13  Two-factor Tukey’s HSD learner results over all datasets

Learner Group AUC​ sd r Min Max

Logistic Regression a 0.78574 0.03369 200 0.69487 0.847

Gradient Boosted Trees b 0.76649 0.03343 200 0.67119 0.83013

Random Forest c 0.75158 0.04753 200 0.66138 0.83161

Table 14  Two-factor Tukey’s HSD dataset results over all learners

Dataset Group AUC​ sd r Min Max

Combined a 0.79995 0.02549 150 0.7258 0.847

Part B a 0.79896 0.0123 150 0.769 0.82425

Part D b 0.74634 0.03443 150 0.67576 0.81602

DMEPOS c 0.72649 0.02506 150 0.66138 0.77957
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requiring us to employ Spark on top of a Hadoop YARN cluster for running and validat-
ing our models. Each dataset was trained and evaluated using three learners: Random 
Forest, Gradient Boosted Trees and Logistic Regression. The Combined dataset had the 
best overall fraud detection performance with an AUC of 0.816 using LR, indicating bet-
ter performance than each of its individual Medicare parts, and scored similarly to Part 
B with no significant difference in average AUC. The DMEPOS dataset had the lowest 
overall results for all learners. Therefore, from these experimental findings and obser-
vations, coupled with the notion that a physician/provider can commit fraud using any 
part of Medicare, we show that using the Combined dataset with LR provides the best 
overall fraud detection performance. Future work will include employing data sampling 
techniques to combat the imbalanced nature of known fraud events in evaluating the 
different Medicare datasets.
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