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Abstract

In recent years, neural networks have enjoyed a renaissance as function approxima-

tors in reinforcement learning. Two decades after Tesauro’s TD-Gammon achieved

near top-level human performance in backgammon, the deep reinforcement learning

algorithm DQN achieved human-level performance in many Atari 2600 games. The

purpose of this study is twofold. First, we propose two activation functions for neu-

ral network function approximation in reinforcement learning: the sigmoid-weighted

linear unit (SiLU) and its derivative function (dSiLU). The activation of the SiLU is

computed by the sigmoid function multiplied by its input. Second, we suggest that

the more traditional approach of using on-policy learning with eligibility traces, in-

stead of experience replay, and softmax action selection can be competitive with DQN,

without the need for a separate target network. We validate our proposed approach by,

first, achieving new state-of-the-art results in both stochastic SZ-Tetris and Tetris with

a small 10×10 board, using TD(λ) learning and shallow dSiLU network agents, and,

then, by outperforming DQN in the Atari 2600 domain by using a deep Sarsa(λ) agent

with SiLU and dSiLU hidden units.
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1. Introduction

Neural networks have enjoyed a renaissance as function approximators in rein-

forcement learning (Sutton and Barto, 1998) in recent years. The DQN algorithm (Mnih

et al., 2015), which combines Q-learning with a deep neural network, experience re-

play, and a separate target network, achieved human-level performance in many Atari5

2600 games. Since the development of the DQN algorithm, there have been several

proposed improvements, both to DQN specifically and deep reinforcement learning in

general. Van Hasselt et al. (2015) proposed double DQN to reduce overestimation of

the action values in DQN and Schaul et al. (2016) developed a framework for more

efficient replay by prioritizing experiences of more important state transitions. Wang10

et al. (2016) proposed the dueling network architecture for more efficient learning of

the action value function by separately estimating the state value function and the ad-

vantages of each action. Mnih et al. (2016) proposed a framework for asynchronous

learning by multiple agents in parallel, both for value-based and actor-critic methods.

To date, the most impressive application of using deep reinforcement learning is Al-15

phaGo (Silver et al., 2016, 2017), which has achieved superhuman performance in the

ancient board game Go.

The purpose of this study is twofold. First, motivated by the high performance of

the expected energy restricted Boltzmann machine (EE-RBM) in our earlier studies

(Elfwing et al., 2015, 2016), we propose two activation functions for neural network20

function approximation in reinforcement learning: the sigmoid-weighted linear unit

(SiLU) and its derivative function (dSiLU). The activation of the SiLU is computed by

the sigmoid function multiplied by its input. After we first proposed the SiLU (Elfwing

et al., 2017), Ramachandran et al. (2017) recently performed a comprehensive compar-

ison between the SiLU, the rectifier linear unit (ReLU; Hahnloser et al., 2000), and 625

other activation functions in the supervised learning domain. They found that the SiLU

consistently outperformed the other activation functions when tested in 3 deep architec-

tures on CIFAR-10/100 (Krizhevsky, 2009), in 5 deep architectures on ImageNet (Deng

et al., 2009), and on 4 test sets for English-to-German machine translation.

Second, we suggest that the more traditional approach of using on-policy learning30
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with eligibility traces, instead of experience replay, and softmax action selection with

simple annealing can be competitive with DQN, without the need for a separate target

network. Our approach is something of a throwback to the approach used by Tesauro

(1994) to develop TD-Gammon more than two decades ago. Using a neural network

function approximator and TD(λ) learning (Sutton, 1988), TD-Gammon reached near35

top-level human performance in backgammon, which to this day remains one of the

most impressive application of reinforcement learning.

To evaluate our proposed approach, we first test the performance of shallow net-

work agents with SiLU, ReLU, dSiLU, and sigmoid hidden units in stochastic SZ-

Tetris, which is a simplified but difficult version of Tetris. The best agent, the dSiLU40

network agent, improves the average state-of-the-art score by 20 %. In stochastic SZ-

Tetris, we also train deep network agents using raw board configurations as states. An

agent with SiLUs in the convolutional layers and dSiLUs in the fully-connected layer

(SiLU-dSiLU) outperforms the previous state-of-the-art average final score. We there-

after train a dSiLU network agent in standard Tetris with a smaller, 10×10, board size,45

achieving a state-of-the-art score in this more competitive version of Tetris as well. We

then test a deep SiLU-dSiLU network agent in the Atari 2600 domain. It improves

the mean DQN normalized scores achieved by DQN and double DQN by 232 % and

161 %, respectively, in 12 unbiasedly selected games. We finally analyze the ability

of on-policy value-based reinforcement learning to accurate estimate the expected dis-50

counted returns and the importance of softmax action selection for the games where

our proposed agents performed particularly well.

2. Method

2.1. TD(λ) and Sarsa(λ)

In this study, we use two reinforcement learning algorithms: TD(λ) (Sutton, 1988)55

and Sarsa(λ) (Rummery and Niranjan, 1994; Sutton, 1996). TD(λ) learns an estimate

of the state-value function, V
π

, and Sarsa(λ) learns an estimate of the action-value

function, Q
π

, while the agent follows policy π. If the approximated value functions,

Vt ≈ V
π

and Qt ≈ Q
π

, are parameterized by the parameter vector θt, then the
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gradient-descent learning update of the parameters is computed by60

θt+1 = θt + αδtet, (1)

where the TD-error, δt, is

δt = rt + γVt(st+1)− Vt(st) (2)

for TD(λ) and

δt = rt + γQt(st+1, at+1)−Qt(st, at) (3)

for Sarsa(λ). The eligibility trace vector, et, is

et = γλet−1 +∇θtVt(st), e0 = 0, (4)

for TD(λ) and

et = γλet−1 +∇θtQt(st, at), e0 = 0, (5)

for Sarsa(λ). Here, st is the state at time t, at is the action selected at time t, rt is the65

reward for taking action at in state st, α is the learning rate, γ is the discount factor

of future rewards, λ is the trace-decay rate, and ∇θtVt and ∇θtQt are the vectors of

partial derivatives of the function approximators with respect to each component of θt.

2.2. Sigmoid-weighted Linear Units

We proposed the EE-RBM as a function approximator in reinforcement learn-70

ing (Elfwing et al., 2016). In the case of state-value based learning, given a state vec-

tor s, an EE-RBM approximates the state-value function V by the negative expected

energy of an RBM (Smolensky, 1986; Freund and Haussler, 1992; Hinton, 2002) net-

work:

V (s) =
∑

k

zkσ(zk) +
∑

i

bisi, (6)

zk =
∑

i

wiksi + bk, (7)

σ(x) =
1

1 + e−x
. (8)

Here, zk is the input to hidden unit k, σ(·) is the sigmoid function, bi is the bias weight75

for input unit si, wik is the weight connecting state si and hidden unit k, and bk is the
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bias weight for hidden unit k. Note that Equation 6 can be regarded as the output of

a one-hidden layer feedforward neural network with hidden unit activations computed

by zkσ(zk) and with uniform output weights of one. In this study, motivated by the

high performance of the EE-RBM in both the classification (Elfwing et al., 2015) and80

the reinforcement learning (Elfwing et al., 2016) domains, we propose the SiLU as an

activation function for neural network function approximation in reinforcement learn-

ing. The activation ak of the kth SiLU for input zk is computed by the sigmoid function

multiplied by its input (i.e., equal to the contribution from a hidden node to the value

function in an EE-RBM):85

ak(zk) = zkσ(zk). (9)

Figure 1: The activation functions of the SiLU and the ReLU (left panel), and the dSiLU and the sigmoid

unit (right panel).

For zk-values of large magnitude, the activation of the SiLU is approximately equal

to the activation of the ReLU (see left panel in Figure 1), i.e., the activation is approx-

imately equal to zero for large negative zk-values and approximately equal to zk for

large positive zk-values. Unlike the ReLU (and other commonly used activation units90

such as sigmoid and tanh units), the activation of the SiLU is not monotonically increas-

ing. Instead, it has a global minimum value of approximately −0.28 for zk ≈ −1.28.

An attractive feature of the SiLU is that it has a self-stabilizing property, which we

demonstrated experimentally in Elfwing et al. (2015). The global minimum, where the
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derivative is zero, functions as a “soft floor” on the weights that serves as an implicit95

regularizer that inhibits the learning of weights of large magnitudes.

In Elfwing et al. (2015), we discovered that the derivative function of the SiLU

(i.e., the derivative of the contribution from a hidden node to the output in an EE-RBM)

looks like a steeper and “overshooting” version of the sigmoid function. In this study,

we call this function the dSiLU and we propose it as a competitive alternative to the100

sigmoid function in neural network function approximation in reinforcement learning.

The activation of the dSiLU is computed by the derivative of the SiLU (see right panel

in Figure 1):

ak(zk) = σ(zk) (1 + zk(1− σ(zk))) . (10)

The dSiLU has a maximum value of approximately 1.1 and a minimum value of ap-

proximately −0.1 for zk ≈ ±2.4, i.e., the solutions to the equation105

zk = − log ((zk − 2)/(zk + 2)).

2.3. Action selection

We use softmax action selection with a Boltzmann distribution in all experiments.

For Sarsa(λ), the probability to select action a in state s is defined as

π(a|s) = exp(Q(s, a)/τ)∑
b exp(Q(s, b)/τ)

. (11)

For the model-based TD(λ) algorithm, we select an action a in state s that leads to the110

next state s′ with a probability defined as

π(a|s) = exp(V (f(s, a))/τ)∑
b exp(V (f(s, b))/τ)

. (12)

Here, f(s, a) returns the next state s′ according to the deterministic state transition

dynamics and τ is the temperature that controls the trade-off between exploration and

exploitation. We used hyperbolic annealing of the temperature and the temperature was

decreased after every episode i:115

τ(i) =
τ0

1 + τki
. (13)

Here, τ0 is the initial temperature and τk controls the rate of annealing.
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3. Experiments

3.1. SZ-Tetris

Szita and Szepesvári (2010) proposed stochastic SZ-Tetris (Burgiel, 1997) as a

benchmark for reinforcement learning that preserves the core challenges of standard120

Tetris but allows faster evaluation of different strategies due to shorter episodes by re-

moving easier tetrominos. Stochastic SZ-Tetris is played on a board of standard Tetris

size with a width of 10 and a height of 20. In each time step, either an S-shaped

tetromino or a Z-shaped tetromino appears with equal probability. The agent selects a

rotation (lying or standing) and a horizontal position within the board. In total, there125

are 17 possible actions for each tetromino (9 standing and 8 lying horizontal positions).

After the action selection, the tetromino drops down the board, stopping when it hits

another tetromino or the bottom of the board. If a row is completed, then it disappears.

The agent gets a score of +1 point for each completed row. An episode ends when a

tetromino does not fit within the board.130

The standard learning approach for Tetris has been to use a model-based setting

and define the evaluation function or state-value function as the linear combination

of hand-coded features. Value-based reinforcement learning algorithms have a lousy

track record using this approach. In regular Tetris, their reported performance levels

are many magnitudes lower than black-box methods such as the cross-entropy (CE)135

method and evolutionary approaches. In stochastic SZ-Tetris, the reported scores for a

wide variety of reinforcement learning algorithms are either approximately zero (Szita

and Szepesvári, 2010) or in the single digits 1.

Value-based reinforcement learning has had better success in stochastic SZ-Tetris

when using non-linear neural network based function approximators. Faußer and Schwenker140

(2013) achieved a score of about 130 points using a shallow neural network function

approximator with sigmoid hidden units. They improved the result to about 150 points

by using an ensemble approach consisting of ten neural networks. We achieved an

average score of about 200 points using three different neural network function ap-

1http://barbados2011.rl-community.org/program/SzitaTalk.pdf

7



proximators: an EE-RBM, a free energy RBM, and a standard neural network with145

sigmoid hidden units (Elfwing et al., 2016). Jaskowski et al. (2015) achieved the cur-

rent state-of-the-art results using systematic n-tuple networks as function approxima-

tors: average scores of 220 and 218 points achieved by the evolutionary VD-CMA-ES

method and TD-learning, respectively, and the best mean score in a single run of 295

points achieved by TD-learning.150

In this study, we use the TD(λ) algorithm and softmax action selection to compare

the performance of different hidden activation units in two learning settings: 1) shallow

network agents with one hidden layer using hand-coded state features and 2) deep

network agents using raw board configurations as states, i.e., a state node is set to one

if the corresponding board cell was occupied by a tetromino and set to zero otherwise.155

Figure 2: Learning curves in stochastic SZ-Tetris for the four types of shallow neural network agents. The

figure shows the average scores over ten separate runs (tick solid lines) and the scores of individual runs (thin

dashed lines). The mean scores were computed over every 1,000 episodes.

In the setting with state features, we trained shallow network agents with SiLU,

ReLU, dSiLU, and sigmoid hidden units. We used the same experimental setup as

used in our earlier work (Elfwing et al., 2016). The networks consisted of one hidden

layer with 50 hidden units and a linear output layer. The features were similar to the

original 21 features proposed by Bertsekas and Ioffe (1996), except for not including160

the maximum column height and using the differences in column heights instead of

the absolute differences. The length of the binary state vector was 460. The shallow

network agents were trained for 200,000 episodes and the experiments were repeated
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for ten separate runs for each type of activation unit.

In the deep reinforcement learning setting, we used a deep network architecture165

consisting of two convolutional layers with 15 and 50 filters of size 5 × 5 using a

stride of 1, a fully-connected layer with 250 units, and a linear output layer. Both

convolutional layers were followed by max-pooling layers with pooling windows of

size 3 × 3 using a stride of 2. We compared networks with SiLUs in both the con-

volutional and fully-connected layers (SiLU-SiLU) with networks with ReLUs in all170

hidden layers (ReLU-ReLU). Based on the high performance of the shallow networks

with dSiLUs in the hidden layer, we also tested a deep network with dSiLUs in the

last, fully-connected, hidden layer, combined with SiLUs in the convolutional layers

(SiLU-dSiLU). The deep network agents were trained for 200,000 episodes and the

experiments were repeated for five separate runs for each type of network.175

Figure 3: Average Learning curves in stochastic SZ-Tetris for the three types of deep neural network agents.

The figure shows the average scores over five separate runs, computed over every 1,000 episodes.

We used the following reward function (proposed by Faußer and Schwenker (2013)):

r(s) = e−(number of holes in s)/33. (14)

We set γ to 0.99, λ to 0.55, τ0 to 0.5, and τk to 0.00025. We used a rough grid-

like search to find appropriate values of the learning rate α and it was determined to
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be 0.001 for the four shallow network agents and 0.0001 for the three deep network180

agents.

Table 1: Average scores (± standard deviations) achieved in stochastic SZ-Tetris, computed over the final

1,000 episodes for all runs and the best single runs.

Network Final average score Final best score

Shallow networks

SiLU 214± 74 253± 83

ReLU 191± 58 227± 76

dSiLU 263± 80 320± 87

Sigmoid 232± 75 293± 73

Deep networks

SiLU-SiLU 217± 53 219± 54

ReLU-ReLU 215± 54 217± 52

SiLU-dSiLU 229± 55 235± 54

Figure 2 shows the average learning curves as well as learning curves for the indi-

vidual runs for the shallow networks, Figure 3 shows the average learning curves for

the deep networks, and the final results are summarized in Table 1. The results show

significant differences (p < 0.0001) in final average score between all four shallow185

agents. The networks with bounded hidden units (dSiLU and sigmoid) outperformed

the networks with unbounded units (SiLU and ReLU), the SiLU network outperformed

the ReLU network, and the dSiLU network outperformed the sigmoid network. The

final average score (best score) of 263 (320) points achieved by the dSiLU network

agent is a new state-of-the-art score, improving the previous best performance by 43190

(25) points or 20% (8 %). In the deep learning setting, the SiLU-dSiLU network signif-

icantly (p < 0.0001) outperformed the other two networks and the average final score

of 229 points is better than the previous state-of-the-art of 220 points. There were

no significant difference (p = 0.32) between the final performance of the SiLU-SiLU

network and the ReLU-ReLU network.195
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3.2. 10×10 Tetris

The result achieved by the dSiLU network agent in stochastic SZ-Tetris is impres-

sive, but we cannot compare the result with the methods that have achieved the highest

performance levels in standard Tetris, because those methods have not been applied

to stochastic SZ-Tetris. Furthermore, it is not feasible to apply our method to Tetris200

with a standard board height of 20, because of the prohibitively long learning time.

The current state-of-the-art for a single run of an algorithm, achieved by the CBMPI

algorithm (Gabillon et al., 2013; Scherrer et al., 2015), is a mean score of 51 million

cleared lines. However, for the best methods applied to Tetris, there are reported results

for a smaller, 10×10, Tetris board, and in this case the learning time for our method is205

long, but not prohibitively so.

Figure 4: Learning curves for a dSiLU network agent with 250 hidden nodes in 10×10 Tetris. The figure

shows the average score over five separate runs (tick solid lines) and the scores of individual runs (thin dashed

lines). The red dashed line show the previous best average score of 4,200 points achieved by the CBMPI

algorithm.

10×10 Tetris is played with the standard seven tetrominos and the numbers of

actions are 9 for the block-shaped tetromino, 17 for the S-, Z-, and stick-shaped tetro-

minos, and 34 for the J-, L- and T-shaped tetrominos. In each time step, the agent gets

a score equal to the number of completed rows, with a maximum of +4 points that can210

only be achieved by the stick-shaped tetromino.

We trained a shallow neural network agent with dSiLU units in the hidden layer.
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To handle the more complex learning task, we increased the number of hidden units

to 250 and the number of episodes to 400,000. We repeated the experiment for five

separate runs. We used the same 20 state features as in the SZ-Tetris experiment, but215

the length of the binary state vector was reduced to 260 due to the smaller board size.

The reward function was changed as follows for the same reason:

r(s) = e−(number of holes in s)/(33/2). (15)

We used the same values of the meta-parameters as in the stochastic SZ-Tetris experi-

ment.

The average learning curve as well as learning curves for the five separate runs in220

10×10 Tetris are shown in Figure 4. The dSiLU network agent reached an average

score of 4,900 points over the final 10,000 episodes and the five separate runs, which

is a new state-of-the-art in 10×10 Tetris. The previous best average scores are 4,200

points achieved by the CBMPI algorithm, 3,400 points achieved by the DPI algorithm,

and 3,000 points achieved by the CE method (Gabillon et al., 2013). The best individual225

run achieved a final mean score of 5,300 points, which is also a new state-of-the-art,

improving on the score of 5,000 points achieved by the CBMPI algorithm.

It is particularly impressive that the dSiLU network agent achieved its result using

features similar to the original Bertsekas features. Using only the Bertsekas features,

the CBMPI algorithm, the DPI algorithm, and the CE method could only achieve av-230

erage scores of about 500 points (Gabillon et al., 2013). The CE method has achieved

its best score by combining the Bertsekas features, the Dellacherie features (Fahey,

2003), and three original features (Thiery and Scherrer, 2009). The CBMPI algorithm

achieved its best score using the same features as the CE method, except for using five

original RBF height features instead of the Bertsekas features.235

3.3. Atari 2600 games

To further evaluate the use of value-based on-policy reinforcement learning with

eligibility traces and softmax action selection in high-dimensional state space domains

we applied Sarsa(λ) with a deep convolution neural network function approximator

in the Atari 2600 domain using the Arcade Learning Environment (Bellemare et al.,240
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2013). Based on the results for the deep networks in SZ-Tetris, we used a SiLU-

dSiLU network with SiLU units in the convolutional layers and dSiLU units in the

fully-connected layer. To limit the number of games and prevent a biased selection of

the games, we selected the 12 games played by DQN (Mnih et al., 2015) that begin

with the letters ’A’ and ’B’: Alien, Amidar, Assault, Asterix, Asteroids, Atlantis, Bank245

Heist, Battle Zone, Beam Rider, Bowling, Boxing, and Breakout.

We used a similar experimental setup as Mnih et al. (2015). We pre-processed

the raw 210×160 Atari 2600 RGB frames by extracting the luminance channel, tak-

ing the maximum pixel values over consecutive frames to prevent flickering, and then

downsampling the grayscale images to 105×80. For computational reasons, we used a250

smaller network architecture. Instead of three convolutional layers, we used two with

half the number of filters, each followed by a max-pooling layer. The input to the

network was a 105×80×2 image consisting of the current and the fourth previous pre-

processed frame. As we used frame skipping where actions were selected every fourth

frame and repeated for the next four frames, we only needed to apply pre-processing255

to every fourth frame. The first convolutional layer had 16 filters of size 8×8 with a

stride of 4. The second convolutional layer had 32 filters of size 4×4 with a stride of

2. The max-pooling layers had pooling windows of size 3×3 with a stride of 2. The

convolutional layers were followed by a fully-connected hidden layer with 512 dSiLU

units and a fully-connected linear output layer with 4 to 18 output (or action-value)260

units, depending on the number of valid actions in the considered game. We selected

meta-parameters by a preliminary search in the Alien, Amidar and Assault games and

used the same values for all 12 games: α: 0.001, γ: 0.99, λ: 0.8, τ0: 0.5, and τk:

0.0005. As in Mnih et al. (2015), we clipped the rewards to be between −1 and +1,

but we did not clip the values of the TD-errors.265

In each of the 12 Atari games, we trained a SiLU-dSiLU agent for 200,000 episodes

and the experiments were repeated for two separate runs. An episode started with up

to 30 ’do nothing’ actions (no-op condition) and it was played until the end of the

game or for a maximum of 18,000 frames (i.e., 5 minutes). We evaluated the agents

by computing the mean scores over every 100 consecutive episodes in each run, which270

we call the mScore. Figures 5 and 6 show the average learning curves, as well as
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Figure 5: Average learning curves (solid lines) over two separate runs (dashed lines) for the SiLU-dSiLU

agents in the 6 Atari games that begin with the letter ’A’. The dotted lines show the reported results for DQN

(red), the Gorila implementation of DQN (green), and double DQN (blue).

the learning curves for the two separate runs, in the 12 Atari 2600 games. Table 2

summarizes our results using two metrics:

• Final score: the average score computed over the final mScores.
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Figure 6: Average learning curves (solid lines) over two separate runs (dashed lines) for the SiLU-dSiLU

agents in the 6 Atari games that begin with the letter ’B’. The dotted lines show the reported results for DQN

(red), the Gorila implementation of DQN (green), and double DQN (blue).

• Best score: the average score computed over the maximum mScores.275

We included the Best score to be able to compare our results with those achieved by

DQN (single run scores, where the mScores were computed over 30 episodes; Mnih

et al., 2015), the Gorila implementation of DQN (average scores over 5 runs, where the

15



mScores were computed over 30 episodes; Nair et al., 2015), and double DQN (singles

run scores, where the mScores were computed over 100 episodes; van Hasselt et al.,280

2015). The last two rows of the table shows summary statistics over the 12 games,

which were obtained by computing the mean and the median of the DQN normalized

scores:

ScoreDQN normalized =
Scoreagent − Scorerandom
ScoreDQN − Scorerandom

Here, Scorerandom is the score achieved by a random agent in Mnih et al. (2015).

Table 2: The Best and Final scores achieved by our SiLU-dSiLU agents in 12 Atari 2600 games, and the

reported Best scores achieved by DQN, the Gorila implementation of DQN, and double DQN (dDQN) in the

no-op condition with 5 minutes of evaluation time.

DQN Gorila dDQN SiLU-dSiLU

Game Best Best Best Final Best

Alien 3,069 2,621 2,907 1,370 2,246

Amidar 740 1,190 702 762 904

Assault 3,359 1,450 5,023 2,415 2,944

Asterix 6,012 6,433 15,150 70,942 100,322

Asteroids 1,629 1,048 931 6,537 10,614

Atlantis 85,950 100,069 64,758 127,651 128,983

Bank Heist 430 609 728 5 770

Battle Zone 26,300 25,267 25,730 22,930 29,115

Beam Rider 6,846 3,303 7,654 1,829 2,176

Bowling 42 54 71 67 75

Boxing 72 95 82 36 92

Breakout 401 402 375 25 55

Mean (DQN Normalized) 100% 102% 127% 218% 332%

Median (DQN Normalized) 100% 104% 105% 78% 125%

The results clearly show that our SiLU-dSiLU agent outperformed the other agents,285

improving the mean (median) DQN normalized Best score score from 127% (105%)
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achieved by double DQN to 332% (125%). The SiLU-dSiLU agents achieved the

highest Best score in 6 out of the 12 games and only performed much worse than

the other 3 agents in one game, Breakout, where the learning never took off during

the 200,000 episodes of training (see Figure 6). The performance was especially im-290

pressive in the Asterix (Best score of 100,322) and Asteroids (Best score of 10,614)

games, which improved the Best scores achieved by the second-best agent by 562%

and 552%, respectively.

4. Analysis

4.1. Value estimation295

First, we investigate the ability of TD(λ) and Sarsa(λ) to accurately estimate dis-

counted returns:

Rt =

T−t∑

k=0

γkrt+k.

Here T is the length of an episode. The reason for doing this is that van Hasselt

et al. (2015) showed that the double DQN algorithm improved the performance of

DQN in Atari 2600 games by reducing the overestimation of the action values. It is300

known (Thrun and Schwartz, 1993; van Hasselt, 2010) that Q-learning based algo-

rithms, such as DQN, can overestimate action values due to the max operator, which

is used in the computation of the learning targets. TD(λ) and Sarsa(λ) do not use the

max operator to compute the learning targets and they should therefore not suffer from

this problem.305

Figure 7 shows that for SZ-Tetris episodes of average (or expected) length, the best

dSiLU network agent at the end of the learning (τ = 0.0098) learned good estimates

of the discounted returns, both along the episodes (left panel) and as measured by the

normalized sum of differences between V (st) and Rt (right panel):

1

T

∑T

t=1
(V (st)−Rt) .

The linear fit of the normalized sum of differences data for 1,000 episodes gives a small310

underestimation (-0.43) for an episode of average length (866 time steps). The V (st)-

values overestimated the discounted returns for short episodes and underestimated the
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Figure 7: The left panel shows learned V (st)-values and Rt-values, for examples of short, medium-long,

and long episodes in SZ-Tetris. The right panel shows the normalized sum of differences between V (st)

and Rt for 1,000 episodes and the best linear fit of the data (−0.012T + 9.8).

discounted returns for long episodes (especially in the middle part of the episodes),

which is accurate since the episodes ended earlier and later, respectively, than were

expected.315

Figure 8: Learned action values, Q(st, at), and discounted returns, Rt, for the best SiLU-dSiLU agents in

Asterix and Asteroids.
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Figure 8 shows typical examples of learned action values and discounted returns

along episodes in Asterix (score of 108,500) and Asteroids (score of 22,500), when

the best SiLU-dSiLU agents at the end of the learning (τ = 0.00495) successfully

played for the full 18,000 frames (i.e., 4,500 time steps since the agents acted every

fourth frame). In both games, with the exception of a few smaller parts, the learned320

action values matched the discounted returns very well along the whole episodes. The

normalized sums of differences (absolute differences) were 0.59 (1.05) in the Asterix

episode and −0.23 (1.28) in the Asteroids episode. In both games, the agents over-

estimated action values at the end of the episodes. However, this is an artifact of that

an episode ended after a maximum of 4,500 time steps, which the agents could not325

predict. Videos of the corresponding learned behaviors in Asterix and Asteroids can be

found at http://www.cns.atr.jp/˜elfwing/videos/asterix_deep_

SiL.mov and http://www.cns.atr.jp/˜elfwing/videos/asteroids_

deep_SiL.mov.

4.2. Action selection330

Second, we investigate the importance of softmax action selection in the games

where our proposed agents performed particularly well. Almost all deep reinforce-

ment learning algorithms that have been used in the Atari 2600 domain have used

ε-greedy action selection (one exception is the asynchronous advantage actor-critic

method, A3C, which used softmax output units for the actor (Mnih et al., 2016)). One335

drawback of ε-greedy selection is that it selects all actions with equal probability when

exploring, which can lead to poor learning outcomes in tasks where the worst actions

have very bad consequences. This is clearly the case in both Tetris games and in the

Asterix and Asteroids games. In each state in Tetris, many, and often most, actions

will creates holes, which are difficult (especially in SZ-Tetris) to remove. In the As-340

terix game, random exploratory actions can kill Asterix if executed when Cacofonix’s

deadly lyres are passing. In the Asteroids game, one of the actions sends the spaceship

into hyperspace and makes it reappear in a random location, which has the risk of the

spaceship self-destructing or of destroying it by appearing on top of an asteroid.

We compared softmax action selection, where τ was set to the annealed values345
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Table 3: Mean scores and average numbers of non-greedy actions for softmax action selection and ε-greedy

action selection.

Mean Non-greedy

Game Selection Score actions

SZ-Tetris

τ200k = 0.0098 326 28.7

τ50k = 0.0370 318 93.0

τ10k = 0.1429 302 191.7

ε = 0 332 0

ε = 0.001 260 0.6

ε = 0.01 71 2.0

ε = 0.05 14 3.2

Asterix

τ200k = 0.00495 104,299 47.6

τ50k = 0.0192 97,365 178.5

τ10k = 0.0833 71,505 576.9

ε = 0 102,890 0

ε = 0.001 98,264 3.6

ε = 0.01 66,113 30.0

ε = 0.05 7,152 56.8

Asteroids

τ200k = 0.00495 15,833 31.3

τ50k = 0.0192 15,421 92.7

τ10k = 0.0833 14,219 355.2

ε = 0 15,091 0

ε = 0.001 11,105 2.1

ε = 0.01 3,536 11.7

ε = 0.05 1,521 47.3

after 10,000 episodes (τ10k), 50,000 episodes (τ50k), and 200,000 episodes (τ200k, i.e.,

the τ -values at the end of learning), and ε-greedy action selection, where ε was set

to 0, 0.001, 0.01, and 0.05, for the best dSiLU network agent in SZ-Tetris and the
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best SiLU-dSiLU agents in the Asterix and Asteroids games. The results (see Table 3)

clearly show that ε-greedy action selection with ε set to 0.05, as used for evaluation by350

DQN, is not suitable for these games. The scores were only 4 % to 10 % of the scores

for softmax selection using τ200k. The negative effects of random exploration were

largest in Asteroid and SZ-Tetris. Even when ε was set as low as 0.001 and the agent

performed only 2.1 non-greedy actions per episode in Asteroids and 0.6 in SZ-Tetris,

the mean scores were reduced by 26 % and 22 %, respectively, compared with ε = 0.355

In contrast, even if the numbers of non-greedy actions in Asteroids and SZ-Tetris were

increased by about an order of magnitude when using τ10k compared to when using

τ200k, the scores were only reduced by 10 % and 7 %, respectively.

5. Conclusions

In this study, we proposed SiLU and dSiLU as activation functions for neural net-360

work function approximation in reinforcement learning. We demonstrated in stochastic

SZ-Tetris that SiLUs significantly outperformed ReLUs, and that dSiLUs significantly

outperformed sigmoid units. The best agent, the dSiLU network agent, achieved a new

state-of-the-art in stochastic SZ-Tetris and in 10×10 Tetris. In the Atari 2600 domain,

a deep Sarsa(λ) agent with SiLUs in the convolutional layers and dSiLUs in the fully-365

connected hidden layer outperformed DQN and double DQN, as measured by mean

and median DQN normalized scores.

An additional purpose of this study was to demonstrate that a more traditional ap-

proach of using on-policy learning with eligibility traces and softmax selection (i.e.,

basically a “textbook” version of a reinforcement learning agent but with non-linear370

neural network function approximators) can be competitive with the approach used by

DQN. This means that there is a lot of room for improvements, by, e.g., using, as DQN,

a separate target network, but also by using more recent advances such as the dueling

architecture (Wang et al., 2016) for more accurate estimates of the action values and

asynchronous learning by multiple agents in parallel (Mnih et al., 2016).375
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