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A B S T R A C T

Nowadays, passive energy dissipation systems are used in the seismic design of new structures and the retrofit of
existing structures. Fluid Viscous Dampers (FVDs) are one of the important types of passive energy dissipation
systems. Using FVDs can considerably decrease the seismic demands on structures. In this study, seismic collapse
behavior of steel Special Moment Resisting Frames (SMRFs) equipped with FVDs is investigated using different
scalar Intensity Measures (IMs). Incremental Dynamic Analysis (IDA) method is applied to determine the col-
lapse capacity, IMcol, values for low- to mid-rise steel SMRFs equipped with FVDs. After determining the collapse
capacity, IMcol, values by using each of the IMs, the efficiency and sufficiency of the IMs for predicting the
seismic collapse capacity of the structures are investigated. Then, advanced scalar IMs, including the effects of
spectral shape and ground motion duration, are proposed to reliably predict the collapse capacity of steel SMRFs
equipped with FVDs. The results indicate that the proposed IMs possess high efficiency and sufficiency for
collapse capacity prediction of steel SMRFs equipped with FVDs.

1. Introduction

Using passive energy dissipation systems, including Fluid Viscous
Dampers (FVDs), hysteretic dampers, viscoelastic dampers and friction
dampers, is one of the effective ways to mitigate excitations due to
strong ground motions [1,2]. FVDs are a type of passive energy dis-
sipation systems that are extensively used for the seismic design of new
structures and the retrofit of existing structures [3,4]. For elastic
structures, using FVDs reduces both displacements and accelerations
simultaneously [5,6]. However, as pointed out by Karavasilis and Seo
[7], for highly inelastic structures, FVDs may increase accelerations, as
the damper forces are not out of phase with the peak drifts and internal
member forces, due to the nonlinearity of the structure. FVDs provide a
velocity-dependent force and can behave as linear or nonlinear ele-
ments. The force developed by a FVD is as follows:

= ⋅ ⋅F C v vsgn( )d
αd (1)

where C is the damper coefficient, v is the relative velocity between the
two ends of the damper, αd is the velocity exponent, and sgn is the
signum function. In seismic applications, the exponent αd is in the range
of 0.2–1.0 [8]. When αd is equal to one, the damper is called "linear
FVD", and values of αd lower than one represent nonlinear FVDs.

Several researchers have investigated the seismic response of
structures equipped with FVDs (e.g., see [9,10]). Although a number of

procedures have been developed for the design of these structures
[11–13], the seismic collapse of these structures has not been ex-
tensively investigated. The collapse of structural systems due to strong
ground motions is the primary source of casualties and loss of life
during earthquakes. Seismic collapse occurs when a structural system is
unable to withstand gravity loads under earthquake shaking. In recent
years, due to significant advancements in the computational capability
of computers and the methods of nonlinear analysis, assessing the
seismic collapse of structures has become an interesting field of study
for researchers. Thus, several studies have been performed to assess the
seismic collapse of structures [14–16], and to develop engineering ap-
proaches for seismic collapse assessment. The ATC-63 document [17]
presents a new methodology for seismic collapse assessment of struc-
tures, to assess design criteria and seismic performance factors existing
in seismic codes. Recently, some studies have been performed to assess
the seismic collapse of structures equipped with FVDs. For instance,
Hamidia et al. [18] proposed a simplified approach to assess the seismic
collapse of structures equipped with FVDs. Seo et al. [19] investigated
the seismic resistance of steel Moment Resisting Frames (MRFs) with
supplemental FVDs against collapse. They observed that in some cases,
the collapse mode consists of a combination of beam and column plastic
hinges. Karavasilis [20] investigated the effects of column capacity
design rules on the collapse performance of MRFs with FVDs. He
showed that taller steel MRFs (i.e., 10-story and 20-story MRFs) are
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prone to column plastic hinging.
Intensity Measure (IM) is a parameter that describes the strength of

a ground motion and quantifies its effect on structures. In fact, an IM
links the output of the ground motion hazard analysis to the seismic
response of structure. An optimal IM should meet the requirements of
efficiency and sufficiency [21]. In other words, efficiency and suffi-
ciency are the main desirable features of an optimal IM. Efficiency is the
ability of an IM to predict the response or capacity of a structure sub-
jected to ground motion with small dispersion, whereas sufficiency is
the ability of an IM to predict the response or capacity of a structure
conditionally independent of other ground motion properties. In fact,
using an efficient IM leads to smaller variability in the structural re-
sponse or capacity prediction, which allows the use of a lower number
of ground motion records in seismic analyses. Moreover, using a suffi-
cient IM reduces the complexity of record selection procedure, because
no other ground motion information (i.e., magnitude, source-to-site
distance, etc.) is required to predict the structural response or capacity
[22,23]. To determine the seismic response or capacity of a structure,
ground motion records are scaled, and thus the results may become
biased due to record scaling. Another desirable feature of an optimal IM
is scaling robustness, which means that the IM is sufficient with respect
to Scale Factor (SF), when predicting the response or capacity of a
structure [23,24]. The last desirable feature of an optimal IM is pre-
dictability, that is, the IM should be predictable using a Ground Motion
Prediction Equation (GMPE).

In general, IMs are classified into two groups of scalar and vector
(e.g., see [25,26]). Common scalar IMs are spectral acceleration at the
fundamental period of structure, Sa(T1), Peak Ground Acceleration
(PGA), Peak Ground Velocity (PGV) and Peak Ground Displacement
(PGD). Shome et al. [27] showed that Sa(T1) is more efficient and
sufficient than PGA. Thus, nowadays, seismic codes throughout the
world use Sa(T1) as the most common scalar IM. It should be noted that
when a structure behaves nonlinearly, its fundamental period
lengthens. Moreover, higher mode effects may have a significant con-
tribution in the response of a structure. Therefore, spectral regions far
away from the fundamental period of a structure, T1, may play an
important role in the response of the structure. Hence, some researchers
have proposed more advanced scalar IMs, which contain information
about the spectral shape of ground motion records. Cordova et al. [28]
proposed a power-law form scalar IM consisting of Sa(T1) and the ratio
of spectral acceleration at a period greater than T1, Sa(T2), to Sa(T1) to
account for the period lengthening of structures due to nonlinear de-
formations. Mehanny [29] enhanced this power-law form IM by de-
fining the lengthened period, T2, as the multiplication of a nonlinear
demand dependent period multiplier by T1. Baker [30] pointed out that
in some cases, an IM which averages spectral acceleration values over a
range of periods (i.e., the geometric mean of spectral accelerations over
a range of periods) might be a better indicator of structural response.
Bojorquez and Iervolino [31] proposed a scalar IM, INp, which is similar
to the power-law form IM proposed by Cordova et al. [28] but uses the
geometric mean of spectral accelerations over a range of periods (i.e.,
T1 to a lengthened period) instead of Sa(T2). Although many of the
studies in the field of ground motion IMs have focused on investigating
the efficiency and sufficiency of IMs to predict the structural response
(e.g., [21,32]), due to the importance of assessing the seismic collapse
of structures, some studies have focused on investigating the efficiency
and sufficiency of IMs for collapse capacity prediction (e.g.,
[24,33–35]). Eads et al. [34,35] indicated that the geometric mean of
spectral accelerations over the period range of 0.2T1 to a lengthened
period, 3T1, is a good scalar IM to predict the collapse capacity of
structures. Some researchers (e.g., Chandramohan et al. [36]) showed
that ground motion duration has a significant effect on the seismic
collapse of structures. Therefore, combining the effect of ground motion
duration with the other characteristics of ground motion records (e.g.,
spectral shape) may lead to advanced optimal IMs for collapse capacity
prediction. In fact, using such an idea may progress the state-of-the-art

in terms of IMs for predicting the collapse capacity of steel and re-
inforced concrete Special Moment Resisting Frames (SMRFs). A review
on the technical literature existing in the field of investigating the ef-
ficiency and sufficiency of IMs indicates that an assessment of the ef-
ficiency and sufficiency of IMs to predict the collapse capacity of SMRFs
with FVDs has never been performed. Based on the results of the studies
performed by Seo et al. [19] and Karavasilis [20], described previously,
there may be differences between the collapse mechanisms of steel
SMRFs with and without FVDs. Thus, the need for conducting an as-
sessment of the efficiency and sufficiency of IMs to predict collapse
capacity of SMRFs with FVDs can be justified.

The aim of this study is to investigate the efficiency and sufficiency
of scalar IMs to predict the collapse capacity of steel SMRFs equipped
with FVDs. For this aim, 12 low- to mid-rise steel SMRFs and 27 scalar
IMs are considered. Then, different levels of supplemental viscous
damping are added to each structure, and the collapse capacities of the
structures with and without supplemental viscous damping are de-
termined using the IMs. After investigating the efficiency and suffi-
ciency of the IMs, three advanced scalar IMs, including the effects of
spectral shape and ground motion duration, are proposed for collapse
capacity prediction of the structures. To satisfy the predictability cri-
terion for the proposed IMs, GMPEs are presented for these IMs.

2. Selected IMs

In this study, the considered scalar IMs were classified into two
groups: (1) non-structure-specific IMs and (2) structure-specific IMs.
Non-structure-specific IMs are obtained only from the time histories of a
ground motion record, whereas to calculate structure-specific IMs the
spectral components of a ground motion record are involved. It should
be mentioned that all of these spectral components are estimated at 5%
damping.

The first group includes acceleration-, velocity- and displacement-
related IMs. The acceleration-related IMs are Peak Ground Acceleration
(PGA), Arias Intensity (AI) [37], characteristic intensity, IC, [38], the IM
proposed by Riddell and Garcia, Ia, [39] and Cumulative Absolute Ve-
locity (CAV) [40]. The velocity-related IMs are Peak Ground Velocity
(PGV), Fajfar Intensity (FI) [41], the IM proposed by Riddell and
Garcia, Iv, [39], Cumulative Absolute Displacement (CAD) [42] and
Specific Energy Density (SED). The displacement-related IMs are Peak
Ground Displacement (PGD), the IM proposed by Riddell and Garcia, Id,
[39] and Cumulative Absolute Impulse (CAI). Table 1 presents the non-
structure-specific IMs and their definitions.

The second group includes Sa(T1) as the most common scalar IM,
spectral shape based IMs, and combined spectral shape and duration
based IMs. The spectral shape based IMs considered in this study are
Acceleration Spectrum Intensity (ASI) [43], Spectrum Intensity (SI)
[44,45], Displacement Spectrum Intensity (DSI) [46] (which are the
integrals of pseudo-acceleration, pseudo-velocity and displacement re-
sponse spectra, respectively), the power-law form scalar IM proposed
by Cordova et al. [28] (IMC), INp [31], the power-law form scalar IM
proposed by Mehanny [29] (IMM), and Saavg [34,35]. IMC is defined as:

⎜ ⎟= ⋅⎛
⎝

⎞
⎠

=IM Sa T Sa T
Sa T

T T( ) ( )
( )

; 2C 1
2

1

0.5

2 1
(2)

where T2 = 2T1 is the lengthened period. The enhanced version of IMC

is IMM that is defined, by changing the lengthened period, as:

⎜ ⎟= ⋅⎛
⎝

⎞
⎠

= =IM Sa T Sa T
Sa T

T R T α( ) ( )
( )

; ; 0.5 or 0.33M
α

1
2

1

0.5

2 1
(3)

where R is the lateral strength required to maintain the system elastic
relative to the lateral yielding strength of the system. In this study, the
parameter R was assumed as follows:
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=
⋅

R
Sa T g

B γ
( )/1

(4)

where g is the acceleration of gravity, γ is the ratio of fully yielded
strength, Vy, [47] to weight, γ = Vy/W, and B is the damping coeffi-
cient, which can be determined based on the values proposed by Ra-
mirez et al. [11]. The scalar IM INp, proposed by Bojorquez and Iervo-
lino [31], is defined as:

   
= ⋅ =

…
I Sa T Np Np

Sa T T
Sa T

( ) ;
( )

( )Np
avg N

1
0.4 1

1 (5)

where Np is a spectral shape proxy, Saavg(T1…TN) is the geometric mean
of spectral accelerations over the period range of T1–TN, and TN is a
lengthened period equal to 2T1. It should be noted that Np and Sa(T2)/
Sa(T1) indicate the shape of pseudo-acceleration response spectrum in
periods greater than the fundamental period of structure. Thus, when
the fundamental period of a structure lengthens due to nonlinear de-
formations, IMC, IMM and INp can imply the severity of ground motion
more realistically, compared with Sa(T1). The IM Saavg, proposed by
Eads et al. [34,35], which includes both the effects of higher modes and
period lengthening due to nonlinear deformations, is defined as:

    ∏= … = ⎛

⎝
⎜

⎞

⎠
⎟ = =

=

Sa Sa c T c T Sa c T c c( ) ( ) ; 0.2; 3.avg avg N
i

N

i

N

N1 1 1
1

1

1/

1

(6)

In this IM, the lengthened period is equal to 3T1. The combined spectral
shape and duration based IMs considered in this study are IMC–D, IMM–D,
INp–D, INp M–D, Saavg–D and Saavg M–D, which are based on the idea of
adding the effect of ground motion duration to the spectral shape based
IMs, and are defined by multiplying these IMs, except the integral based

IMs, by a power function of significant duration, td
β. The significant

duration, td, is the time interval between 5% and 95% contributions to
the integral of square acceleration [48]. Table 2 presents the structure-
specific IMs and their definitions. For the IMs IMM–D, INp M–D and Saavg
M–D, the lengthened period was considered as RαT1.

In this study, sensitivity analyses were performed to obtain the
optimal values of β for the IMs IMC–D, INp–D and Saavg–D by simulta-
neously accounting for the efficiency and sufficiency criteria. For this
purpose, the value of β was varied in the range of −0.5 to 0.5 in in-
crements of 0.01. Furthermore, sensitivity analyses were performed to
obtain the optimal values of the parameters for the IMs IMM–D, INp M–D

and Saavg M–D (i.e., the parameters α, β and m for IMM–D, α, β and n for
INp M–D, and α, β and c1 for Saavg M–D). For this aim, the values of m, n
and c1 were varied from 0 to 1.0 in increments of 0.1. Given a value of
m, n or c1, the values of α and β were respectively varied from 0 to 0.5
and −0.5 to 0.5 in increments of 0.01, and the optimal values of α, β
were determined by simultaneously accounting for the efficiency and
sufficiency criteria for the IM considered (i.e., IMM–D, INp M–D or Saavg
M–D). Then, comparing the results from optimal values of α and β given
different values of m, n or c1, the optimal values of the parameters for
each of the IMs were selected. The results of the sensitivity analyses are
briefly presented in Sections 4 and 5. To summarize the results, given
the final selected optimal values of m, n and c1 for the IMs IMM–D, INp
M–D and Saavg M–D, respectively, only the results from varying the values
of α and β on the efficiency and sufficiency of these IMs are presented. It
should be noted that when the value of α is zero, the IMs IMM–D, INp M–D

are simplified to Sa(T1)· td
β, and when the values of α and β are zero,

these IMs are simplified to Sa(T1).

3. Structural modeling and analysis

In this study, 3- 6- and 9-story code-designed steel SMRFs, used by
Hamidia et al. [18], were selected. These benchmark structures were
designed for the SAC steel project [49], and their detailed information
can be found in FEMA 355C [50] and the study by Hall [51]. In order to
derive more structures form the benchmark structures, some changes,

Table 1
Non-structure-specific IMs considered in this study.

Notation Name Definition

Acceleration-related
PGA Peak Ground

Acceleration
=

=
a t

a t
PGA max ( )

( ) acceleration time history
AI Arias Intensity [37] ∫=

=

a t dt

t

AI ( )

total duration

π
g

tf

f

2 0
2

IC Characteristic
intensity [38]

∫

= ⋅

= = −

= =

I a t

a a t dt t t t

t t t t

( )

( ) ;

(5%AI); (95%AI)

C rms d

rms td t
t

d

1.5 0.5

1
1
2 2 2 1

1 2
Ia Compound

acceleration-related
IM [39]

= ⋅I tPGAa d1/3

CAV Cumulative Absolute
Velocity [40]

∫= a t dtCAV ( )t f
0

Velocity-related
PGV Peak Ground Velocity =

=
v t

v t
PGV max ( )

( ) velocity time history
FI Fajfar Intensity [41] = ⋅tFI PGV d0.25

Iv Compound velocity-
related IM [39]

= ⋅I tPGVv d2/3 1/3

CAD Cumulative Absolute
Displacement [42]

∫= v t dtCAD ( )t f
0

SED Specific Energy
Density

∫= v t dtSED ( )t f
0

2

Displacement-related
PGD Peak Ground

Displacement
=

=
d t

d t
PGD max ( )

( ) displacement time history
Id Compound

displacement-related
IM [39]

= ⋅I tPGDd d1/3

CAI Cumulative Absolute
Impulse

∫= d t dtCAI ( )t f
0

Table 2
Structure-specific IMs considered in this study.

Notation Name Definition

Spectral
Sa(T1) Spectral acceleration at T1
Spectral shape based
ASI Acceleration Spectrum

Intensity [43]
∫= Sa T dTASI ( , 5%)0.1

0.5

SI Spectrum Intensity [44,45] ∫= Sv T dTSI ( , 5%)0.1
2.5

DSI Displacement Spectrum
Intensity [46]

∫= Sd T dTDSI ( , 5%)2
5

IMC Eq. (2)
IMM Eq. (3)
INp Eq. (5)
Saavg Eq. (6)
Combined Spectral shape and duration based

−IMC D
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α m
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including changes in structural height or seismic mass, were performed
on these structures. The story heights of the 3-story structure were in-
creased uniformly by factors of 1.2 and 1.4, and 3-story-h1.2 and 3-
story-h1.4 structures were generated, respectively. Furthermore, be-
cause the story heights in the 3-story structure are identical, the first
story height of this structure was increased by factors of 1.2 and 1.4,
and 3-story-h11.2 and 3-story-h11.4 structures were generated, respec-
tively. In the case of the 6- and 9-story structures, the first story height
is greater than the typical story height (htyp). Thus, htyp in the 6-story
structure was increased by factors of 1.2 and 1.4 and 6-story-htyp1.2
and 6-story-htyp1.4 structures were generated, respectively. Moreover,
htyp in the 9-story structure was increased by a factor of 1.2 and 9-story-
htyp1.2 structure was generated. The seismic mass of the 3-story
structure was also uniformly increased by factors of 1.2 and 1.4, and 3-
story-m1.2 and 3-story-m1.4 structures were generated, respectively.
Thus, 12 structures were considered.

OpenSees software [52] was used to create the 2D numerical models
of the structures. Distributed plasticity force-based beam-column ele-
ments consisting of five integration points, each using a fiber section,
along the element length were used to model the columns. "Steel02"
material in OpenSees, assuming E = 200 GPa and a strain hardening
ratio of 0.002, was applied to model the uniaxial behavior of each fiber.
Thus, cyclic deterioration in the column elements was neglected. The
same ratio of low strain hardening was also used by other researchers
[19,53]. The reason for using the distributed plasticity approach to
model the columns, which were selected from W14 sections, is that
according to the tests performed by Newell and Uang [54], W14 col-
umns do not encounter deterioration in strength by more than 10% for
axial loads less than 75% of the nominal yield strength of column, even
at large interstory drift ratios. Thus, the main phenomenon that should
be considered in the modeling of such columns is the interaction be-
tween moment and axial load. The behavior of the beams was modeled
using a concentrated plasticity approach (e.g., see Ibarra and Kra-
winkler [15], and Haselton [16]). Therefore, each beam was modeled
using two zero-length rotational springs at its both ends, representing
plastic hinges, and an elastic beam-column element. The modified
Ibarra-Krawinkler model (Bilin) [55] was used to model the moment-
rotation relationship of the rotational springs. This model takes into
account the effects of strength and stiffness deterioration in beams,
which are necessary to be considered for reliable seismic collapse as-
sessment of steel SMRFs. The parameters of this model were determined
based on the relationships proposed by Lignos and Krawinkler [55]. It is
worth mentioning that other researchers (e.g., [19,20]) have also ap-
plied the distributed and concentrated plasticity approaches to model
the columns and beams in steel SMRFs, respectively. In order to con-
sider the rigid end offsets of the beams and columns, rigid elements
were used at the ends of the beams and columns. The joint offsets for
the beams and columns were assumed equal to the half of the column
section depth and beam section depth, respectively. A leaning column
was used to model the P-Δ effects of gravity columns. This leaning
column was modeled by using elastic beam-column elements, which
have moments of inertia and areas about two orders of magnitude
larger than the frame columns. These beam-column elements were
connected to the nodes in the floor levels by zero-length rotational
spring elements with very small stiffness values. Then, these nodes were
connected to the SMRF by axially rigid truss elements. In fact, due to
using rotational springs with negligible stiffness between the ends of the
beam-column elements making the leaning column and the nodes in the
floor levels, the lateral stiffness of the leaning column is negligible.

Table 3 presents the first mode periods of the structures considered
in this study. To compute the value of γ for a structure, the capacity
curve of the structure was obtained using static pushover analysis, as-
suming a lateral load pattern proportional to the first mode shape of the
structure. Then, the value of fully yielded strength, Vy, which is the
maximum base shear in the capacity curve, was determined. Fig. 1 il-
lustrates the capacity curves for the 12 steel SMRFs, in the form of base

shear coefficient (Vb/W)–roof drift ratio. Each graph in this figure
consists of normalized pushover curves for the structures with the same
number of stories. It can be seen that each of the three benchmark
SMRFs has a higher normalized base shear capacity compared with the
SMRFs derived from it. It should be mentioned that adding supple-
mental viscous damping to each of the three benchmark SMRFs leads to
a higher performance than that of the corresponding benchmark code-
designed SMRF. Among the other nine structures considered, those
generated by increasing story height are representatives of more flex-
ible structures, which have slightly higher ratios of code-based elastic
spectral demand to γ compared with that of the corresponding bench-
mark structure. However, the main problem of these structures is that
they do not satisfy code-based drift limit and are more vulnerable to the
P-Δ effects. It is noteworthy that in the case of the 3-story-h11.2 and 3-
story-h11.4 structures, the increased height of the first story drastically
increases the ductility demand at this soft story. Moreover, the 3-story-
m1.2 and 3-story-m1.4 structures, generated by increasing story mass,
are weaker than the corresponding benchmark structure so that they
are more vulnerable to the P-Δ effects. Therefore, adding supplemental
viscous damping to these nine structures can be used as a way to mi-
tigate the aforementioned problems and improve their seismic perfor-
mance.

Rayleigh viscous damping was used to model the inherent viscous
damping of the structures. Thus, a five percent damping ratio was as-
signed to the first and third mode (i.e., the mode at which the cumu-
lative mass participation ratio exceeds 0.95) periods of the structures.
In addition to the 12 SMRFs considered, assuming three levels of sup-
plemental viscous damping ratio (i.e., ξv = 0.05, 0.1 and 0.15), linear
and nonlinear FVDs were added to the SMRFs to improve their per-
formance under seismic excitations. For each level of supplemental
viscous damping ratio, four values of velocity exponent (i.e., αd = 0.25,
0.5, 0.75 and 1.0) were assumed. In other words, 12 structures without
supplemental viscous damping and 144 (12 × 3 × 4) structures with
supplemental viscous damping were considered. Fig. 2 indicates the
dimensions of the three benchmark structures, and the configuration of
FVDs in these structures.

The supplemental viscous damping ratio for the first mode of a
structure with FVDs can be calculated as [11]:

=
∑

∑
=

− + − +

=

ξ
π T λ C f D φ

π m φ

(2 )

8v
j
N α α

j j j
α

roof
α

rj
α

i
N

i i

1 1
2 1 1

1
1

3
1 1

2

d d d d d d

s (7)

where T1 is the first mode period of the structure, Cj is the damper
coefficient of the jth damper, fj is a displacement magnification factor
that depends on the geometrical configuration of the jth damper (for a
diagonal damper with an angle of inclination θj, fj = cos θj), Droof is the
roof displacement, which was assumed equal to the roof yield dis-
placement (δy) [17,18], λj is a constant that is a function of the velocity
exponent αd [11,18], φrj1 is the first mode relative displacement (in-
terstory drift) between the two ends of the jth damper in the horizontal

Table 3
First mode periods of the structures.

Structure First mode period (s)

3-story 0.95
6-story 1.32
9-story 2.08
3-story-h1.2 1.2
6-story-htyp1.2 1.54
9-story-htyp1.2 2.51
3-story-h1.4 1.47
6-story-htyp1.4 1.78
3-story-h11.2 1.06
3-story-h11.4 1.2
3-story-m1.2 1.05
3-story-m1.4 1.13
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direction, φi1 is the first mode shape value at the top of story i, nor-
malized to have a unit component at the roof, mi is the mass of story i,
and Nd and Ns are the number of dampers and stories, respectively.
Given a supplemental viscous damping ratio for the first mode of a
structure, ξv, by assuming Cj fj1+αd to be proportional to the corre-
sponding first mode interstory drift, φrj1, and rearranging Eq. (7) the
following equation can be obtained to determine the damper coefficient
of the kth damper:
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Thus, having the assumed values of ξv and αd, the values of Ck for the
dampers in each of the 144 structures with supplemental viscous
damping were determined using Eq. (8). To model the FVDs, it was
assumed that the supporting brace member is rigid, and the dampers do
not reach their stroke limits during seismic loading.

Fig. 1. Base shear coefficient (Vb/W)–roof drift ratio curves for the 12 steel SMRFs considered: (a) No. of stories = 3, (b) No. of stories = 6 and (c) No. of stories = 9.

Fig. 2. Dimensions of the benchmark structures and the configuration of FVDs in these structures.
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To determine the collapse capacities of the structures using
Incremental Dynamic Analysis (IDA) method [14], 67 high-amplitude
ground motion records used by Yakhchalian et al. [24,56], which may
cause the structural collapse of code-compliant structures, were con-
sidered. These high-amplitude ground motion records are related to
shallow crustal earthquakes throughout the world, and have maximum
usable periods greater or equal to 5.0 s. The collapse was assumed to
occur when the maximum interstory drift ratio of the structure reaches
0.15. This assumption has also been used by other researchers (e.g.,
[22,57]). Considering Sa(T1) as the IM for performing IDAs, the in-
tensity of each ground motion record, Sa(T1), was incrementally scaled
until the collapse occurs. Thus, the value of Sa(T1) corresponding to the
collapse, Sacol, was computed for each of the ground motion records.
Fig. 3 illustrates the IDA curves of the 3-story structure with linear FVDs
and a supplemental viscous damping ratio of 0.1. When the values of
Sacol for a structure were computed by using the selected ground motion
records, the IMcol values corresponding to the other IMs were also
calculated. Thus, the IMcol values were obtained for all of the structures.
It should be mentioned that to obtain the values of IMcol using the IMs
including the lengthened period of RαT1, the value of R corresponding
to each record was calculated as the ratio of Sacol/g for that record to

B·γ. The values of B for ξv = 0.05, 0.1 and 0.15 were determined equal
to 1.2, 1.35 and 1.5, respectively, based on the values proposed by
Ramirez et al. [11]. For the structures without supplemental viscous
damping, the value of B is equal to 1.0.

4. Investigating the efficiency of the IMs for collapse capacity
prediction

Efficiency of an IM for collapse capacity prediction is the ability of
the IM to predict the collapse capacity of a structure subjected to
ground motion records with small dispersion [22]. Thus, an efficient IM
can predict the collapse capacity of structures with a lower record-to-
record variability, which causes more accuracy in seismic collapse as-
sessment. The logarithmic standard deviation of IMcol values, σlnIMcol,
which is called dispersion, is an index for the efficiency of scalar IMs for
collapse capacity prediction. In other words, a lower value for σlnIMcol

represents a more efficient IM for collapse capacity prediction. In this
section, the values of dispersion, calculated using the considered IMs,
are compared. It should be mentioned that to calculate the values of
dispersion using the spectral shape based IMs and the combined spec-
tral shape and duration based IMs including the lengthened period of
RαT1, the results of the records in which their maximum usable periods
were lower than the lengthened periods of the IMs were omitted.
Moreover, if the lengthened period of an IMcol value corresponding to a
record was greater than 10.0 s, then the IMcol value was omitted. The
reason for the omission of these results is that at the periods greater
than the maximum usable period of the record, the spectral shape of the
record has been suppressed such that it is not representative of the real
ground motion. In addition, GMPEs for spectral accelerations are often
valid up to a period of 10.0 s. It is worth mentioning that another
strategy could be using the minimum of RαT1, 10.0 s and the maximum
usable period of the record as the lengthened period of the IM. In this
study, these two strategies were investigated and nearly identical re-
sults were obtained. Thus, the results obtained using the first strategy
are presented. Table 4 presents the mean values of dispersion,
(σlnIMcol)avg, calculated considering all of the structures, using the non-
structure-specific IMs, and also the structure-specific IMs except the
combined spectral shape and duration based IMs. The results indicate
that Iv, IMM (α = 0.5), IMM (α = 0.33) and Saavg are the most efficient
IMs, respectively.

Fig. 3. IDA curves of the 3-story structure with linear FVDs and a supplemental viscous
damping ratio of 0.1.

Table 4
Results from investigating the efficiency and sufficiency of the IMs to predict the collapse capacity of the structures.

IM Mean value of dispersion, (σlnIMcol)avg Coefficient of variation for σlnIMcol values % of structures with p-values ≥ 0.05

M R Vs30 SF

PGA 0.61 0.0752 45.51 100 0 0
AI 0.91 0.0991 21.15 100 0 0
CAV 0.42 0.0519 92.95 100 5.13 0
IC 0.74 0.1069 3.21 100 5.13 0
Ia 0.52 0.0613 86.54 100 0 0
PGV 0.35 0.0994 100 100 95.51 0
FI 0.31 0.0679 76.92 100 87.18 0
Iv 0.21 0.0985 30.13 100 90.38 0
CAD 0.41 0.1333 7.69 100 100 98.08
SED 0.60 0.0938 48.08 100 96.15 0
PGD 0.53 0.0777 0 100 97.44 60.90
Id 0.59 0.0959 0 100 100 100
CAI 0.80 0.0808 0 100 100 100
Sa(T1) 0.39 0.1283 42.95 100 100 13.46
ASI 0.66 0.0682 6.41 100 3.85 0
SI 0.32 0.2316 10.90 100 100 0
DSI 0.39 0.1536 18.59 100 100 99.36
IMC 0.29 0.1131 84.62 100 97.44 37.18
IMM (α = 0.33) 0.22 0.0776 84.62 100 99.36 53.85
IMM (α = 0.5) 0.21 0.1172 73.72 99.36 91.67 64.74
INp 0.31 0.1416 41.67 100 100 11.54
Saavg 0.25 0.1213 81.41 99.36 98.08 5.77
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Fig. 4 shows the variations of (σlnIMcol)avg values for the IMs IMC–D,
INp–D and Saavg–D as functions of β. It can be seen that multiplying IMC

and Saavg by td β does not result in more efficient IMs, when compared
with the initial IMs. However, multiplying INp by td β for values of
0< β<0.3, results in a slightly more efficient IM than INp.

To summarize the results of sensitivity analyses, given the final se-
lected optimal values of m= 0.5, n=0.6 and c1 = 0.6 for the IMs IMM–D,
INp M–D and Saavg M–D, respectively, only the results from varying the values
of α and β on the efficiency and sufficiency of these IMs are presented.
Fig. 5(a)–(c) illustrate the mean values of dispersion, (σlnIMcol)avg, calcu-
lated using IMM–D, INp M–D and Saavg M–D, respectively, assuming different
values of α and β. According to these figures, using the points (α, β) cor-
responding to the dark blue regions leads to more efficient IMs, when
compared with the points (α, β) corresponding to the other regions.
Fig. 5(a) indicates that given the point (α = 0.46, β = −0.06), IMM–D has
the highest efficiency, with a (σlnIMcol)avg value of 0.21, and assuming β =
0 does not decrease the efficiency of this IM considerably. Fig. 5(b) in-
dicates that given α = 0.5 and β = 0, INp M–D has the highest efficiency,
which corresponds to a (σlnIMcol)avg value of 0.19. Fig. 5(c) indicates that
the point (α = 0.39, β = 0.01) corresponds to the highest efficiency for
Saavg M–D with a (σlnIMcol)avg value of 0.18, and when the value of β is zero,
the value of (σlnIMcol)avg increases slightly.

Fig. 4. Variations of (σlnIMcol)avg values for the IMs IMC–D, INp–D and Saavg–D as functions of β.

Fig. 5. Mean values of dispersion calculated using (a) IMM–D given m = 0.5, (b) INp M–D given n = 0.6, and (c) Saavg M–D given c1 = 0.6, assuming different values of α and β.
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Based on the results, accounting for the effect of ground motion
duration in the combined spectral shape and duration based IMs does
not play a significant role in improving the efficiency of these IMs,
when predicting the collapse capacity of the structures. It should be
noted that to find the optimal values of β for use in the IMs IMC–D, INp–D
and Saavg–D, and the optimal points (α, β) for use in the IMs IMM–D, INp
M–D and Saavg M–D, the sufficiency of the IMs should also be considered.

5. Investigating the sufficiency of the IMs for collapse capacity
prediction

Sufficiency of an IM for collapse capacity prediction is the ability of
the IM to predict the collapse capacity of a structure conditionally in-
dependent of other ground motion properties such as earthquake
magnitude (M), source-to-site distance (R), average shear-wave velocity
at the upper 30m (Vs30), etc. [22]. In fact, when using a sufficient IM
to predict the collapse capacity of structures, there is no need to use
complex ground motion record selection procedures, because the IM
represents the other ground motion properties. In order to test the
sufficiency of a scalar IM with respect to a ground motion parameter
(i.e., M, R, Vs30, etc.) for predicting the collapse capacity of structures,

a linear regression can be applied as follows:

= + ⋅E IM a a X[ ln ]col 0 1 (9)

where E[lnIMcol] is the expected value of lnIMcol; a0 and a1 are the re-
gression coefficients; and X is the earthquake magnitude, M, the natural
logarithm of the source-to-site distance, lnR, or the natural logarithm of
the average shear-wave velocity at the upper 30m, lnVs30, etc. The
coefficient a1 in Eq. (9) is estimated using a finite number of observa-
tions; thus, statistical tests such as F-test [58] can be used to examine
the statistical significance of this coefficient. The result of the F-test is a
p-value, which indicates the sufficiency or insufficiency of the IM with
respect to the ground motion parameter of interest. A p-value of less
than 0.05, which implies the statistical significance of the coefficient a1,
indicates the insufficiency of the considered IM, whereas a p-value of
greater than 0.05 indicates the sufficiency of the considered IM. In
order to test the scaling robustness of an IM, the natural logarithm of
scale factor, lnSF, can be substituted in Eq. (9) instead of X [24].

The results from investigating the sufficiency of the non-structure-
specific IMs and also the structure-specific IMs, except the combined
spectral shape and duration based IMs, for collapse capacity prediction
of the structures are summarized in Table 4. To enable the reader to
compare the sufficiency of the IMs with respect to M, R, Vs30 and SF,

Fig. 6. Percent of structures with p-values ≥ 0.05 obtained from investigating the sufficiency of IMC–D, INp–D and Saavg–D with respect to (a) M, (b) Vs30 and (c) SF as functions of β.
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for each of the IMs, this table presents the percent of structures with p-
values ≥ 0.05 obtained from testing the sufficiency of IM with respect
to each of these parameters. It can be seen that none of the IMs is si-
multaneously sufficient with respect to M, R, Vs30 and SF for all of the
structures. It should be noted that Sa(T1), as the most common scalar
IM, satisfies the sufficiency with respect to M and SF for 42.95% and
13.46% of the structures, respectively. The results show that Iv, which is
the most efficient IM, satisfies the sufficiency with respect to M for only
30.13% of the structures, and does not satisfy the sufficiency with re-
spect to SF for any of the structures. Moreover, a comparison between
IMM (α = 0.33) and Saavg indicates that both the IMs are sufficient with
respect to M for more than 80% of the structures, but their sufficiency
with respect to SF is not comparable. In other words, IMM (α = 0.33) is
sufficient with respect to SF for 53.85% of the structures, whereas Saavg
is sufficient with respect to SF for 5.77% of the structures. Among the
most efficient spectral shape based IMs, the sufficiency of IMM (α=0.5)
with respect to SF is higher than those of IMM (α = 0.33) and Saavg, but
its sufficiency with respect to M is lower than those of IMM (α = 0.33)
and Saavg.

In summary, it seems that the most efficient IMs presented in
Table 4 are facing the sufficiency problems with respect to either M or

SF (or both). Thus, considering the effect of ground motion duration in
the combined spectral shape and duration based IMs may improve the
sufficiency of these IMs, when compared with the spectral shape based
IMs. Fig. 6(a)–(c) show the results from investigating the sufficiency of
the three IMs considered in Fig. 4 (i.e., IMC–D, INp–D and Saavg–D) with
respect toM, Vs30 and SF, respectively, as functions of β. Due to the fact
that given all values of β, these IMs are sufficient with respect to R for
more than 99% of the structures, the results of testing the sufficiency of
the IMs with respect to R are not presented in this figure. It should be
noted that when β is zero, IMC–D, INp–D and Saavg–D are simplified to IMC,
INp and Saavg, respectively. Fig. 6(a) shows that as the value of β varies
from −0.5 to 0.2, the sufficiency of IMC–D, INp–D and Saavg–D with re-
spect to M is significantly improved. Fig. 6(b) shows that the variation
of β does not have a considerable effect on the sufficiency of the IMs
with respect to Vs30. Fig. 6(c) shows that as the value of β varies from
−0.5 to 0.3, the sufficiency of the IMs with respect to SF is significantly
improved.

According to the results of the sensitivity analyses performed to
investigate the effects of the value considered for β on the efficiency and
sufficiency of the IMs IMC–D, INp–D and Saavg–D, the optimal values of β
equal to 0.2, 0.3 and 0.3 were selected for use in these IMs, respectively.

Fig. 7. Percent of structures with p-values ≥ 0.05 obtained from investigating the sufficiency of IMM–D given m = 0.5, with respect to (a) M, (b) R, (c) Vs30 and (d) SF assuming different
values of α and β.

H.R. Jamshidiha et al. Soil Dynamics and Earthquake Engineering 109 (2018) 102–118

110



In other words, using the selected optimal values of β for the three IMs,
which were obtained by considering both the efficiency and sufficiency
criteria, leads to more reliable results, when compared with the other
values of β.

Fig. 7(a)–(d) show the results from investigating the sufficiency of
IMM–D given m = 0.5, with respect to M, R, Vs30 and SF, respectively,
assuming different values of α and β. The contours in each of these
figures illustrate the percent of structures with p-values ≥ 0.05 ob-
tained considering one of the aforementioned parameters. In regard to
these figures, using the points (α, β) corresponding to the dark red re-
gions for IMM–D leads to considerable sufficiency for this IM. To select
the optimal values of α and β for use in IMM–D, Figs. 5(a) and 7 should
be simultaneously considered, and a point (α, β) corresponding to high
efficiency and also acceptable sufficiency should be found. According to
these figures, the point (α = 0.3, β = 0.2) was selected as an optimal
point for use in IMM–D.

Fig. 8(a)–(d) show the results from investigating the sufficiency of
INp M–D given n = 0.6, with respect to M, R, Vs30 and SF, respectively,
assuming different values of α and β. According to Figs. 5(b) and 8, the
point (α = 0.4, β = 0.2) was selected as an optimal point for use in INp
M–D, by a method similar to that applied for IMM–D.

Fig. 9(a)–(d) show the results from investigating the sufficiency of
Saavg M–D given c1 = 0.6, with respect to M, R, Vs30 and SF, respec-
tively, assuming different values of α and β. According to Figs. 5(c) and
9, the point (α = 0.4, β = 0.1) was selected as an optimal point for use
in Saavg M–D, by a method similar to those applied for IMM–D and INp M–D.

6. Proposing optimal IMs

As mentioned previously, the most efficient IMs considered in
Table 4 are facing the sufficiency problems with respect to either M or
SF (or both). In this section, the efficiency and sufficiency of the com-
bined spectral shape and duration based IMs are investigated. Table 5
compares the efficiency and sufficiency of these IMs, given the selected
optimal values of the parameters for these IMs. It can be seen that the
first three IMs (i.e., IMC–D, INp–D and Saavg–D) are less efficient than the
other three IMs. Among the IMs IMM–D, INp M–D and Saavg M–D, Saavg M–D

is the most efficient one, but its sufficiency with respect to M and SF is
lower than those of the other two IMs. Furthermore, IMM–D is the most
sufficient IM, but its efficiency is lower than those of the other two IMs.
In summary, it can be inferred that using the IMs IMM–D, INp M–D and
Saavg M–D to predict the collapse capacity of the considered structures,

Fig. 8. Percent of structures with p-values ≥ 0.05 obtained from investigating the sufficiency of INp M–D given n = 0.6, with respect to (a) M, (b) R, (c) Vs30 and (d) SF assuming different
values of α and β.

H.R. Jamshidiha et al. Soil Dynamics and Earthquake Engineering 109 (2018) 102–118

111



leads to more reliable results, when compared with the other IMs. Thus,
these IMs are proposed as advanced scalar IMs to predict the collapse
capacity of steel SMRFs equipped with FVDs. It should be noted that in
the case of the SMRFs without FVDs, the proposed IMs have consider-
able efficiency and sufficiency so that their corresponding mean values
of dispersion are approximately the same with those presented in
Table 5 and they are sufficient for more than 90% of the SMRFs without
FVDs.

Fig. 10 illustrates the fractional reductions in (σlnIMcol)avg achieved

by the proposed IMs with respect to Sa(T1) and three well-known
spectral shape based IMs (i.e., IMC, INp and Saavg). Each bar in this figure
represents the fractional reduction in (σlnIMcol)avg achieved by one of the
proposed IMs with respect to one of the four above-mentioned IMs. It
can be seen that the largest fractional reduction in (σlnIMcol)avg is
51.61%, which is achieved by Saavg M–D with respect to Sa(T1). Fur-
thermore, the smallest fractional reduction in (σlnIMcol)avg achieved by
Saavg M–D is with respect to Saavg.

Fig. 11(a)–(d) illustrate the amounts of increase in number of

Fig. 9. Percent of structures with p-values ≥ 0.05 obtained from investigating the sufficiency of Saavg M–D given c1 = 0.6, with respect to (a) M, (b) R, (c) Vs30 and (d) SF assuming
different values of α and β.

Table 5
Results from investigating the efficiency and sufficiency of the combined spectral shape and duration based IMs, given the selected optimal values of the parameters for these IMs.

IM Mean value of dispersion, (σlnIMcol)avg Coefficient of variation for σlnIMcol values % of structures with p-values ≥ 0.05

M R Vs30 SF

IMC–D (β = 0.2) 0.300 0.1077 92.95 100 94.87 92.95
INp–D (β = 0.3) 0.315 0.1289 100 100 98.08 91.03
Saavg–D (β = 0.3) 0.287 0.0920 80.13 100 98.72 85.26
IMM–D (m = 0.5, α = 0.3, β = 0.2) 0.245 0.0717 98.72 100 99.36 98.08
INp M–D (n = 0.6, α = 0.4, β = 0.2) 0.230 0.0943 98.08 100 98.08 93.59
Saavg M–D (c1 = 0.6, α = 0.4, β = 0.1) 0.187 0.0937 91.03 100 100 90.38
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structures with p-values ≥ 0.05 normalized to the total number of
structures (in percent), calculated from comparing the sufficiency of the
proposed IMs, with respect to M and SF, with those of the IMs Sa(T1),
IMC, INp and Saavg, respectively. It can be seen that the proposed IMs
possess significantly higher sufficiency with respect to SF, when com-
pared with Sa(T1), IMC, INp and Saavg. Furthermore, in the case of suf-
ficiency with respect to M, the proposed IMs possess higher sufficiency

compared with the four considered IMs, particularly INp and Sa(T1) that
have low sufficiency with respect to M.

Table 6 presents the values of σlnIMcol obtained for the 156 structures
considered in this study using the three proposed IMs. It can be seen
that when the damping ratio of a structure increases, the corresponding
σlnIMcol does not necessarily increase. Fig. 12 indicates the collapse
fragility curves developed by using the three proposed IMs and seven
other scalar IMs for the 3-, 6- and 9-story structures with linear FVDs
and a supplemental viscous damping ratio of 0.1. To develop the col-
lapse fragility curves using different IMs, the distributions of IMcol va-
lues were assumed to be lognormal. Moreover, to compare the collapse
fragility curves, the values of IMcol obtained using each IM were nor-
malized to their corresponding median collapse capacity, which is the
exponential of the mean of the lnIMcol values. It can be seen that for the
three structures considered, the collapse fragility curves corresponding
to the proposed IMs are steeper than the other ones. This is because of
the fact that these IMs are more efficient than the other IMs, and thus
their corresponding σlnIMcol values are lower than those of the other IMs.
It should be mentioned that the same observations hold true for all the
structures considered in this study, but due to space limitation, collapse
fragility curves are only presented for the three aforementioned struc-
tures.

As described previously, one of the desirable features of an optimal
IM is scaling robustness. Fig. 13 illustrates a comparison between the
scaling robustness of three well-known spectral shape based IMs and
the proposed IMs to predict the collapse capacity of the 6-story-htyp1.2
structure with nonlinear FVDs, having αd = 0.5, and a supplemental

Fig. 10. Fractional reductions in (σlnIMcol)avg achieved by the proposed IMs with respect to
Sa(T1) and three well-known spectral shape based IMs.

Fig. 11. Normalized amounts of increase in number of structures with p-values ≥ 0.05 (in percent) calculated from comparing the sufficiency of the proposed IMs, with respect to M and
SF, with those of (a) Sa(T1), (b) IMC, (c) INp and (d) Saavg.
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viscous damping ratio of 0.1. It can be seen than the proposed IMs
possess high sufficiency with respect to SF, whereas the other IMs are
insufficient with respect to SF.

7. GMPEs for the proposed IMs

As mentioned previously, one of the desirable features of an optimal
IM is predictability. In fact, the predictability of the proposed IMs is
crucial for the applicability of these IMs. The reason for this issue is that
to perform Probabilistic Seismic Hazard Analysis (PSHA) using a pro-
posed IM, a reliable GMPE for the IM is required. Other researchers
[31,46,59–61] have presented GMPEs for some of the spectral shape
based IMs considered in this study using the GMPE for Sa(T) and cor-
relation of spectral acceleration values. However, because the IMs
proposed in this study are combined spectral shape and duration based
IMs, to present GMPEs for these IMs, additional information is required.
In this section, to satisfy the predictability criterion for the proposed
IMs and facilitate their use for conducting PSHA, GMPEs are presented
for these IMs. Assuming lognormal distribution for the proposed IMs,
the logarithmic means and standard deviations of these IMs can be
determined based on the GMPEs for Sa(T) and td existing in the tech-
nical literature (e.g., the Campbell and Bozorgnia GMPE [62] for Sa(T)
and the GMPE proposed by Bommer et al. [63] for td). Moreover, cor-
relation of spectral acceleration values and also correlation of sig-
nificant duration with spectral acceleration values are required. To
obtain these correlations, the empirical equations proposed by Baker

and Jayaram [64] and Bradley [65] can be used.
The logarithmic mean and standard deviation of IMM–D can be ob-

tained, respectively, as follows:
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where E(lnSa(T1)), E(lnSa(RαT1)) and E(lntd) are the logarithmic means
of Sa(T1), Sa(RαT1) and td, respectively; σ Sa Tln ( )1 , σ Sa R Tln ( )α 1 and σ tln d are
the logarithmic standard deviations of Sa(T1), Sa(RαT1) and td, respec-
tively; and ρ Sa T Sa R Tln ( ), ln ( )α1 1 , ρ Sa T tln ( ), ln d1 and ρ Sa R T tln ( ), lnα d1 are the
correlations of lnSa(T1) and lnSa(RαT1), lnSa(T1) and lntd, and lnSa
(RαT1) and lntd, respectively. ρ Sa T Sa R Tln ( ), ln ( )α1 1 can be obtained using the
equation proposed by Baker and Jayaram [64], whereas ρ Sa T tln ( ), ln d1
and ρ Sa R T tln ( ), lnα d1 can be obtained using the equation proposed by
Bradley [65].

The logarithmic mean and standard deviation of INp M–D can be
obtained, respectively, as follows:

Table 6
Values of σlnIMcol obtained for the 156 structures considered in this study using the three proposed IMs.

Structure IM Supplemental viscous damping ratio

0.05 0.1 0.15

αd = 1.0 0.75 0.5 0.25 1.0 0.75 0.5 0.25 1.0 0.75 0.5 0.25 Average

3-story A 0.233 0.234 0.230 0.222 0.220 0.230 0.230 0.228 0.215 0.250 0.229 0.222 0.218 0.228
B 0.206 0.208 0.204 0.200 0.199 0.207 0.206 0.207 0.201 0.227 0.204 0.205 0.208 0.206
C 0.188 0.183 0.177 0.175 0.174 0.185 0.178 0.170 0.172 0.207 0.179 0.174 0.166 0.179

3-story-h1.2 A 0.245 0.229 0.232 0.236 0.243 0.241 0.241 0.243 0.239 0.245 0.238 0.241 0.239 0.239
B 0.221 0.211 0.214 0.218 0.222 0.225 0.223 0.226 0.222 0.230 0.220 0.225 0.223 0.222
C 0.185 0.192 0.189 0.184 0.185 0.212 0.203 0.199 0.188 0.225 0.207 0.202 0.192 0.197

3-story-h1.4 A 0.247 0.224 0.236 0.238 0.243 0.230 0.240 0.236 0.245 0.234 0.239 0.241 0.247 0.238
B 0.232 0.219 0.226 0.229 0.232 0.224 0.233 0.231 0.239 0.228 0.232 0.234 0.240 0.231
C 0.193 0.186 0.192 0.189 0.190 0.194 0.201 0.193 0.196 0.200 0.199 0.196 0.194 0.194

3-story-h11.2 A 0.250 0.249 0.250 0.247 0.245 0.240 0.245 0.243 0.239 0.259 0.237 0.242 0.240 0.245
B 0.214 0.215 0.216 0.214 0.215 0.213 0.214 0.214 0.214 0.232 0.209 0.214 0.220 0.216
C 0.183 0.179 0.176 0.173 0.173 0.182 0.174 0.170 0.168 0.199 0.175 0.170 0.169 0.176

3-story-h11.4 A 0.223 0.223 0.222 0.214 0.217 0.232 0.232 0.230 0.232 0.256 0.240 0.237 0.234 0.230
B 0.206 0.204 0.203 0.190 0.194 0.216 0.215 0.210 0.213 0.239 0.226 0.220 0.216 0.212
C 0.178 0.183 0.176 0.167 0.167 0.202 0.194 0.184 0.183 0.224 0.207 0.196 0.186 0.188

3-story-m1.2 A 0.258 0.251 0.250 0.249 0.258 0.248 0.264 0.253 0.252 0.255 0.248 0.253 0.240 0.252
B 0.226 0.218 0.217 0.219 0.227 0.220 0.232 0.223 0.225 0.231 0.220 0.225 0.220 0.223
C 0.196 0.183 0.181 0.183 0.190 0.189 0.195 0.185 0.182 0.203 0.186 0.185 0.174 0.187

3-story-m1.4 A 0.250 0.233 0.236 0.235 0.239 0.239 0.239 0.243 0.243 0.250 0.242 0.245 0.247 0.242
B 0.228 0.207 0.209 0.209 0.212 0.214 0.212 0.217 0.217 0.228 0.217 0.220 0.224 0.216
C 0.179 0.172 0.172 0.168 0.168 0.181 0.176 0.179 0.177 0.199 0.182 0.182 0.183 0.178

6-story A 0.225 0.252 0.228 0.228 0.230 0.274 0.245 0.241 0.237 0.284 0.257 0.249 0.246 0.246
B 0.214 0.247 0.222 0.219 0.219 0.274 0.244 0.234 0.229 0.280 0.258 0.243 0.239 0.240
C 0.190 0.213 0.195 0.192 0.191 0.237 0.214 0.204 0.199 0.245 0.231 0.215 0.207 0.210

6-story-htyp1.2 A 0.246 0.247 0.236 0.233 0.233 0.258 0.238 0.246 0.233 0.270 0.243 0.234 0.232 0.242
B 0.233 0.242 0.229 0.225 0.227 0.252 0.234 0.242 0.231 0.272 0.242 0.234 0.230 0.238
C 0.184 0.192 0.182 0.178 0.179 0.204 0.186 0.189 0.181 0.222 0.196 0.187 0.180 0.189

6-story-htyp1.4 A 0.249 0.237 0.239 0.241 0.242 0.249 0.254 0.242 0.242 0.264 0.258 0.248 0.245 0.247
B 0.238 0.228 0.229 0.231 0.232 0.245 0.244 0.234 0.235 0.263 0.256 0.241 0.238 0.240
C 0.172 0.165 0.162 0.162 0.162 0.181 0.174 0.163 0.162 0.198 0.188 0.166 0.171 0.171

9-story A 0.240 0.241 0.233 0.234 0.231 0.253 0.235 0.230 0.228 0.292 0.246 0.235 0.234 0.241
B 0.231 0.234 0.228 0.231 0.228 0.242 0.228 0.227 0.227 0.273 0.238 0.231 0.231 0.234
C 0.168 0.177 0.168 0.167 0.162 0.183 0.157 0.157 0.156 0.207 0.164 0.152 0.150 0.167

9-story-htyp1.2 A 0.283 0.297 0.275 0.284 0.286 0.290 0.299 0.285 0.278 0.295 0.287 0.297 0.289 0.288
B 0.278 0.294 0.267 0.276 0.279 0.284 0.292 0.280 0.275 0.285 0.283 0.291 0.286 0.282
C 0.210 0.221 0.202 0.209 0.207 0.221 0.218 0.202 0.196 0.223 0.215 0.211 0.199 0.210

A= IMM–D, B= INp M–D, C= Saavg M–D

H.R. Jamshidiha et al. Soil Dynamics and Earthquake Engineering 109 (2018) 102–118

114



  ∑= − + +−
=

E I n E Sa T n
N

E Sa T β E t(ln ) (1 ) (ln ( )) (ln ( )) (ln )Np M D
i

N

i d1
1

(12)

 

 

 

 

= − +

+ + −

× + −
× +

×

−σ n σ n σ

β σ n n ρ

σ σ β n ρ
σ σ βnρ

σ σ

((1 )

2 (1 )

2 (1 )
2

)

I Sa T Sa T T

t Sa T Sa T T

Sa T Sa T T Sa T t

Sa T t Sa T T t

Sa T T t

ln
2

ln ( )
2 2

ln ( ... )
2

2
ln
2

ln ( ), ln ( ... )

ln ( ) ln ( ... ) ln ( ), ln

ln ( ) ln ln ( ... ), ln

ln ( ... ) ln
0.5

Np M D avg N

d avg N

avg N d

d avg N d

avg N d

1 1

1 1

1 1 1

1 1

1 (13)

where E(lnSa(Ti)) is the logarithmic mean of Sa(Ti), σ Sa T Tln ( ... )avg N1 is the
logarithmic standard deviation of Saavg(T1…TN); and
ρ Sa T Sa T Tln ( ), ln ( ... )avg N1 1 and ρ Sa T T tln ( ... ), lnavg N d1 are the correlations of lnSa
(T1) and lnSaavg(T1…TN), and lnSaavg(T1…TN) and lntd, respectively.
σ Sa T Tln ( ... )avg N1 , ρ Sa T Sa T Tln ( ), ln ( ... )avg N1 1 and ρ Sa T T tln ( ... ), lnavg N d1 can be obtained
using the following equations:

∑ ∑=
= =

σ
N

ρ σ σ( 1 )Sa T T
i

N

j

N

Sa T Sa T Sa T Sa Tln ( ... ) 2
1 1

ln ( ), ln ( ) ln ( ) ln ( )
0.5

avg N i j i j1
(14)

=
∑

∑ ∑
=

= =

ρ
ρ σ

ρ σ σ
Sa T Sa T T

i
N

Sa T Sa T Sa T

i
N

j
N

Sa T Sa T Sa T Sa T
ln ( ), ln ( ... )

1 ln ( ), ln ( ) ln ( )

1 1 ln ( ), ln ( ) ln ( ) ln ( )
avg N

i i

i j i j
1 1

1

(15)

=
∑

∑ ∑
=

= =

ρ
ρ σ

ρ σ σ
Sa T T t

i
N

t Sa T Sa T

i
N

j
N

Sa T Sa T Sa T Sa T
ln ( ... ), ln

1 ln , ln ( ) ln ( )

1 1 ln ( ), ln ( ) ln ( ) ln ( )
avg N d

d i i

i j i j
1

(16)

where σ Sa Tln ( )i and σ Sa Tln ( )j are the logarithmic standard deviations of Sa
(Ti) and Sa(Tj), respectively; ρ Sa T Sa Tln ( ), ln ( )i j and ρ Sa T Sa Tln ( ), ln ( )i1 are the
correlations of lnSa(Ti) and lnSa(Tj), and lnSa(T1) and lnSa(Ti), re-
spectively, which can be obtained using the equation proposed by Baker
and Jayaram [64]; and ρ t Sa Tln , ln ( )d i is the correlation of lntd and lnSa
(Ti), which can be obtained using the equation proposed by Bradley
[65].

The logarithmic mean and standard deviation of Saavg M–D can be
obtained, respectively, as follows:

∑= +−
=

E Sa
N

E Sa c T βE t(ln ) 1 (ln ( )) (ln )avg M D
i

N

i d
1

1
(17)

Fig. 12. Collapse fragility curves developed by using different IMs for the 3-, 6- and 9-story structures with linear FVDs and a supplemental viscous damping ratio of 0.1.
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where E(lnSa(ciT1)) is the logarithmic mean of Sa(ciT1), σ Sa c T c Tln ( ... )avg N1 1 1
is the logarithmic standard deviation of Saavg(c1T1…cNT1), and
ρ Sa c T c T tln ( ... ), lnavg N d1 1 1 is the correlation of lnSaavg(c1T1…cNT1) and lntd.
σ Sa c T c Tln ( ... )avg N1 1 1 and ρ Sa c T c T tln ( ... ), lnavg N d1 1 1 can be obtained using the fol-
lowing equations:
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where σ Sa c Tln ( )i 1 and σ Sa c Tln ( )j 1 are the logarithmic standard deviations of
Sa(ciT1) and Sa(cjT1), respectively; and ρ Sa c T Sa c Tln ( ), ln ( )i j1 1 and
ρ t Sa c Tln , ln ( )d i 1 are the correlations of lnSa(ciT1) and lnSa(cjT1), and lntd
and lnSa(ciT1), respectively.

8. Conclusions

In this study, the efficiency and sufficiency of 27 scalar IMs, in-
cluding 13 non-structure-specific and 14 structure-specific IMs, to
predict the collapse capacity of steel SMRFs with and without FVDs
were investigated. For this purpose, 12 SMRF structures including three
code-designed benchmark structures and nine structures derived from
the benchmark structures, by changing their height or seismic mass,
were considered. In addition to the 12 SMRF structures, assuming three
levels of supplemental viscous damping ratio, linear and nonlinear
FVDs were added to the SMRFs and 144 SMRFs with FVDs were con-
sidered. The obtained results indicated that none of the non-structure-
specific IMs could satisfy both the efficiency and sufficiency criteria.
The structure-specific IMs consist of Sa(T1), the spectral shape based
IMs and the combined spectral shape and duration based IMs. It was
indicated that among the spectral shape based IMs, IMC, INp, IMM and
Saavg are more efficient than the others, but they are facing the suffi-
ciency problems with respect to either M or SF (or both). The combined
spectral shape and duration based IMs are IMC–D, IMM–D, INp–D, INp M–D,
Saavg–D and Saavg M–D. Sensitivity analyses were performed to select the
optimal values of the parameters for these IMs by considering the ef-
ficiency and sufficiency criteria simultaneously. After selecting the
optimal values of the parameters for use in the combined spectral shape
and duration based IMs, the results obtained by using these IMs were
compared, and the IMs IMM–D, INp M–D and Saavg M–D were proposed as
advanced scalar IMs to reliably predict the collapse capacity of steel

Fig. 13. Comparison between the scaling robustness of (a) IMC, (b) INp, (c) Saavg, (d) IMM–D, (e) INp M–D and (f) Saavg M–D to predict the collapse capacity of the 6-story-htyp1.2 structure with
nonlinear FVDs, having αd = 0.5, and ξv = 0.1.
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SMRFs with FVDs.
According to the results, the values of (σlnIMcol)avg obtained using

IMM–D, INp M–D and Saavg M–D are 0.24, 0.23 and 0.19, respectively. Thus,
Saavg M–D is more efficient than the other proposed IMs. Comparing the
values of (σlnIMcol)avg obtained using the proposed IMs with that ob-
tained using Sa(T1), which is 0.39, indicates the high efficiency of the
proposed IMs. Moreover, the proposed IMs possess high sufficiency
with respect to M and SF, when compared with the other IMs con-
sidered in this study. In other words, IMM–D, INp M–D and Saavg M–D are
sufficient with respect to M for 98.72%, 98.08% and 91.03% of the
structures, respectively, and in the case of sufficiency with respect to SF,
these IMs are sufficient for 98.08%, 93.59% and 90.38% of the struc-
tures, respectively. Therefore, it can be concluded that accounting for
the effect of ground motion duration in the proposed IMs leads to high
sufficiency with respect to M and SF for these IMs. Consequently, by
using the proposed IMs, the collapse capacity of steel SMRFs with FVDs
can be predicted more realistically. Furthermore, in the case of steel
SMRFs without FVDs, the proposed IMs are also better than the other
IMs. To satisfy the predictability criterion for the proposed IMs, GMPEs
were presented for these IMs.
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