
A Deep Learning Framework to Enhance Software
Defined Networks Security

Abstract -Software-Defined Networks (SDN) initiates a
novel networking model. SDN proposes the separation of
forward and control planes by introducing a new
independent plane called network controller. The
architecture enhances the network resilient, decompose
management complexity, and support more
straightforward network policies enforcement. However,
the model suffers from severe security threats.
Specifically, a centralized network controller is a
precious target for two reasons. First, the controller is
located at a central point between the application and
data planes. Second, a controller is software which prone
to vulnerabilities, e.g., buffer and stack overflow. Hence,
providing security measures is a crucial procedure
towards the fully unleash of the new model capabilities.
Intrusion detection is an option to enhance the
networking security. Several approaches were proposed,
for instance, signature-based, and anomaly detection.
Anomaly detection is a broad approach deployed by
various methods, e.g., machine learning. For many
decades intrusion detection solution suffers performance
and accuracy deficiencies. This paper revisits network
anomalies detection as recent advances in machine
learning particularly deep learning proofed success in
many areas like computer vision and speech recognition.
The study proposes an intrusion detection framework
based on unsupervised deep learning algorithms.

Keywords—Software-defined networks; Deep Learning;
Anomalies Detection; Autoencoders

I. INTRODUCTION
The conventional communication networking model
consists of three planes. i.e., management, control, and
forward or data. The management plane supports network

monitoring and configuration. The control plane populates
forwarding tables on the physical devices. Consecutively,
the forward plane switches packets to ingress and egress
ports based on the forwarding tables. For decades, both the

Control and the forward planes are integrated into the same
networking devices, for instance. Switches or routers. The
conventional model provided efficiency from a performance
perspective. However, current networks became
excessively complicated, and there is a necessity to adopt a
more resilient architecture [1].

This paper introduces a framework to enhance the security
deficiencies of SDN.The framework is anomalies detection
based on machine learning. The next section discusses SDN
model and related security threats. The third section
investigates the deep learning and its current anomalies
detection solution for network security. The fourth section
represents our proposed framework.

II. SOFTWARE-DEFINED NETWORKS AND
RELATED WORK

 Software-Defined Networks (SDN) networking model
detaches control and forward planes [2]. The devices
provide forwarding capabilities to switch the data flow,
while the control plane is decoupled to introduce a new
entity called network controller. The forward plane located
at the bottom of the stack includes hardware devices, e.g.,
switches, routers, and firewalls and intrusion detection
systems (IDS). The devices do not possess the software
intelligence needed to fill the forwarding tables. The
network logic independently relocated to the controller
layer.

 The controller abstracts the devices and provides resources
required to programme low-level forwarding devices.
Controller aka Network Operating system (NOS) provides
services like network state, and topology information.
Additionally, the controller provides northbound, and
southbound APIs. The northbound API to facilitate

Ahmed Dawoud
School of computing, Engineering, and

Mathematics.
Western Sydney University, Sydney,

Australia.

Chun Raun
School of computing, Engineering, and

Mathematics.
Western Sydney University, Sydney,

Australia.

Seyed Shahristani
School of computing, Engineering, and

Mathematics.
Western Sydney University, Sydney,

Australia.

709

2018 32nd International Conference on Advanced Information Networking and Applications Workshops

978-1-5386-5395-1/18/$31.00 ©2018 IEEE
DOI 10.1109/WAINA.2018.00172

communication with the applications. Whereas, the
southbound API to provide accessibility between the
controller and forwarding devices. OpenFlow is a defacto
SDN southbound protocol [3]. The application plane resides
on the top of the SDN model stack. Network
programmability is a key privilege achieved by SDN
model, where applications in the top plane can access the
physical devices through the controller. Programmability
facilitates and accelerates the innovation with an enormous
number of network applications, e.g., monitoring, traffic
engineering, security, and cloud applications. Centralization
is an essential characteristic of the SDN architecture. A
controller is a central entity which provides a global view of
the entire network; it eases the management and policies
enforcement process. Additionally, it decreases the faults in
configuring and deploying the network policies. The
centralization enhances the network resilience and
interoperability, for instance, multiple of devices from
various industrials can be integrated and abstracted in one
network.

Security threats are critical challenges in conventional
networking systems. The threats are intensifying in SDN
networks. The model’s many advantages are accompanied
by additional threats that were not possible in the traditional
networks. For the southbound OpenFlow protocol, a
security analysis study exposed various attacks derived from
the SDN standard protocol, for example, flow tables and on
the devices control channels between the devices and
controller affected by a denial of service attacks (DoS).
Application privilege conflicts propagate to flow rules. The
control channel between the controller and the switch is
initiated as a TCP connection, with an option for encryption
protocol Transport Layer Security (TLS) to secure the
channel. Without an encryption method, the communication
between the controller and the forwarding devices are
exposed to a man in the middle attacks. Kloti et al. have
conducted a security analysis for the OF protocol [4]. The
study has deduced that denials of services attacks have
threatened the flow tables and the communication channels;
as the attacker flood those components with OpenFlow rules
and requests. Additionally, tampering attacks have
substantially targeted the flow tables on the devices by
installing rules from untrusted sources.

 Kreutz et al. concluded seven threats vector for SDN [5].
Three threats are directly linked to the controller itself as
follows,

• Attacks on the communications between the
controller and the data plane devices.

• Attacks on the controller vulnerabilities
• Attacks on the controller originated from untrusted

applications

Intrusion Detection Systems are software or hardware
systems dedicated to monitoring the traffic for security
threats. Standard intrusion detection process includes three
phases, collecting data from the network, analyzing, and
then launch a proper response if a threat exposed. There are
three approaches to analyze the collected traffic named
signature-based, anomaly detection, and specification based.
Firstly, signature-based, whereas a system has a database of
predefined violations’ signatures, and the system matches
those signatures against the network activity signatures.
Secondly, anomalies or outlier analysis, the system concerns
about differentiate between the normal and abnormal
patterns. For the system, normal activities are identified in a
baseline profile, which the system develops in a learning
phase. Thirdly the stateful protocol analysis, in this method
a predefined pattern of protocols’ behavior is established, a
comparison is made between network activities and the
expected behavior defined by protocols, and in the case of
profile violation, an alert is raised. A combination of
methods is used to maximize the IDP performance [6]. A
significant weakness in the signature-based method is the
inability to detect new attacks while the anomaly detection
has a higher false alarms rate. The majority of the
commercial implementations use a hybrid approach [7].

Anomalies or outliers are unexpected patterns. In the
context of networking, we assume the intrusive or attacks
are unusual behavior [8]. So at any point, the majority of the
traffic is normal. Several approaches were adopted .e.g.
statistical methods, machine learning, and biological
models. The proposed framework adopts a machine learning
approach.

III. AUTOENCODERS

Machine learning is an artificial intelligence approach that
focuses on acquiring knowledge from raw data (data
representation aka features). In practice, retrieving
knowledge means finding patterns. For more than half
century, neural networks were an active topic for machine
learning and neuroscience. However, there were no
breakthroughs in accuracy and performance. Recently, deep
learning has revived the neural networks. It has been
successfully applied in various areas .e.g., objects and
speech recognition [9].

Deep Learning (DL) is deep neural network architecture; the
deepness term refers to multi hidden layers between the
input and output layers. Figure 1 left side shows shallow
neural network with one hidden layer. A deep network is a
neural network with hidden layers between the input and
output layers. Empirically more hidden layers mean more
features to detect. Deep neural networks existed for a long
time, however; it was not possible to train the network for
three reasons, i.e., Vanishing Gradient Decent in

710

backpropagation algorithm, poor generalization, and
computation power.

The recent advances in DL started in 2006 by a pre-training
step using restricted Boltzmann Machines (RBM) [10].
Later, various algorithms were proposed to solve
generalization problem these solutions include Rectifier
Linear Units (ReLU) and dropouts. DL algorithms are
classified into supervised and unsupervised. In supervised
learning, the training dataset contains the input data and data
labels. This approach is suitable for classification, and
regression tasks. In the unsupervised, only an unlabeled
dataset is available. Unsupervised applications include
clustering, dimensionality reduction, and noise removal.
For network anomalies detection we believe the
unsupervised approach has the following advantages,

- Unsupervised can detect the internal representation
of the dataset; this conforms to the online
detection.

- Theoretically unsupervised algorithms will
discover the unprecedented threats

- We can use the unsupervised method as a
pertaining phase before supervised or
Reinforcement Learning (RL)

Unsupervised DL algorithms include Autoencoder and
Restricted Boltzmann Machines (RBM). Deep Learning
(DL) is a set of non-linear algorithms for multilayers
models. DL algorithms manipulate both supervised and non-
supervised learning. Unsupervised deep learning algorithms
aim to learn probability distribution of a specific dataset.
While, the supervised learning algorithm learns to predict p
(y |x) an input where x is input vector, and y is the output.
Applying the unsupervised learning potentially reveals
exciting features in the data sets. The automatic discovery of
the features improves the probability of detecting new
attacks in the contexts of network anomaly detection.

An autoencoder is a neural network that consists of two
phases

- An encoder is a deterministic mapping function ఏ݂
that transforms an input vector ࢞ into hidden
representation ݕ

o ߠ = ,܅} ܾ}, where ܅ is the weight matrix
and, ܾ is bias

o ఏ݂	(ݔ) ≈ ′ݔ
- A decoder reconstructs the hidden representation ࢠ

(encoder’s output) to ݔ′ via݃ఏ.

Autoencoder measures the reconstruction error between ݔ′(reconstructed) and the input ࢞ and to minimize this error
(information loss) to make ݔ′ as close as possible to࢞.

(ܹ)ܬ = 	∑ ݔ|| − || (1)	ᇱݔ

J (W) is the cost function whose goal is to minimize the cost

Arg min (ܬ(ܹ)){௪,௪ᇲ,,ᇱ}
Where w and b are encoder weights and biases respectively,
and w’, b’ are weights and biases for the decoder.

Various functions can be used as cost functions for example
squared error. For The cost function optimization, several
options are available for instance stochastic gradient descent
SGD and AdamOptimizer.

Fiore et al. used a semi-supervised deep learning tool for
network anomalies detection [11]. Authors introduced a
discriminative form of restricted Boltzmann machines. The
results were not promising specifically when testing the
DRBM in a new network. Several research papers focus on
improving the classical machine learning algorithms with
deep learning. Salama et al. used Deep Belief Network
(DBN) as a dimensionality reduction tool for Support
Vector Machines (SVM) classifier [12]. The authors
claimed a hybrid approach achieve approximately 93 %
accuracy where the SVM and DBN scored 88 % and 90 %
respectively. In another comparative study, authors compare
three traditional algorithms, i.e., Bays networks, C4 and
SVM against a hybrid SVM-RBM algorithm. The results
showed the superiority of the hybrid method in various
attack detection, e.g., DoS and user root attacks [13]. In a
broader comparative study on anomalies detection, authors
presented a deep structured energy-based model; The study
compares their algorithms in two different decisions
boundaries against five severe anomalies detection
algorithms including PCA and SVM. The authors go further
step by applying their algorithm to various data types, i.e.,
static, sequential, and spatial datasets [14]. Among the static
datasets, they choose the KDD99 network dataset. Their
results showed a comparable or better performance to
methods like PCA and kernel PCA.

IV. DETECTION FRAMEWORK

We introduce a detection framework as a component of the
control layer. Figure 1 shows the positioning of the
framework; where the IDS is a module of the controller
layer. This architecture provides centralization and
flexibility. The integration of the system is beyond our
research of this paper, as the primary goal is to investigate
the algorithms.

We used Tensorflow (TF) as a deep learning development
library. As the name indicates, Tensorflow is matrices flow
in a graph model. TF graph consists of nodes and edges;

711

nodes represent mathematical operations, edges represent
multi-dimensional data arrays (tensors).

Figure 2 depicts the work flow of the simulation. The first
stage of the experiments is to build the Autoencoder
network. The AE consists of two passes, the encoder, and
the decoder. Both the encoder and decoder consist of
multiple layers. The data set is loaded into Tensorflow
tensor dimension (Training samples, 41). We build the
weight and biases tensors for the encoder and decoder. The
dimension of weighs and biases depends on the number of
neurons (units in the hidden layer). For instance, if we
decode the input into five units, this means we will have
(41, 5) tensor where 41 is some input units (features of one
network traffic record), and same dimensions will be used in
the decoder. The next step is to train the network; in the
forward pass, we use the logits as an activation function.
Then we apply the activation function to reconstruct the
record from the decoded units, weights, and biases for the
output. The next step is to compare the original data against
the reconstructed output. We use the cost function to

Fig.1. Proposed location of the detection system in SDN model

compute the data loss, for instance, the squared error
function. The third step is to minimize the cost (in our case
data loss). Several optimization algorithms are used to
minimize the loss or reconstruction rate. For example, we
used Adam optimizer. Once the network settles after various
sweeps of data chunks (batches), the second phase testing is
on.

During the testing, we feed the network with the testing
sample and try to reconstruct the data. For clarification, if
our network manipulates images, if we pass an image as an
input we expect an image close enough (with minimum data
loss). We used the same procedure to implement the
considering model's variances.

For the anomalies detection, we measure the data loss
between the input and the reconstructed record. If the loss is
too high (we have to define thresholds) this means the input
cannot be precise enough to be reconstructed. We consider
inputs with high reconstruction error as anomalies. This
concept is valid for Restricted Boltzmann machines, as both
algorithms reconstruct the input.

The performance of the algorithm varies depending on
various criteria.

• Type of the data, whether the input is binary or
decimal.

• Activation function, for example, sigmoid works
better with binaries while Relu is good for
decimals.

Network
Traffic

Packe
t Arr.

Flo
w

Sel-
ectio

n

Tabl
e

Sele
ction

Key
Extra

ct

Act-
ion
App

.

 SDN Switch

IDS Control
Plane

Cla
ssifi
er

Fig.2. Framework flow diagram

OpenFlow
protocol

712

• Cost function, for instance, squared error, and cross
entropy

• Optimizer, Gradient Descent, Adam optimize, SGD
(figure below shows cost optimization using two
different optimizers). The autoencoder aims to
minimize the reconstruction error over multiple
sweeps of the input data. The y-axis represents the
data loss calculated by the cost function (squared
error), while the x-axis represents the data sweeps.
The graph shows the loss is decreased till it reaches
the minima.

After the framework implementation, we pass various
samples of different sizes. The samples contain normal and
abnormal traffic. The output was clustered; in perfect
results, those clusters only include normal or abnormal data.
For example, table 1 shows the predicted clusters for 1300
samples.

Cluster 1 normal 139 abnormal 3

Cluster 2 normal 4 abnormal 183

Cluster 3 normal 0 abnormal 302

Cluster 4 normal 172 abnormal 0

Cluster 5 normal 0 abnormal 150

Cluster 6 normal 100 abnormal 2

Cluster 7 normal 0 abnormal 61

Cluster 8 normal 184 abnormal 0

Figure 3 depicts the reconstruction error for each test
sample. RE of similar samples are close; the AE succussed
in finding a pattern in the data. Figure 4 shows the cluster
had been deduced by the framework. It is noticeable we
have separated clusters for RE ranges. Table 2 shows the
framework prediction. As a number of testing samples
increase the accuracy declines; the main reason for this is
the number of training samples. If the framework sees more
training sample the accuracy expected to increase.

Samples
no. Avg. Precision

Average Cluster
error

Missed
samples

1300 99.20699178 0.793008216 9

800 99.76851852 0.231481481 1

400 100 0 0

R
ec

on
st

ru
ct

io
n

E
rr

or

Test Samples

Fig.3. Test sample RE distribution

Clusters

TABLE 2. FRAMEWORK PREDICTION WITH
VARIOUS SIZES OF SAMPLES

TABLE 1. CLUSTERS PREDICTED BY THE
FRAMEWORK

R
ec

on
st

ru
ct

io
n

E
rr

or

Fig.4. RE distribution in clusters

713

V. CONCLUSION

Deep learning algorithms achieved a breakthrough in neural
networks. With a strong record of successful applications,
deep learning is a promising approach for network
anomalies detection. The paper showed the potential of
unsupervised deep learning to enhance the security of SDN.
We applied deep autoencoders to calculate a reconstruction
error for network traffic records. Then we apply a K-means
as clustering algorithm on REs. Our approach showed
robust prediction with reasonable training data. However,
further research should investigate dimensionality in traffic
records, where the number of dimensions is relatively small.

REFERENCES

[1] Kreutz, D.; Ramos, F.M.V.; Esteves Verissimo, P.; Esteve

Rothenberg, C.; Azodolmolky, S.; Uhlig, S., "Software-Defined

Networking: A Comprehensive Survey," Proceedings of the

IEEE, Vol. 103, no. 1, pp. 14,76, Jan. 2015

[2] Open Networking Foundation (ONF), 2015. [Online].

Available: https://www.opennetworking.org/

[3] N. McKeown et al., ‘‘OpenFlow: Enabling innovation in

campus networks,’’ SIGCOMM Comput. Commun. Rev., Vol.

38, no. 2, pp. 69–74, Mar. 2008.

[4] R. Klöti, V. Kotronis and P. Smith, "OpenFlow: A security

analysis," 2013 21st IEEE International Conference on Network

Protocols (ICNP), Goettingen, 2013, pp. 1-6.

[5] D. Kreutz, F. M. Ramos, and P. Verissimo,‘‘Towards secure

and dependable software-defined networks,’’ in Proc.2nd ACM

SIGCOMM Workshop Hot Topics Softw. Defined Netw., 2013,

pp. 55–60.

[6] Ghorbani, Ali A., Lu, Wei, Tavallaee, Mahbod, Network

Intrusion Detection and Prevention Concepts and

Techniques, Springer US, 2010.

[7] Mudzingwa, D.; Agrawal, R., "A study of methodologies used

in intrusion detection and prevention systems

(IDPS)," Southeastcon, 2012 Proceedings of IEEE, vol., No.,

pp.1,6, 15-18 March 2012.

[8] V. Chandola, A. Banerjee and V. Kumar, "Anomaly Detection

for Discrete Sequences: A Survey," in IEEE Transactions on

Knowledge and Data Engineering, vol. 24, no. 5, pp. 823-839,

May 2012.

[9] A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet

Classification with Deep Convolutional Neural Networks, NIPS

2012

[10] Hinton, G. E., Osindero, S., and Teh, Y. (2006). A fast learning

algorithm for deep belief nets. Neural Computation, 18, 1527–

1554

[11] Fiore, U., Palmieri, F., Castiglione, A., De Santis, A.: Network

Anomaly Detection with theRestricted Boltzmann Machine.

Neurocomputing 122, 13 { 23 (2013)

[12] Salama, M.A., Eid, H.F., Ramadan, R.A., Darwish, A.,

Hassanien, A.E.: Hybrid Intelligent Intrusion Detection Scheme.

In: Soft Computing in Industrial Applications, pp. 293{303.

Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

[13] B. Dong and X. Wang, "Comparison deep learning method to

traditional methods using for network intrusion detection," 2016

8th IEEE International Conference on Communication Software

and Networks (ICCSN), Beijing, 2016, pp. 581-585.

[14] Shuangfei Zhai, Yu Cheng, Weining Lu, and Zhongfei Zhang.

2016. Deep structured energy based models for anomaly

detection. In Proceedings of the 33rd International Conference

on International Conference on Machine Learning - Volume

48 (ICML'16), Maria Florina Balcan and Kilian Q. Weinberger

(Eds.), Vol. 48. JMLR.org 1100-1109.

[15] Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.: A Detailed

Analysis of the KDD CUP 99 Data Set. In: Computational

Intelligence for Security and Defense Applications, 2009.

CISDA 2009. IEEE Symposium on, pp. 1{6 (2009). DOI

10:1109/CISDA:2009:5356528

714

