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Abstract

Analyzing 8,169 contestants over 32 years of the US game show Jeopardy!, we find that
women compete more aggressively, become (marginally) more competitive, and take on
more risk when paired against men. Specifically, a woman is more likely to win a Jeop-
ardy! episode and, within the show, to respond to a clue. Once responding, she is also
marginally more likely to respond correctly. Potentially most surprising, even the sizeable
gender gap in risk-taking (analyzing Daily Double wagering decisions) disappears once a
woman competes in an otherwise all-male field of competitors. Men, on the other hand,
wager significantly less when paired against women only, but the gender of opponents does
not affect their competitive performance otherwise. Our rich sample allows us to control
for a host of potentially confounding factors and player-fixed effects, thereby eliminating
potential biases from unobservable individual characteristics. Our findings are consistent
with an explanation that emphasizes an adaptation to “social norms” applied to gender.
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1 Introduction

It has almost become a stylized fact that, on average, women are more likely to avoid compe-

tition, under-perform in competitive environments, and exhibit higher risk aversion than men.

Persistent social phenomena, such as the gender wage gap or the under-representation of women

in highly competitive occupations and job positions, have been linked to such observations. One

prominent hypothesis to explain this phenomenon relates to the idea that the gender of one’s op-

position could influence competitive behavior (e.g., see Gneezy et al., 2003, Booth and Nolen,

2012b, Booth et al., 2014). More generally, people may behave differently when competing

against adversaries from the opposite sex.

If true, this would imply wide-ranging consequences in a number of settings. For instance,

numerous work environments are characterized by persistent under-representation of one gen-

der. Women are especially under-represented in jobs that are generally associated with high-

pressure environments and large stakes, such as financial management (the share of females at

Wall Street remains at approximately 10 percent) or CEO positions in the US (2.5 percent).1

Other areas with low female employee shares include IT- and math-related occupations, where

women usually occupy less than 20 percent of positions (e.g., see Department of Labor, 2016).

On the other hand, men are traditionally under-represented in professions such as nursing, teach-

ing, social work, and counseling. Other prominent settings of gender separation include sports

and at times education (e.g., single- versus mixed-gender educational environments).2

Unfortunately, real-life settings do not offer many opportunities to test whether the gender of

opponents can influence performance and risk-taking since people likely select into gender envi-

ronments they prefer (consciously or subconsciously) and causality remains difficult to isolate.

In the following pages, we study data from the US edition of the popular game show Jeopardy!

(J! from hereon) to analyze whether the exogenous assignment of male or female competitors

(i.e., contestants cannot choose to compete against female or male opponents) affects women’s

1See Eckel and Füllbrunn (2015) for the share of women at Wall Street and Bertrand and Hallock (2001) for
the share of women in CEO positions.

2For recent discussions about single-gender educational environments, see Jackson (2012) or Park et al. (2013).
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and men’s performance and attitudes to risk. Featuring three contestants per episode, we study

competitive behavior in three settings: The probability (i) to win a J! episode, (ii) to respond to

a given clue, and (iii) to respond correctly to a clue. Finally, to evaluate risk-taking, we exploit

the fact that a player can wager up to their entire accumulated balance when faced with a Daily

Double clue (labeled DD from hereon).

A particular strength of our study comes from the large sample of 8,169 contestants in 4,279

J! episodes over 32 years, allowing us to control for a rich set of potentially confounding fac-

tors, such as scores, clue categories, prior J! performance, and player-fixed effects. With fixed

effects, we can eliminate the influence of unobserved individual characteristics that may inde-

pendently influence behavior, including education level, income, age, J!-specific knowledge,

sense of competitiveness, and risk preferences. The show mimics two important features that

are prevalent within leadership positions, such as financial managers or CEOs: Substantial pres-

sure from time constraints and a large viewership, as well as unusually high stakes. On average,

J! enjoys 25 million viewers per week, and the average winner of an episode earns US$19,752

(see Jeopardy!, 2015d).

When focusing on female contestants, our findings indicate that the same woman is more

likely to win an episode and systematically performs more aggressively (i.e., is more likely

to respond) when competing against men. For every male counterpart, she is 0.9 percentage

points more likely to respond to a given clue. Our estimations also show that the behavior of

their male counterparts presents an unlikely explanation of those results. We also find (albeit

weaker) evidence of women being more likely to respond correctly to clues when performing

in an all-male environment. Further, and maybe most surprisingly, the otherwise robust gender

gap in risk-taking disappears once a woman competes in an otherwise all-male environment.

In quantitative terms, she wagers 4.9 percentage points more of her maximum possible wager

for every male opponent, everything else equal. In turn, the average male J! contestant wagers

significantly less when competing against women. Although the respective magnitude is not as

powerful (2.9 percentage points less for every female opponent), that result remains statistically

significant at the one percent level.
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The paper proceeds with an overview of the existing literature. Section 3 presents our J!

data and we refer to the appendix for additional details about J!. Section 4 describes the em-

pirical methodology. In Section 5, we describe our results and Section 6 provides a discussion,

putting our findings in context to the existing literature and potential policy conclusions. Finally,

Section 7 concludes.

2 Background

Gender disparities in (i) the willingness to compete, (ii) performance in competitive situations,

and (iii) risk attitudes have been consistently identified in a number of studies.3 In this Section,

we first provide a brief overview of prior work on the determinants of these gender differences,

with a particular focus on the gender composition of opponents. We then turn to related studies

using game show data that is comparable to our J! setting.

2.1 Determinants of Gender Gaps

In recent years, several explanations of gender disparities have been suggested and Table 1

provides a brief overview of that literature. Panel A focuses on competitiveness, whereas Panel

B considers attitudes to risk. (Note that we pay less attention to the surrounding literature on

the selection into competitive situations.) Proposed drivers include the gender of the opposition

(Booth and Nolen, 2012b; De Paola et al., 2015; Säve-Söderbergh and Lindquist, 2016), time

constraints (Cotton et al., 2013), but also the form of the task. For instance, verbal versus non-

verbal tasks may affect competitive behavior differently for women and men (Shurchkov, 2012).

Further, ‘gender-specific’ tasks may elicit gender differences (Günther et al., 2010; Iriberri and

Rey-Biel, 2017) and a team setting may be more conducive to women’s performance levels, as

3For example, see Gneezy et al. (2003), Gneezy and Rustichini (2004), Niederle and Vesterlund (2007), Fryer
and Levitt (2010), Delfgaauw et al. (2013), Ors et al. (2013), Morin (2015), or Heinz et al. (2016) for various
settings related to competition. Croson and Gneezy (2009) provide an excellent summary of this literature. Exam-
ples for risk attitudes include decisions about smoking and seat belt usage (Hersch, 1996) or financial investment
(Jianakoplos and Bernasek, 1998; Eckel and Füllbrunn, 2015). Eckel and Grossman (2008) provide a summary of
the experimental evidence on gender differences in risk preferences. A closely related stream of literature considers
gender differences in leadership (e.g., see Grossman et al., 2015).
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opposed to an individual setting (Healy and Pate, 2011). In reality, it is likely that explanations

are non-exclusive, i.e., gender differences in performance and risk-taking could arise or vanish

under a multitude of circumstances or potential combinations thereof. Our focus in this paper

will be the gender of opponents and how it may affect women’s and men’s performance levels

and risk-taking in wagering decisions.

This idea related to the opponents’ gender has been tested in several experimental studies.

For instance, Booth and Nolen (2012a,b) find female teenagers are more likely to select into

competition and take on more risk in single-gender environments (also see Booth et al., 2014).

In earlier experimental work, Gneezy et al. (2003) find women to under-perform when paired

against males. In turn, De Paola et al. (2015) employ an experimental setup to find no significant

performance differences along the lines of opponents’ gender for female undergraduate students

in Italy.

In general, experimental research designs carry substantial advantages in analyzing this par-

ticular question. In reality, people likely select into gender environments they are comfortable

with, making it difficult to isolate the causal effect from their opponents’ gender amidst vari-

ous endogeneity concerns. We rarely observe individual performance indicators and expressed

risk attitudes of the same woman when exogenously assigned to male or female adversaries.

Experimental setups can circumvent such selection issues. However, as with any research de-

sign, experimental studies also exhibit disadvantages. External validity remains a key concern,

as laboratory experiments usually have to rely on relatively small sample sizes.4 In addition,

incentive structures can be somewhat artificial at times. For example, Antonovics et al. (2009)

investigate the comparability of results obtained from laboratory settings with data from the

field. They find laboratory experiments produce comparable insights only when the offered

stakes are high (above US$50) and when players are young (under the age of 33). However, a

minimum payoff of US$50 per individual can quickly become expensive if a researcher wishes

to draw a large and representative sample. In our context, most experimental studies have found

it difficult to cross that payoff threshold (see Table 1).

4See Levitt and List (2007) and Niederle (2014) for further discussion on the generalizability of findings from
experimental studies.

4



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Ta
bl

e
1:

Se
le

ct
io

n
of

re
ce

nt
ar

tic
le

s
tr

yi
ng

to
ex

pl
ai

n
th

e
ge

nd
er

ga
p

in
pe

rf
or

m
an

ce
an

d
ri

sk
at

tit
ud

es
(l

is
te

d
ch

ro
no

lo
gi

ca
lly

).

St
ud

y
R

es
ea

rc
h

Se
tti

ng
Sa

m
pl

e
N

Pa
yo

ff
s

M
ai

n
Fi

nd
in

gs

P
an

el
A

:
G

en
de

r
di

ff
er

en
ce

s
in

co
m

pe
ti

ti
ve

ne
ss

Ir
ib

er
ri

an
d

R
ey

-B
ie

l(
20

17
)

E
xp

er
im

en
t

A
du

lts
64

0
A

ve
ra

ge
13

.8
0e

W
om

en
un

de
r-

pe
rf

or
m

w
he

n
th

e
ta

sk
if

pe
rc

ei
ve

d
as

fa
-

vo
ri

ng
m

en

D
e

Pa
ol

a
et

al
.(

20
15

)
E

xp
er

im
en

t
St

ud
en

ts
72

0
E

xa
m

G
en

de
r

of
co

m
pe

tit
or

s
do

es
no

ta
ff

ec
ts

tu
de

nt
s’

be
ha

vi
or

.

C
ot

to
n

et
al

.(
20

13
)

E
xp

er
im

en
t

Sc
ho

ol
ki

ds
50

5
C

an
dy

ba
r(

or
sm

al
lp

ri
ze

)a
llo

ca
te

d
by

lo
tte

ry
B

oy
s

ou
tp

er
fo

rm
gi

rl
s

at
fir

st
,

bu
t

in
re

pe
at

ed
ga

m
es

no
ge

nd
er

di
ff

er
en

ce
em

er
ge

s

Sh
ur

ch
ko

v
(2

01
2)

E
xp

er
im

en
t

A
du

lts
72

A
ve

ra
ge

pa
yo

ff
$4

4.
70

W
om

en
pe

rf
or

m
eq

ua
lly

or
be

tte
r

in
ve

rb
al

ta
sk

s
w

he
n

gi
ve

n
m

or
e

tim
e

H
ea

ly
an

d
Pa

te
(2

01
1)

E
xp

er
im

en
t

A
du

lts
19

2
A

ve
ra

ge
$1

5
on

ho
ur

ly
ba

si
s

W
om

en
pr

ef
er

to
co

m
pe

te
in

te
am

s;
m

en
pr

ef
er

in
di

vi
du

al
fo

rm
at

G
ün

th
er

et
al

.(
20

10
)

E
xp

er
im

en
t

St
ud

en
ts

23
4

3e
fo

r
pa

rt
ic

ip
at

io
n;

ex
ac

t
pa

yo
ut

va
ri

es
G

en
de

r
di

ff
er

en
ce

s
m

ay
de

pe
nd

on
ta

sk
s

at
ha

nd
(m

al
e,

fe
m

al
e,

an
d

ge
nd

er
-n

eu
tr

al
ta

sk
s)

G
ne

ez
y

et
al

.(
20

03
)

E
xp

er
im

en
t

Sc
ho

ol
ki

ds
32

4
A

pp
ro

x.
U

S$
5

fo
r

pa
rt

ic
ip

at
io

n;
pe

r
un

it
va

ri
es

by
ex

pe
ri

m
en

t
W

om
en

un
de

r-
pe

rf
or

m
in

co
m

pe
tit

io
n,

m
en

ov
er

-p
er

fo
rm

;
th

is
ef

fe
ct

is
st

ro
ng

er
w

he
n

w
om

en
co

m
pe

te
ag

ai
ns

tm
en

P
an

el
B

:
G

en
de

r
di

ff
er

en
ce

s
in

at
ti

tu
de

s
to

ri
sk

Sä
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Consequently, an important step consists in taking hypotheses from experimental studies

to the real world, in order to complement and test conclusions derived in the laboratory. In

fact, Levitt and List (2008, p.909) note that “[p]erhaps the greatest challenge facing behavioral

economics is demonstrating its applicability in the real world.” Related to social norms in par-

ticular, Benjamin et al. (2010, p.1913) point out that “it is difficult to test with nonexperimental

data whether identity norms play a causal role in economic decision making.” Thus, finding

a real-life competitive situation where the assignment of female or male opponents cannot be

influenced by the contestant could provide us with meaningful information to test the relevance

of the gender of opponents.

In this context, J! provides a setting that is comparable to real-world competitive situations

where pressure is large and decisions have to be made quickly. Lindquist and Säve-Söderbergh

(2011) and Säve-Söderbergh and Lindquist (2016) access the Swedish J! version to do exactly

that. Although their findings indicate no gender gap in risk-taking among children, adult women

tend to wager less when competing against men, confirming evidence from Booth and Nolen’s

(2012b) and Booth et al.’s (2014) experimental studies.

2.2 Related Studies Employing Game Show Data

Recently, several studies have incorporated data from game shows to analyze people’s behavior.

To our knowledge, Lindquist and Säve-Söderbergh (2011) and Säve-Söderbergh and Lindquist

(2016) are the first to focus on how the gender of opponents may influence competitive behavior

(also see Table 1), although they are not the first to study behavioral phenomena in a game show

environment. Gertner (1993) provides one of the earliest papers to study behavior using game

show data, incorporating information from Card Sharks to estimate individual risk aversion

coefficients for a combined gender sample. Levitt (2004) and Antonovics et al. (2005) use

data from the Weakest Link to analyze taste and statistical discrimination by race and gender.

Post et al. (2008) incorporate data from Deal or No Deal to study risk aversion, arguing that

reference-dependent theories of decision-making, such as prospect theory, are relevant.

6
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Eventually, with large data sets becoming available, researchers have started using game

show data to look at potential gender differences. De Roos and Sarafidis (2010) use data from

the Australian version of Deal or No Deal to look at decision-making under risk, finding mixed

evidence of increased risk aversion by females. Kelley and Lemke (2015) employ data from the

game show Cash Cab to study gender differences in decision-making under uncertainty. They

find men to be more likely to accept an end-of-game gamble, but males and females weigh

variables differently when using subjective probabilities.

Turning to studies incorporating J! data, Metrick (1995) analyzes 1,150 Final Jeopardy!

round decisions from 1989 to 1992. Much like most of the studies mentioned above, he uses

game show data to estimate risk preferences. However, his focus is not on gender differences or

the gender composition of opponents. He et al. (2008) study Daily Double wagering decisions,

finding females to wager less than males, even after having answered questions correctly be-

fore in that same category. Although their study addresses potential gender differences in risk

preferences, they also do not distinguish by the gender of opponents.

In sum, there exists a well established history of using game show data to study economic

decision-making, both in general and in the context of potential gender differences. Neverthe-

less, the gender of opponents has received less attention as a potential driver of competitive

behavior and risk-taking, with the exception of Lindquist and Säve-Söderbergh (2011) and

Säve-Söderbergh and Lindquist (2016). Section 6 puts our findings in context to these prior

works.

3 Jeopardy! Background and Data

3.1 Show Description

On September 10, 1984, J! started its ongoing run on television. Each episode hosts three con-

testants and three rounds (Jeopardy!, Double Jeopardy!, and Final Jeopardy!) with a combined

number of 61 clues. Contrary to most other game shows, the host (Alex Trebek) announces

‘clues’ and the first contestant to respond after the prompt has to pose the correct question.

7
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Throughout the paper, we will use the terminology of ‘responding’ or ‘answering’ to clues to

facilitate readability. For any ordinary clue, the first one to respond correctly receives the asso-

ciated monetary value toward their balance and is allowed to select the next clue. However, if

a contestant is incorrect in their response they will have the dollar value of the clue subtracted

from their account balance and the other contestants have the opportunity to respond. The con-

testant with the highest score at the end of the episode receives their account balance as prize

money and is able to return for the next episode, while the second and third place contestants

receive consolation prizes.

Each episode begins with the J! round consisting of 30 clues (six categories with five clues

each), followed by the Double Jeopardy! (DJ! from hereon) round that also features 30 clues.

Note that sometimes not all 30 clues of a given round are completed due to time constraints. The

only difference between the DJ! and J! rounds lies in the fact that all clue values are doubled

and clues generally become more difficult (Trebeck and Barsocchini, 1990). Until November

26, 2001, the J! round consisted of the clue values $100, $200, $300, $400, and $500, whereas

the DJ! round featured the values $200, $400, $600, $800, and $1,000. Since then, all clue

values have been doubled.

Eventually, an episode finishes with the Final Jeopardy! (FJ! from hereon) round that in-

cludes a single clue in which each contestant can wager up to their entire account balance on

responding correctly. Note that we exclude FJ! clues in the main part of the paper, as all con-

testants naturally respond to that clue and wagering decisions in the FJ! round can follow a

number of game-theoretic strategies, depending on the account balances of all contestants (see

Metrick, 1995). Nevertheless, we will consider the performance in the FJ! round when explor-

ing a potential explanation of our main findings in section 5.5.

3.2 Sample Description & Settings

As of June 5, 2015, the J! Archive website, a fan-created archive of J! episodes, contains full in-

formation for 4,279 complete episodes, including 8,169 players (3,726 women and 4,443 men)

and 254,079 clues. This includes 12,616 DD clues taken by 6,076 contestants throughout the

8
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sample. In terms of monetary stakes, the average winner of an episode in our sample takes home

US$19,752, equivalent to about four to five times the monthly income of a median household

in the United States (see DeNavas-Walt and Proctor, 2015). This compares favorably to Ariely

et al.’s (2009) seminal paper on large stakes, where the maximum payoff for Indian workers

comes to 400 rupees, which is equivalent to approximately 80 percent of the average monthly

consumer expenditure (see Ariely et al., 2009, p.454).

Employing a data specialist, we extracted all information of all available episodes. While

the dataset is extensive, it does not include all J! episodes. Since January 5, 2004, all episodes

are present, but earlier seasons are missing occasional episodes on the website. However, if an

episode is present, all corresponding information is available, with the exception of 11 episodes.

where the show description indicates the lack of some clues.5 After checking the episode num-

bers and available data, we do not find evidence of systematic omissions from the archive.

Nevertheless, limiting the sample to episodes #4,451 to #7,084 (since January 5, 2004), where

the data exhibits no gaps, produces results consistent with our findings. The corresponding

results are available in the appendix Tables AII – AV.

The website contains information about all three contestants’ full names, their accumulated

prize money, the category of each clue, the sequence of clues, and the value of each clue. Most

importantly, the first name of each contestant allows us to conjecture their gender. In most

cases, names are commonly attributable to a gender (e.g., Alison and Alyssa are female; Adam

and Frank are male) and in those cases where names could indicate either a female or a male

contestant, a Google search for the full name readily produces a picture of the J! contestant.

The same follows if names are abbreviated. This approach allows us to allocate a binary gender

indicator to all 8,169 contestants.

Throughout the analysis, we focus on four distinct competitive scenarios. First, we begin by

analyzing the most basic outcome of winning an episode. Second, we consider each contestant’s

probability to respond to a clue. Thus, for each clue we obtain three data points (one for each

contestant), producing a sample of 749,433 observations in this setting. Third, we evaluate the

5All results are consistent when discarding those incomplete episodes.
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probability of responding correctly, producing a sample of 248,052 observations. Note that if

the answer is incorrect opponents can choose whether they wish to answer the clue. Thus, clues

could be answered by zero (nobody chooses to respond), one, two, or all three contestants (if

given answers continue to be incorrect).

Fourth and final, we turn to risk-taking in wagering decisions in DD clues. Throughout

each episode, three DD clues are hidden and if a contestant happens to select one, they can

wager up to their entire account balance on responding correctly. We divide the realized wager

by the maximum possible wager to estimate what percentage of the maximum sum is wagered

(following Säve-Söderbergh and Lindquist, 2016).6 Everything else equal, a higher percentage

indicates higher stakes and therefore higher risk. All our results are consistent when focusing

on the absolute wager (see appendix Table AV). For further detail on J! and DD clues, we refer

the reader to the appendix and Jetter and Walker (2016).

3.3 Descriptive Statistics

To introduce the gender composition of the sample, Figure 1 visualizes the share of women over

time in J! episodes (left top), as well as the gender composition of shows over time (right top).

Note that the share of female contestants has consistently increased since the show’s inception in

1984. In fact, since 2006, it is possible to take an online test as a first step toward becoming a J!

participant, which is believed to have increased the number of women on the show (Jeopardy!,

2015d, also see the appendix for more details).

The top right graph and the left bottom graph in Figure 1 also show that all-female episodes

are rare and the most common gender composition features one woman and two men (F-M-

M). Thus, although the episode-to-episode assignment of female or male competitors is likely

exogenous (i.e., no competitor can select the gender of their opponents), a shortage of female

J! candidates could theoretically lead to a non-random gender assignment. To minimize the

6The J! rules state that a player can wager up to their entire account balance or up to the largest dollar value
on the current board, whichever value of the two is larger. In the initial J! and DJ! rounds, the largest amount on
the board corresponds to US$500 and US$1,000, respectively. Since November 26, 2001, values for all clues have
doubled, raising those values to US$1,000 and US$2,000, respectively.
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Figure 1: Gender composition of J! episodes.
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influence of such dynamics on our results, we re-estimated all regressions when only using the

first episode of the respective contestant. The corresponding results are consistent with our

baseline findings and are available in appendix Tables AII – AV.

As a first step toward analyzing contestants’ behavior in our four settings of interest, Figure 2

checks for basic gender differences, displaying the respective means with two-sided 95 percent

confidence intervals. No statistically meaningful gender differences emerge for the likelihood to

win an episode, the likelihood to respond to a given clue, or the likelihood to respond correctly.

However, we do observe a pronounced difference in wagering behavior as women usually wager

45 percent of the possible maximum, whereas men wager 48 percent, on average. The difference

between these means is statistically significant on the one percent level and is consistent with

results from a number of related studies (e.g., Byrnes et al., 1999; Eckel and Füllbrunn, 2015).

More detailed descriptive statistics by gender are available in Table AI in the appendix.

To provide a basic idea about whether and how the gender of opponents may influence

performance, competitive behavior, and risk-taking, Figures 3 and 4 display means in all four

settings of interest when distinguishing by the gender of opponents, along with two-sided 95

percent confidence intervals. In all respective graphs, the horizontal red line provides the mean

of the opposite sex as a basic reference point. Focusing on the female perspective, the first three

graphs of Figure 3 show that a woman performs better and more aggressively than men (i.e.,

chooses to respond to more clues) when competing in an otherwise all-male field of competi-

tors. This result is interesting, as not only are women in that setting equal to men, but rather

more competitive than men. The final graph of Figure 3 (right bottom) shows a similar develop-

ment for women’s wagering behavior. The sizeable gender gap in risk-taking disappears once a

woman competes against two males. Note also that, throughout all four settings, the respective

confidence intervals become larger for the all-female setting for which relatively few data points

exist (only 81 episodes).

Turning to the male perspective, Figure 4 suggests that men perform better in J! when com-

peting against two females. They are marginally more likely to win an episode and are more

likely to respond to a given clue. Interestingly, men are also marginally less likely to respond
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Figure 2: Full sample, comparing females’ to males’ performance and risk attitudes.
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Figure 3: Comparing women’s performance and risk attitudes by gender of their opponents.
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Figure 4: Comparing men’s performance and risk attitudes by gender of their opponents.

correctly and wager substantially less when competing against women (bottom graphs of Fig-

ure 4). With these basic descriptive statistics in mind, we now turn to describing our empirical

strategy.

4 Empirical Strategy

4.1 Methodology

Our econometric strategy follows a standard regression model. We analyze probabilities of

winning an episode, responding, and responding correctly via a conventional OLS approach
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that facilitates the inclusion of player-fixed effects.7 Nevertheless, the results from employing

a logit framework in a pooled setting are virtually identical to those from OLS estimations and

the corresponding results are referred to Tables AII – AIV in the appendix. To properly analyze

the role of their opponents’ gender, we focus on gender-specific samples. Beginning with the

female subsample, if yi,t represents one of our four main outcome variables, our estimation

becomes

yi,t = α1

(
male opponents

)
i,t
+ α2Xi,t + α3Zi + εi,t. (1)

The coefficient associated with α1 represents the effect of every additional male opponent on

female contestant i’s performance and her attitudes to risk. The vector Xi,t incorporates control

variables that could potentially influence yi,t. These will be discussed shortly. Further, Zi cor-

responds to player-fixed effects, and εi,t constitutes the conventional error term. Throughout all

estimations, errors are clustered at the player level. After focusing on the female subsample, we

then re-estimate the same regression analysis displayed in equation 1 for the male subsample,

focusing on the number of female opponents as the main regressor of interest.

Concerning Xi,t, we wish to control for any aspects that may potentially influence the es-

timation of α1. In all four settings, we control for the number of J! episodes a player has

competed in before, as well as year- and month-fixed effects to account for the possibility that

(potentially different types of) women and men may have been more likely to participate over

the years and in particular times of a given year (e.g., school holidays).8 For the clue-specific

settings, we also incorporate binary indicators for STEM clues (science, technology, engineer-

ing, and mathematics) and the 20 most frequent categories on the show, the dollar value of the

clue, the account balance of the contestant (both individual and relative to their opponents), the

clue number in the current episode, a binary indicator for the DJ! round, and an indicator for

7By design, fixed effects estimations are difficult to conduct and interpret in a logit or probit framework (Greene,
2004), and the literature then usually moves to the more conventional strategy of employing OLS frameworks.

8We thank an anonymous referee for pointing out this possibility. Notice that the number of episodes a player
has competed in before is usually equivalent to the number of episodes they have won before. The exception is
provided by ‘Tournament of Champions’ episodes. All results are consistent when measuring this variable as the
number of prior wins in J! episodes.
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whether the respondent has answered a clue incorrectly previously in this episode.9 We now

briefly explain the intuition behind these control variables.

4.2 Control Variables

In all clue-specific settings, we control for a host of potentially confounding factors. First,

research has shown that women tend to opt out of STEM subjects in school and are less likely to

pursue STEM-related degrees at University (Preston, 1994; Montmarquette et al., 2002; Griffith,

2010; Grove et al., 2011). Thus, whether a clue can be categorized as STEM may influence

performance indicators differently by gender. More generally, it is possible that some categories

are preferred by females or males and, in addition to STEM clues, our analysis includes binary

indicators for the 20 most common categories to account for such dynamics.

Second, an important line of research focuses on the size of an expected payoff, which

directly translates to the dollar value of the clue. A priori, large stakes could lead to increased

or decreased performance levels, as the related literature has produced evidence for both. For

example, Lazear (2000) suggests higher expected payoffs to raise effort levels and performance.

In contrast, Ariely et al. (2009) find that large expected payoffs can lead someone to “choke”

and under-perform. Further, the J! outline proposes that the degree of difficulty increases with

the associated dollar value (Provencher, 2011).

Third, although J! participants are “probably all equal in terms of knowledge,” according

to the host of the show (Trebeck and Barsocchini, 1990, p.61), differences in ability are likely

present among the participants. To control for such heterogeneity, we incorporate the current

account balance of the respective participant. This variable may not only reflect the contes-

tant’s J! capabilities, but also their degree of confidence in the ongoing episode. In addition,

we capture the relative standing of a player, incorporating a variable relating one’s current ac-

count balance to their opponents’. This caters to the notion that prior performance of com-

9We sorted through all categories, manually sorting them into STEM and non-STEM. The 20 most common
categories are science, before & after, literature, potpourri, American history, world history, sports, business &
industry, world geography, U.S. cities, colleges & universities, animals, transportation, religion, U.S. geography,
opera, authors, people, food, and the Bible. In alternative estimations, we also use time trends (linear and squared)
on the daily level, but the corresponding results are virtually identical.
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petitors may influence behavior in competitive tasks (Smith, 2013, produces evidence from

spelling bee contests). To retain all possible observations, we choose a subtractive formula:

2×own balance− balance1− balance2, where subscripts denote opponents.10 All conclusions

are robust to using the difference to the best opponent’s balance (positive if leading; negative if

trailing) and the corresponding results are referred to Tables AIII – AV in the appendix.

Fourth, we incorporate a variable capturing whether a contestant has responded incorrectly

to a clue before in the respective episode. This variable provides another indicator capturing the

contestant’s J! abilities and their confidence level in the ongoing episode. All results are robust

when including a binary indicator for whether a contestant has responded correctly before, fol-

lowing results by He et al. (2008) and Post et al. (2008). Fifth, to acknowledge the surrounding

characteristics of each clue, we add variables describing the number of the clue in the ongoing

round and a binary indicator for the DJ! round, where dollar values of all clues are doubled.

Both parameters can relate to the accumulated experience of the contestants within the game

and previous research has shown that gender differences may disappear in repeated competi-

tion (e.g., see Cotton et al., 2013). If such dynamics could indeed affect women’s performance

differently than men’s, then our estimates may be biased if such a variable is not captured.

Sixth, we include year-fixed effects in all five settings. As Figure 1 shows, the share of

female contestants has increased over time and we want to isolate our regression results from

those underlying developments. In addition, year-fixed effects control for the doubling of prize

money since the end of 2001. Finally, month-fixed effects address the idea that J! participants

from particular professions may select to enter the show at specific times of the year. For exam-

ple, school teachers – of which a majority are female (Bureau of Labor Statistics, 2016) – may

be more likely to enter during school holidays, which could potentially introduce a selection

issue into our sample. With this framework in mind, we now turn to our empirical findings.

10Note that putting one’s score in percentage terms or any other division-based formula would eliminate obser-
vations where the denominator is zero. In addition, it could skew observations where the numerator takes on the
value of zero. Nevertheless, all derived results are unaffected by choosing such performance indicators.
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5 Empirical Findings

Tables 2 – 5 display regression results for our four dependent variables. In each Table, columns

(1) – (3) focus on female J! contestants and columns (4) – (6) consider males. In each setup,

we first present results from the pooled specification. We then include player-fixed effects in

columns (2) and (5), before presenting an alternative version of the full specification where we

distinguish between two binary indicators of competing against one or two adversaries from

the opposite sex. In any regressions including fixed effects, we only include those contestants

who appeared at least in two episodes, since all others would be perfectly identified by their

respective dummy variable.

5.1 Setting #1: Winning an Episode

Table 2 focuses on the first and most straightforward setting: Winning a given J! episode. In

columns (1) and (4), we only control for year- and month-fixed effects, as well as a variable

counting the number of J! episodes a contestant has competed in before. For women (column

1), the coefficient of interest related to the number of male opponents is positive and statistically

significant on the one percent level. In terms of magnitude, each additional male opponent is

suggested to raise the chances of winning by 3.4 percentage points. Once player-fixed effects are

accounted for (column 2), the size of that coefficient remains stable and, if anything, increases

further to 3.8 percentage points. However, standard errors inflate markedly, likely because

degrees of freedom decrease once we take into account player-fixed effects. In fact, we only

count 2.8 episodes per female contestant, on average, once we rely on returning J! winners only

in column (2).

Further, column (3) moves from a continuous measure of male opponents to including two

binary variables of competing in a single-gender environment (F-F-F) and competing in an

otherwise all-male field (F-M-M). The reference category here is determined by episodes with

an F-F-M combination. Interestingly, a woman is more likely to win when competing against

two males, i.e., when no other woman is present. To place these results in context, assuming the
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(1) (2) (3) (4) (5) (6)
Sample: Females Males

Dependent variable: Winning episode (0/1, mean = 0.33)

# of male opponents 0.0341∗∗∗ 0.0384
(0.0117) (0.0240)

2 female opponents 0.0369 0.0373
(0.0581) (0.0278)

2 male opponents 0.0628∗∗ 0.0140
(0.0286) (0.0207)

# of female opponents 0.0096 0.0082
(0.0099) (0.0161)

Control variablesa yes yes yes yes yes yes

Player-fixed effects yes yes yes yes

# of players 3,718 782 782 4,432 1,369 1,369
# of episodes 3,807 1,899 1,899 4,187 3,359 3,359
N 5,127 2,191 2,191 7,677 4,614 4,614

Notes: Standard errors clustered on the player level are displayed in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. aIncludes year-
and month-fixed effects, as well as a variable capturing the number of episodes a player has competed in before (equivalent to the number of
episodes they have won).
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winnings of an average J! episode, this corresponds to an additional $1,240 in earnings. Turning

to the male subsample in columns (4) – (6), we find no discernible link between the gender of

opponents and the likelihood of winning an episode. This result emerges when considering the

number of female opponents, as well as when introducing dummy variables for two female or

two male counterparts in column (6).

5.2 Setting #2: Responding

Turning to the clue-specific settings, we begin by analyzing the probability to respond to a given

clue. Note that, in the context of competitive behavior, responding could reflect the choice to

respond because the respondent believes they know the answer or it could involve the speed

with which a contestant hits the buzzer following the prompt. Both explanations can arguably

be considered as behavior in a competitive situation.

Table 3 displays the corresponding results. Column (1) indicates that women are 0.76 per-

centage points more likely to respond to a given clue for each additional male opponent. This

result is statistically significant on the five percent level and remains robust in a player-fixed

effects framework (column 2). Further, column (3) shows that competing in an otherwise all-

male field of adversaries raises the likelihood of responding by 0.95 percentage points, relative

to competing against one female and one male. Thus, women compete more aggressively in J!

when they face male competitors.11

Analyzing the male subsample produces, again, very little heterogeneity along the lines of

their opponents’ gender. We only find a statistically meaningful distinction in column (6) when

contrasting two male opponents against a gender mix of one female and one male opponent.

Thus, in an all-male field, men are marginally more likely to respond.12

11In additional estimations, we also included interaction terms between the binary indicator for two male oppo-
nents and the 20 most common clue categories. For instance, it is possible that the sole woman in an otherwise
all-male field of contestants carries a ‘comparative gender advantage’ in some topics and is therefore more likely
to respond. However, including such interaction terms does not affect the result displayed in column (3) of Table
3, producing a coefficient of 0.0097 (statistically significant on the ten percent level) for the variable indicating two
male opponents.

12Note that, for any given clue, between zero and three contestants could respond (if answers continue to be
incorrect).
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(1) (2) (3) (4) (5) (6)
Sample: Females Males

Dependent variable: Responding (0/1, mean = 0.331)

# of male opponents 0.0076∗∗∗ 0.0094∗∗

(0.0020) (0.0041)

2 female opponents -0.0091 0.0057
(0.0097) (0.0049)

2 male opponents 0.0095∗ 0.0084∗

(0.0050) (0.0045)

# of female opponents 0.0001 -0.0023
(0.0017) (0.0031)

Control variablesa yes yes yes yes yes yes

Player-fixed effects yes yes yes yes

# of players 3,718 782 782 4,432 1,369 1,369
# of episodes 3,807 1,899 1,899 4,187 3,359 3,359
N 299,555 128,390 128,390 449,878 271,298 271,298

Notes: Standard errors clustered on the player level are displayed in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. aIncludes binary
indicators for STEM clues and the 20 most common categories, the $ value of the clue, the account balance of the contestant (both individual
and relative to their opponents), the clue number in the current episode, a binary indicator for the DJ! round, an indicator whether the
respondent has answered a clue incorrectly before, the number of previous J! episodes, and year- and month-fixed effects.
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5.3 Setting #3: Responding Correctly

Moving to the third scenario, Table 4 assesses the probability of responding correctly. This

sample considers those 248,052 observations where the respective contestant chose to respond.

For women, following the familiar sequence of estimations, the role of their opponents’ gender

becomes more nuanced than in the previous settings. In the pooled regression displayed in col-

umn (1), each additional male opponent raises the likelihood of responding correctly to a given

clue by 0.37 percentage points. Note that the statistical precision and magnitude are smaller

than in the previous settings, suggesting that the likelihood of winning an episode (setting #1)

is only in part driven by a better performance in responding correctly.

In fact, once player-fixed effects are accounted for in column (2), standard errors more than

double and, even though the magnitude of the respective coefficient remains virtually identical

with 0.0039, this suggests little variation (if any) in women’s likelihood of responding correctly

by the gender of opponents. Once we distinguish the gender of opponents by binary indicators,

the result becomes more pronounced: Competing against two men is associated with an increase

of the chance of responding correctly by 0.9 percentage points. Note that this coefficient is

derived relative to the baseline gender combination of a woman competing against a mixed

gender field.13

Finally, we again observe few dynamics for males along the lines of their opponents’ gender.

Once player-fixed effects are accounted for, both the statistical relevance and magnitude of the

derived coefficients suggest no anomalies. With these results related to performance indicators

in mind, we now move to analyzing risk-taking in the wagering decisions related to DD clues.

5.4 Setting #4: Wagering in Daily Double Clues

Our final setting studies the wagering behavior of contestants who happen to choose a DD clue.

In Table 5, we follow the same sequence of regressions, this time estimating the respective

13Here again, including interaction terms between the binary indicator for two male opponents and each of the
20 main clue categories produces virtually identical results (coefficient of 0.0096, statistically significant on the
ten percent level).
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(1) (2) (3) (4) (5) (6)
Sample: Females Males

Dependent variable: Responding correctly (0/1, mean = 0.837)

# of male opponents 0.0037∗ 0.0039
(0.0020) (0.0042)

2 female opponents 0.0122 0.0059
(0.0103) (0.0053)

2 male opponents 0.0091∗ 0.0018
(0.0054) (0.0046)

# of female opponents -0.0035∗∗ 0.0015
(0.0017) (0.0032)

Control variablesa yes yes yes yes yes yes

Player-fixed effects yes yes yes yes

# of players 3,718 782 782 4,432 1,369 1,369
# of episodes 3,807 1,899 1,899 4,187 3,359 3,359
N 99,211 42,439 42,439 148,841 86,673 86,673

Notes: Standard errors clustered on the player level are displayed in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. aIncludes binary
indicators for STEM clues and the 20 most common categories, the $ value of the clue, the account balance of the contestant (both individual
and relative to their opponents), the clue number in the current episode, a binary indicator for the DJ! round, an indicator whether the
respondent has answered a clue incorrectly before, the number of previous J! episodes, and year- and month-fixed effects.
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contestant’s wager as a share of their maximum possible wager. (All results are robust to using

the absolute wager – see appendix Table AV.)

Table 5: Regression results from estimating the share of the maximum possible wager in Daily
Double clues.

(1) (2) (3) (4) (5) (6)
Sample: Females Males

Dependent variable: Share of maximum wager in DD clue (mean = 0.466)

# of male opponents 0.0310∗∗∗ 0.0489∗∗∗

(0.0063) (0.0134)

2 female opponents -0.0077 -0.0443∗∗∗

(0.0296) (0.0157)

2 male opponents 0.0623∗∗∗ 0.0171
(0.0166) (0.0139)

# of female opponents -0.0240∗∗∗ -0.0287∗∗∗

(0.0052) (0.0099)

Control variablesa yes yes yes yes yes yes

Player-fixed effects yes yes yes yes

# of players 2,683 744 744 3,393 1,297 1,297
# of episodes 2,911 1,392 1,392 3,692 2,513 2,513
N 5,010 2,166 2,166 7,605 4,447 4,447

Notes: Standard errors clustered on the player level are displayed in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. aIncludes binary
indicators for STEM clues and the 20 most common categories, the $ value of the clue, the account balance of the contestant (both individual
and relative to their opponents), the clue number in the current episode, a binary indicator for the DJ! round, an indicator whether the
respondent has answered a clue incorrectly before, the number of previous J! episodes, and year- and month-fixed effects.

Column (1) suggests that every male competitor raises the average woman’s wager by 3.1

percentage points. This result is statistically powerful and further increases in magnitude to

4.9 percentage points when player-fixed effects are considered in column (2). Thus, the same

woman wagers markedly more when competing against men, as opposed to when competing
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against other women. Column (3) then reveals at which gender combination these dynamics

mostly occur. In an otherwise all-male environment, a woman wagers 6.2 percentage points

more than when facing one female and one male as her opponents. This result is surprising,

especially given prior findings by Lindquist and Säve-Söderbergh (2011) and Säve-Söderbergh

and Lindquist (2016), who find women to be more competitive in single-gender environments

using the Swedish edition of J!, as well as evidence from Booth and Nolen (2012b).

When turning to the male subsample, we also find substantial differences along the lines of

their opponents’ gender. Interestingly, men wager substantially less when competing against

women. In this case, the literature has commonly found that men do not respond to the gen-

der of their opponents in terms of risk-taking (e.g., see Booth and Nolen, 2012b, or Croson

and Gneezy, 2009). Although the respective magnitude in column (5) remains markedly lower

than the one derived from the female subsample (0.0287 versus 0.0489), the effect is estimated

precisely in statistical terms. Further, distinguishing by the exact gender composition of their

opponents in column (6) shows that a man wagers 4.4 percentage points less when in an other-

wise all-female environment.

5.5 One Explanation: Game Strategy

Taken together, these findings are consistent with the idea of people adapting to “social norms”

applied to gender roles, which we will describe in more detail in Section 6.1. Although we

cannot rule out alternative explanations based on more practical hypotheses in a conclusive

manner, we can test for at least one. The argument goes as follows. Within J!, some clues are

more important than others. In particular, DD clues are characterized by much larger stakes

than the average clue ($1,922 versus $711). Similarly, the FJ! round, in which each contestant

can wager up to their entire account balance, arguably represents the most important clue at the

end of an episode. In those clues alone, contestants play for an average of $4,841 in our sam-

ple. Now, if men performed better in high-stakes situations than women, on average (e.g., see

Azmat et al., 2016), then a rational approach might suggest women compete more aggressively

throughout the show in order to compensate.
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Figure 5: Responding correctly to DD (left) and FJ! clues (right).

However, analyzing the responses to DD and FJ! clues produces no discernible gender dif-

ferences which would support that idea. The results are visualized in Figure 5, again displaying

two-sided 95 percent confidence intervals for gender-specific means. Thus, it appears unlikely

that women consciously compete more aggressively in regular J! clues to compensate for po-

tential gender differences in the performance in high-stakes clues – simply because there are no

such gender differences.

6 Discussion

6.1 Interpretation of Results

Our findings are consistent with the idea of adapting to “social norms” applied to the gender of

one’s opponents. As Datta Gupta et al. (2013) put it, people may use their own and the other

participants’ gender as a “coordination device.” More generally, Akerlof and Kranton (2013,

p.11) write that “[t]he norms of how to behave depend on people’s positions within their social

context.”14 Indeed, both female and male contestants appear to adjust their risk-taking strategy

14In recent years, gender norms and identities have been increasingly of note in economics with arguments being
placed forth that differences in norms related to social identities can help explain decisions and economic outcomes
(Akerlof and Kranton, 2000; Benjamin et al., 2010). As an example pertaining to gender, Bertrand et al. (2015) tie
identity to marriage satisfaction and divorce when females have higher relative income to males within households.
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in DD clues to the gender composition of their opponents: As men generally wager more than

women, a woman increases her average wager when more men are present. A man, on the other

hand, decreases his average wager as more women are present.

6.2 Comparison to Related Literature

Our results stand in contrast to those from a few existing studies that analyze the influence

of the opponents’ gender on performance and risk-taking. Most notably, Lindquist and Säve-

Söderbergh (2011) and Säve-Söderbergh and Lindquist (2016) find women wager more conser-

vatively when competing against males. Similarly, Booth and Nolen (2012b) conclude girls to

be more competitive and to take on higher risks in a single-gender environment. They employ

an experimental setup with teenagers, randomly grouping them with male or female counter-

parts. Our results produce the opposite conclusions, employing data from the US version of

J!. Finally, De Paola et al. (2015) find no significant performance differences for female under-

graduate students from Italy. Thus, we believe our paper is the first to suggest women perform

better and take on more risk when paired against men.

We can think of three explanations for why our results may, at first glance, contradict

findings from related studies. First, cross-country heterogeneity may explain differential find-

ings. For example, Lindquist and Säve-Söderbergh (2011) and Säve-Söderbergh and Lindquist

(2016) study the Swedish version of J!, whereas Booth and Nolen (2012b) analyze experimen-

tal evidence from teenagers in the United Kingdom. However, the dynamics of risk preferences

may vary systematically across countries and cultures. For example, Cárdenas et al. (2012)

show that Colombian and Swedish schoolgirls exhibit substantial differences in attitudes to

risk, and Andersen et al. (2013) find differences in how females compete after puberty between

matrilineal and patriarchal societies. Thus, our findings could be complementary to the existing

literature, using data from the US, a country of immigrants with a tradition of multiculturalism.

Second, the age of contestants differs across studies, as many related papers evaluate the

behavior of children or teenagers. Behavioral differences between children and adults have

been highlighted in a number of competitive settings (e.g., see Andersen et al., 2013). Thus, it
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is well possible – and in fact likely – that competing against adversaries from the opposite sex

elicits different reactions from children and teenagers than from adults. This explanation would

also suggest a complementarity between our results and some of the existing studies.

Third, our data set substantially extends previous analyses along the lines of sample size

and stakes. Our sample includes 8,169 contestants – more than 12 times more than the clos-

est predecessor (Säve-Söderbergh and Lindquist, 2016). For instance, Säve-Söderbergh and

Lindquist (2016) are able to incorporate 29 DD clues where a woman competes against two

men, whereas our US setting includes 2,527 such observations.15 Thus, more information may

simply be more powerful in revealing the underlying general relationship and our paper would

serve as contradicting evidence to the discussed studies.

6.3 Policy Relevance

From a policy perspective, our results imply that the gender of opponents can significantly

influence behavior and risk-taking in competitive situations. If we want to focus on under-

standing gender gaps in such behavior, our results suggest women compete more aggressively

and risk more when in the company of males. Similarly, men may risk less when competing

against women. This result related to risk preferences compares well with that from Eckel and

Füllbrunn (2015) who propose that ‘excessive’ risk-taking in the finance industry could poten-

tially be mitigated by inserting more women in that industry.

To understand the overall degree of performance and risk-taking in competitive fields of dif-

ferent gender compositions, Figure 6 visualizes the overall likelihood of responding correctly

(left) and the overall wager in DDs (right). Both graphs compare the means of all possible

gender compositions, moving from left to right: M-M-M, M-M-F, M-F-F, and F-F-F. The per-

formance average, measured by the likelihood of responding correctly, remains highest in the

all-male setting and lowest in the M-F-F combination. Here again, inferences from the all-

female setting remain limited because few J! episodes have produced that combination.

15At this point, it is also useful to highlight the differences in stakes: Although scores are equivalent in the
Swedish setting studied by Lindquist and Säve-Söderbergh (2011) and Säve-Söderbergh and Lindquist (2016), $1
translates to approximately 8 SEK. Thus, stakes are substantially higher in the US setting of Jeopardy!.
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Figure 6: Overall average performance and risk indicators by gender composition of J!
episodes.

Interestingly, we observe more pronounced differences when assessing risk-taking in DD

wagers (right graph). Consistent with Eckel and Füllbrunn (2015), the overall degree of risk-

taking is highest in an all-male field of competitors, whereas less risk is taken by an M-F-F and

an F-F-F field of competitors.16 Although women take on more risk when in the company of

men, the overall degree of risk-taking in J! episodes is minimized in the M-F-F setting – likely

because men take on substantially less risk when competing against two females (see column 6

of Table 5).

Related to potential policy recommendations, this implies that if we want to lower risk-

taking in a given male-dominated industry (say, the finance industry) inserting more women

may provide a powerful measure. The same policy recommendation emerges if we are con-

cerned with women’s competitive behavior and if society desires women to become more com-

petitive. Nevertheless, one should of course not forget our game show setting and any inter-

pretation should keep the limitations and boundaries of our study in mind. J! contestants are

not necessarily representative of the entire population, although the show does exhibit the traits

we would like to evaluate with respect to performance and attitudes to risk: High stakes and

substantial pressure. The fact that our results emerge forcefully when relying on within-player

16Relative to Eckel and Füllbrunn (2015), Cueva and Rustichini (2015) argue gender-isolated markets may lead
to comparable deviations from fundamentals in asset pricing and mixed gender environments may be more stable.
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variation only hints at a general pattern in how the gender of one’s opponents can influence

performance indicators and attitudes to risk.

7 Conclusion

This paper analyzes a rich database of 4,279 Jeopardy! episodes with 8,169 contestants to

study whether the gender of one’s opponents affects behavior in a highly competitive situation

with large stakes. As contestants are unable to choose the gender of their opponents, Jeopardy!

provides an attractive field setting to explore such dynamics, with individual outcomes being

readily available for the researcher.

We study four distinct scenarios: The likelihood (i) to win an episode, (ii) to respond to

a clue, (iii) to respond correctly to a clue, and (iv) the wagering decisions in Daily Double

clues. Contrary to existing studies, we find that a woman is more likely to win and competes

more aggressively when paired against males. Further, the otherwise robust gender gap in risk-

taking disappears once a woman competes in an all-male field of competitors. These results are

robust to the inclusion of a rich list of potentially confounding variables and player-fixed effects,

which allow us to control for any unobservable differences on the individual level. Further,

these results are unlikely to be driven by a strategic consideration of women performing more

aggressively because of a potential under-performance in particularly high-stakes clues. From

the male perspective, we find performance indicators to be less responsive to their opponents’

gender, but a notable heterogeneity emerges for wagering decisions. In particular, a man wagers

significantly less when competing against women.

We discuss potential policy consequences in Section 6, but advise caution in the interpre-

tation and generalization of our results. At the least, we hope that this study stimulates further

research on the role of the opponents’ gender in influencing performance and risk-taking in

high-pressure situations.
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Appendix

Jeopardy!

Every Jeopardy! episode consists of three rounds with a total of 61 clues: The Jeopardy! (30

clues), Double Jeopardy! (30 clues), and Final Jeopardy! rounds (1 clue). The Jeopardy! round

contains six categories of five clues each with values of US$200, 400, 600, 800, and 1,000. After

that, the Double Jeopardy! round includes the same number of clues (new categories), but twice

the prize money.17 In each Jeopardy! round, one Daily Double clue is hidden, whereas two are

included in the Double Jeopardy! round. If a contestant happens to select a Daily Double

clue, they are allowed to wager up to their entire account balance or the largest dollar value on

the current board, whichever of the two is larger. If they respond correctly, they will gain the

wagered sum, whereas they will lose that sum if their response is incorrect.

From a 2015 interview with the head Jeopardy! writer, a Daily Double is “something that

requires a little more thought, requires a two-step process” relative to the other clues in the

Jeopardy! and Double Jeopardy! rounds (McCown, 2015). The Final Jeopardy! round con-

sists of a single clue in which all contestants can wager up to the total amount of their current

account before the clue is given, although the category is known in advance (Trebeck and Bar-

socchini, 1990, p.171-174). The goal of the game is to finish the three rounds with the most

money, as only the player with the highest dollar score will receive that value in the form of

cash and be eligible to compete in the subsequent episode. The other two competitors receive

consolation prizes based on their relative rank, with a prize of higher dollar value for second

than third place (Trebeck and Barsocchini, 1990, p.57). As of May 16, 2002, the prior physical

consolation prizes were changed to cash prizes with second place receiving US$2,000 and third

place US$1,000 (Jeopardy!, 2015b).

Currently, the show ranks as the number two game show in syndication,18 averaging 25 mil-

lion viewers per week (Jeopardy!, 2015d). The production staff employs six researchers (cur-

17Before November 26, 2001, these values were US$100, 200, 300, 400, and 500. Similarly, the Double Jeop-
ardy! clues included values of US$200, 400, 600, 800, and 1,000.

18Meaning the show is available to be licensed to television affiliates without ties to a specific network.
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rently two females and four males) and nine writers (currently two females and seven males)

who are in charge of creating and assembling clues for the show (Jeopardy!, 2015c). The con-

testant selection process is initiated when interested individuals complete an online exam of 50

clues. Since 2006, online testing has become possible, which has contributed to expanding the

contestant pool toward including more women, minorities, and students (Jeopardy!, 2015d).19

The show operates regular and tournament matches in four demographic categories: Kids

(under the age of 13), teenagers (aged 13 – 17), college students (must be a full-time student

and not have completed a bachelor’s degree), and adults (over age 18). We access data from the

regular show featuring adults (90.3 percent of episodes), but all our results are consistent when

including the remaining categories.20 According to Trebeck and Barsocchini (1990), approxi-

mately 250,000 people apply each year with 15,000 taking the first qualification exam, 1,500

qualifying for the show, and 500 being on air. Thus, only 0.2 percent of the initial applicants are

eventually selected. Based on the examinations as part of the qualification process, contestants

are “probably all equal in terms of knowledge” (Trebeck and Barsocchini, 1990, p.61) and a

“random selection of material and contestants” is taking place (Trebeck and Barsocchini, 1990,

p.40). Trebek states that ultimately it is a function of the categories that are randomly selected

in a given episode that determines the winner.

19The online qualification exam is available here: http://www.jeopardy.com/beacontestant/
contestantsearches/practicetest/. Exams to be part of the show are offered periodically throughout
the year and results are valid for 12 months (Jeopardy!, 2015a). Prior to 2006, paper examinations were given at
various locations throughout the US.

20Results are not notably different when considering the remaining categories individually (kids, teenagers, or
college students), but sample sizes become much smaller to conduct a meaningful regression analysis.
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Table AI: Summary statistics.

Women Men p-value

Mean (Std. Dev.) Mean (Std. Dev.) Women=Men

Panel A: All 4,268 episodes (N = 12, 804, since 3 players/episode)
N 5,127 7,677
Winning episode 0.34 (0.47) 0.33 (0.47) 0.29

Panel B: Responding (N = 749, 433)
N 299,555 449,878
Responding 0.33 (0.47) 0.33 (0.47) 0.75
STEM 0.06 (0.23) 0.06 (0.23) 0.42
$ value of clue 740 (508) 718 (501) 0.000***
Score 3,996 (4,424) 3,862 (4,240) 0.000***
Relative score 150 (837) -100 (811) 0.000***
(2× score - score opp. 1 - score opp. 2)

Panel C: Responding correctly (N = 248, 052)
N 99,211 148,841
Responding correctly 0.85 (0.35) 0.85 (0.35) 0.46
STEM 0.06 (0.23) 0.06 (0.23) 0.56
$ value of clue 713 (492) 693 (486) 0.000***
Score 4,299 (4,712) 4,110 (4,457) 0.000***
Relative score 1,270 (8,597) 896 (8,205) 0.000***
(2× score - score opp. 1 - score opp. 2)

Panel D: Daily Double clues (N = 12, 615)
N 5,010 7,605
Wager as % of maximum 0.45 (0.30) 0.48 (0.31) 0.000***
STEM 0.06 (0.24) 0.07 (0.26) 0.12
Initial $ value of clue 1,045 (497) 1,013 (492) 0.000***
Score 6,120 (5,195) 5,770 (4,907) 0.000***
Relative score 3,291 (9,637) 2,834 (9,123) 0.007***
(2× score - score opp. 1 - score opp. 2)
DDs before 2.67 (4.29) 4.95 (12.12) 0.000***
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Table AII: Robustness checks for estimating the likelihood to win a Jeopardy! episode.

(1) (2) (3) (4) (5) (6)
Sample: Females Males

Logita Only 1st No gapsb Logita Only 1st No gapsb

show show

Dependent variable: Winning episode (0/1, mean = 0.33)

# of male opponents 0.0341∗∗∗ 0.0263∗ 0.0305∗∗

(0.0118) (0.0139) (0.0150)

# of female opponents 0.0046 0.0081 -0.0050
(0.0100) (0.0128) (0.0136)

Control variablesc yes yes yes yes yes yes

Player-fixed effects yes yes

# of players 3,718 3,717 2,145 4,432 4,426 2,325
# of episodes 3,807 3,360 2,158 4,187 3,620 2,302
N 5,127 3,717 2,998 7,677 4,426 4,091

Notes: Standard errors clustered on the player level are displayed in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. aDisplaying
marginal effects. bOnly including episodes without any gaps (#4,451 to #7,084, since January 5, 2004). cIncludes the number of previous J!
episodes, in addition to year- and month-fixed effects.
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Table AIII: Robustness checks for estimating the likelihood to respond to a clue.

(1) (2) (3) (4) (5) (6) (7) (8)
Sample: Females Males

Logita Only 1st No gapsb Alternative Logita Only 1st No gapsb Alternative
show relative scorec show relative scorec

Dependent variable: Responding (0/1, mean = 0.331)

# of male opponents 0.0074∗∗∗ 0.0064∗∗∗ 0.0138∗∗ 0.0111∗∗

(0.0020) (0.0024) (0.0055) (0.0048)

# of female opponents -0.0002 0.0003 -0.0036 -0.0031
(0.0017) (0.0021) (0.0043) (0.0034)

Control variablesd yes yes yes yes yes yes yes yes

Player-fixed effects yes yes yes yes

# of players 3,718 3,726 2,145 3,718 4,432 4,443 2,325 3,718
# of episodes 3,807 3,368 2,158 3,807 4,187 3,631 2,303 3,807
N 299,555 216,855 175,919 299,555 449,878 258,363 240,706 449,878

Notes: Standard errors clustered on the player level are displayed in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. aDisplaying
marginal effects. bOnly including episodes without any gaps (#4,451 to #7,084, since January 5, 2004). cColumns (4) and (8) employ an
alternative measure for relative scores with player i’s score minus the best opponent’s score. dIncludes binary indicators for STEM clues and
the 20 most common categories, the $ value of the clue, the account balance of the contestant (both individual and relative to their opponents),
the clue number in the current episode, a binary indicator for the DJ! round, an indicator whether the respondent has answered a clue
incorrectly before, the number of previous J! episodes, and year- and month-fixed effects.
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Table AIV: Robustness checks for estimating the likelihood to respond correctly to a clue.

(1) (2) (3) (4) (5) (6) (7) (8)
Sample: Females Males

Logita Only 1st No gapsb Alternative Logita Only 1st No gapsb Alternative
show relative scorec show relative scorec

Dependent variable: Responding correctly (0/1, mean = 0.837)

# of male opponents 0.0037∗ 0.0020 0.0045 0.0040
(0.0019) (0.0023) (0.0049) (0.0042)

# of female opponents -0.0035∗∗ -0.0032 -0.0005 0.0015
(0.0017) (0.0020) (0.0041) (0.0032)

Control variablesd yes yes yes yes yes yes yes yes

Player-fixed effects yes yes yes yes

# of players 3,718 3,726 508 782 4,432 4,443 839 1,369
# of episodes 3,807 3,368 1,157 1,899 4,187 3,631 1,900 3,359
N 99,211 72,645 26,419 42,439 148,841 90,106 48,518 86,673

Notes: Standard errors clustered on the player level are displayed in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. aDisplaying
marginal effects. bOnly including episodes without any gaps (#4,451 to #7,084, since January 5, 2004). cColumns (4) and (8) employ an
alternative measure for relative scores with player i’s score minus the best opponent’s score. dIncludes binary indicators for STEM clues and
the 20 most common categories, the $ value of the clue, the account balance of the contestant (both individual and relative to their opponents),
the clue number in the current episode, a binary indicator for the DJ! round, an indicator whether the respondent has answered a clue
incorrectly before, the number of previous J! episodes, and year- and month-fixed effects.
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