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A B S T R A C T

Entomopathogenic nematodes (EPNs) have potential to control many soil-dwelling insect pests but have been
limited in their usage, partly by their unpredictable field performance. Numerous abiotic and biotic factors are
thought to contribute to this poor predictability, but the exact impacts and relative importance of these factors in
affecting EPN performance in the field are not well understood. Previous studies have highlighted diverse in-
teractions between EPNs and other members of the soil community, from plants and fungi to arthropods and
annelids. These interactions may help or hinder EPNs in a variety of ways. However, current research has yet to
determine how many of these interactions influence EPN performance under field conditions, specifically, if they
contribute to the variability limiting EPN efficacy and wide-scale adoption. Here we outline current knowledge
of these interactions as well as challenges and avenues for future research, such as greater integration of EPN
research with soil animal and rhizosphere ecology, that will better elucidate the potential, limitations, and
proper use of EPNs in pest management.

1. Introduction

Since the discovery of entomopathogenic nematodes (EPNs) in 1923
and their first commercialization sixty years later, thirteen EPN species
of the genera Steinernema and Heterorhabditis have been commercially
cultivated and marketed for use in a wide array of agricultural and
horticultural systems (Lacey et al., 2015). EPN infective juveniles (IJs)
invade insect bodies through the mouth, anus, spiracles, or cuticle
(Lewis et al., 2006; Wang and Gaugler, 1998) and release their bacterial
symbionts (Xenorhabus spp. bacteria for Steinernema spp. nematodes,
and Photorhabdus spp. bacteria for Heterorhabditis spp. nematodes) into
the insect’s hemolymph. The bacteria release toxins to kill the insect,
though sometimes are aided by venom proteins and anti-immune
agents produced by the nematodes themselves (Lu et al., 2017), and
proliferate in the cadaver. The IJs consume the bacteria, complete their
development, and reproduce. After one or more generations of nema-
todes inside the cadaver, new IJs leave to seek new hosts in the soil
(Kaya and Gaugler, 1993; Lewis and Clarke, 2012).

When using EPNs against pests in agricultural and horticultural
systems, IJs are commonly applied onto soil as an aqueous suspension
sprayed through the same kind of device used to apply a chemical
pesticide. Many other application techniques exist, such as applying
EPNs through drip irrigation systems or applying them contained

within bait capsules or already-infected insect cadavers (Shapiro-Ilan
and Dolinski, 2015). EPNs can effectively provide a non-toxic, en-
vironmentally benign alternative to chemical insecticides for the con-
trol of some soil-dwelling pests, including white grubs (Grewal et al.,
2005), citrus root weevil (Shapiro-Ilan et al., 2005, 2002), and mole
crickets (Parkman et al., 1996). However, despite these and other
successes (Georgis et al., 2006), extensive use of EPNs in agriculture is
limited to a few markets, including citrus orchards (Shapiro-Ilan et al.,
2005) and vegetables in greenhouses (Dolinski et al., 2012; Lacey and
Georgis, 2012). Despite the safety of EPNs for humans, other verte-
brates, and many non-target invertebrates (Georgis et al., 2006; Lacey
and Georgis, 2012), their variable performance and persistence remain
important factors restricting their adoption by pest managers (Georgis
et al., 2006; Georgis and Gaugler, 1991; Shapiro-Ilan et al., 2002). For
instance, many studies of EPN efficacy against scarab grubs in turf and
nursery crop systems report highly variable control even within the
same EPN species (Georgis et al., 2006; Grewal et al., 2005). Increasing
knowledge of how abiotic and biotic soil characteristics affect and
contribute to variability in EPN performance and persistence will be a
crucial task to better optimize EPNs for soil pest management. In ad-
dition, while many applied EPNs do not persist in soil longer than a few
weeks or months (Ebssa and Koppenhöfer, 2011; Gaugler et al., 1997;
Smits, 1996; Susurluk and Ehlers, 2008), some native EPN populations,
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adapted to a particular environment, have been shown to persist over
multiple years when isolated, cultured, and applied to the soil
(Koppenhöfer and Fuzy, 2009; Shields et al., 1999). This interest in
using persistent EPN populations underscores the need for under-
standing the biotic and abiotic factors that limit or promote EPN per-
sistence.

Many abiotic factors influencing the ability of EPNs to survive and
locate hosts in soil have been identified, and will be covered here only
briefly. Soil type (Koppenhöfer and Fuzy, 2006; Kung et al., 1990a) and
moisture (Grant and Villani, 2003; Kung et al., 1991) affect EPN per-
formance, both having been correlated with EPN performance not only
in laboratory settings but also in the field over regional scales (Campos-
Herrera et al., 2013b). The small pore spaces of finely textured soils
restrict EPN movement, soils that are too dry lack the water films that
EPNs require for movement, and EPNs may face oxygen stress in sa-
turated soils. Soil temperature is another abiotic constraint, with each
EPN species possessing an optimal temperature range typically some-
where between 5 and 35 °C (Kung et al., 1991). Salinity (Thurston et al.,
1994b) and pH (Kung et al., 1990b) also affect EPN performance,
though usually at levels outside what would be found in a typical
agricultural soil. UV light and humidity are especially important factors
when EPNs are applied to a soil, as UV light rapidly inactivates EPNs
(Gaugler et al., 1992; Smits, 1996) and low humidity renders them
vulnerable to desiccation (Smits, 1996), hence the common re-
commendation that EPNs be applied to soil at dusk (Ebssa and
Koppenhöfer, 2011; Shannag and Capinera, 1994).

Despite awareness of the abiotic characteristics that limit EPN ef-
ficacy against soil-dwelling pests, the ways in which EPNs are impacted
by biotic soil factors have received less attention. EPNs must share the
soil with enormous biodiversity beyond the pest insect they are de-
ployed against (Fig. 1), and numerous beneficial and detrimental in-
teractions between EPNs and soil organisms other than their hosts have
been documented (El-Borai et al., 2005; Eng et al., 2005; Rasmann
et al., 2005; Timper et al., 1991; Ulug et al., 2014) (Table 1). Along with
abiotic soil properties, these interactions may affect the ability of EPNs
to survive, move through soil, locate hosts, and reproduce (Fig. 2).
However, they have been less well studied in field settings, where their
potential impacts on EPN performance are most relevant.

Whether or not interactions with the soil community can produce
noticeable increases or decreases in EPN field performance remains an
open question, though some studies show evidence for the primacy of
abiotic soil properties over biotic characteristics. For example, Campos-
Herrera et al. (2016) found that abiotic properties, such as soil moisture
and pH, were stronger determinants of EPN occurrence than the

abundance of fungal and nematode natural enemies in Florida mixed
forests and old fields. However, McGraw and Schlossberg (2017) found
no association between soil moisture and EPN occurrence at fine spatial
scales in turfgrass, and suggested that biotic factors may take pre-
cedence. Overall, the extent and impact of biotic interactions as well as
their relative importance in influencing EPN survival and performance
against pests remain poorly understood. Here we review the known and
potential effects of soil organisms on EPNs through both direct and
indirect ecological interactions. Some interactions have been studied
under field conditions, others have been characterized in laboratory
settings but lack description in the field, and still others are unobserved
but still possible given current knowledge of soil ecology (Table 1). In
addition, we highlight key questions that are not yet fully answered and
propose avenues of future research by which clearer knowledge of or-
ganisms’ effects on EPN performance can be obtained.

2. Antagonism

2.1. Predation

Predation is one of the most extensively studied interactions be-
tween EPNs and the existing soil community. In laboratory settings,
many springtail and mite species consume EPNs (Epsky et al., 1988;
Gilmore and Potter, 1993; Ulug et al., 2014), often to the point of re-
ducing infection of the model host insect Galleria mellonella (L.) (Epsky
et al., 1988; Gilmore and Potter, 1993). Although these studies provide
insight into predation effects, few of them have evaluated the effects
under natural conditions. Under field soil conditions, many factors
could influence the strength of predation by soil animals on EPNs. Field
soils possess greater structural complexity than laboratory arenas,
which has been shown to reduce predation pressure by providing re-
fuges for prey animals in aquatic systems (Grabowski, 2004; Humphries
et al., 2011) and soil (Hohberg and Traunspurger, 2005). In addition,
field soils possess a wide array of alternate animal and microbial food
sources for predators to consume. Even strict nematophages have other
nematode prey available. Total nematode abundance in soil lies in the
millions of individuals per square meter (Ruess, 1995; Yeates, 2003,
1979) (Fig. 1), of which EPNs are only a small fraction under natural
conditions (Park et al., 2014). EPN application rates in published stu-
dies vary widely, ranging between 7400 and 1,500,000 infective juve-
niles (IJs) per square meter (Forschler and Gardner, 1991; Shields et al.,
1999; Shields and Testa, 2015; Susurluk and Ehlers, 2008), with
250,000 IJs per square meter being a common recommended rate for
commercial applications (Koppenhöfer et al., 2015). Thus, even after an

1.3 x 1014-15

cells m-2
20-200,000 m-2

Microarthropods
39-390,000,000
m hyphae m-2

10-1,500 m-2

Earthworms
1-6,000,000 m-2

Free-Living

Entomopathogenic Nematode Application
Fig. 1. A selection of some of the other organisms
entomopathogenic nematodes (EPNs) are exposed to
when they are applied to a soil. Citations for orga-
nismal abundance are as follows: mites and spring-
tails (Giller, 1996; Koehler, 1999), earthworms
(Ivask et al., 2007; Timmerman et al., 2006), fungi*
(Bardgett et al., 1993; Christensen, 1989), free-living
nematodes (Ruess, 1995; Yeates, 1979), bacteria*
(Gelsomino et al., 1999), common EPN application
rate (Koppenhöfer et al., 2015).
*Per m2 abundances calculated from per g values to a
soil depth of 10 cm, assuming an average soil density
of 1.30 g cm−3 (Beylich et al., 2010).
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inundative application, EPNs are unlikely to comprise more than even
half of a soil’s total nematode community, and so may not be preyed
upon as intensively as has been observed in simplified laboratory set-
tings where they comprise the entire nematode community.

Nevertheless, many studies indicate that EPNs are fed upon to some
extent following inundative applications in the field, meaning that field
predation still likely has some relevance. Surveys of field soil commu-
nities following EPN application reveal increases in the abundance of
springtails, predatory mites, and higher predators like spiders and sta-
phylinid beetles (Greenwood et al., 2011; Hodson et al., 2012; Jabbour
and Barbercheck, 2011), indicating effects cascading up through the
food web, likely spurred by the addition of EPNs as a food resource for
lower-level consumers. In another field study, EPN DNA was detected in
the guts of several oribatid mite species following an aqueous appli-
cation of the nematodes (Heidemann et al., 2011), indicating that they
can be found and consumed in field soils, even amidst the welter of
other nematodes. These findings underscore the importance of studying
predation and other interactions of soil organisms and EPNs in natural
or semi-natural conditions.

The wider body of research surrounding predation on nematodes in
general provides additional understanding of where EPNs fit into the
broader soil food web. Some predatory nematodes and mesostigmatid
mites specialize on nematodes (Moore et al., 1988), with some, such as
the mite Gamasellodes vermivorax Walter, requiring nematode prey to
reproduce (Walter, 1988). In addition, many generalist soil predators
and even supposed detritivores will consume nematodes when available
(Heidemann et al., 2014a, 2011; Muraoka and Ishibashi, 1976; Walter
et al., 1986). In laboratory tests, predatory mites often prefer nema-
todes to arthropod prey (Walter et al., 1987) and the springtail Folsomia
candida Willem prefers them to fungus (Lee and Widden, 1996). Pro-
tozoa, flatworms, and tardigrades are additional predators of nema-
todes (Geisen et al., 2015; Sánchez-Moreno et al., 2008; Sayre and
Walter, 1991). Although these non-arthropod predators are often
mentioned as predators of EPNs (Ekmen et al., 2010b; Raja et al., 2015;
Read et al., 2006), they are rarely studied in that specific context.
Earthworms can also consume nematodes, though whether this beha-
vior can truly be called ‘predation’ is questionable, as EPNs can pass
through the gut of earthworms without necessarily being harmed
(Shapiro et al., 1995, 1993), though reductions in viability can occur
(Campos-Herrera et al., 2006). However, other studies have shown
reductions in (overall) nematode abundance in soils containing

Table 1
List of most known or potential interactions between EPNs and other soil organisms,
potentially affecting the ability of EPNs to survive, move through the soil, and infect
hosts. Broad taxonomic groups (e.g., fungi, mites) are listed in bold with several examples
of more specific groups or species below.

Interaction Type Tested taxa (examples) Citations

Predation/
infection

Fungia

Arthobotrys gephyropaga,
Catenaria sp.

El-Borai et al. (2011)

Protistsc

Cryptodifflugia operculata Geisen et al. (2015)
Nematodesc

Family Mononchidae Moore et al. (1988); Sayre
and Walter (1991)

Earthwormsc

Lampito mauritii Dash et al. (1980)
Mitesa

Gamasellodes vermivorax,
Tyrophagus putrescentiae,
Pilogalumna cozadensis

Epsky et al. (1988)

Sancassania polyphyllae Ekmen et al. (2010b)
Springtailsa

Folsomia candida Gilmore and Potter (1993)
Hypogastrura scotti Epsky et al. (1988)

Exploitation Bacteriaa

Paenibacillus spp. Campos-Herrera et al.
(2012b); and Enright and
Griffin (2005)

Competition Bacteriab

Bacillus thuringiensis Kaya and Koppenhöfer
(1996)

Fungib

Beauveria bassiana Tarasco et al. (2011)
Nematodesa

Pellioditis sp., Acrobeloides spp. Duncan et al. (2003)
Oschieus spp. Blanco-Pérez et al. (2017)
Mitesa

Sancassania polyphyllae Ekmen et al. (2010b)
Insectsb

Linepithema humile, Formica
pacifica

Baur et al. (1998)

Tetramorium chefketi, Labidura
riparia

Ulug et al. (2014)

Amensalism Plantsb

Tagetes spp. Kanagy and Kaya (1996)

Phoresy Earthwormsb

Eisenia fetida Campos-Herrera et al.
(2006)

Lumbricus terrestris Shapiro-Ilan and Brown
(2013)

Mitesb

Hypoaspis sp., Gamasellodes
vermivorax, Pilogalumna
cozadensis

Epsky et al. (1988)

Isopodsb

Porcellio scaber Eng et al. (2005)

Mutualism Plantsa

Pisum sativum Hiltpold et al. (2015)
Thuja occidentalis Van Tol et al. (2001)
Zea mays Rasmann et al. (2005)

Facilitation Bacteriab

Paenibacillus popilliae Thurston et al. (1994a)

a Indicates interactions characterized in field settings.
b Indicates interactions characterized in laboratory settings, but not in the field.
c Indicates interactions characterized with free-living nematodes, but not EPNs speci-

fically.

Biotic Factors

Ecosystem
engineers
e.g. Ants

Earthworms

Chemical
signalers
e.g. Plants

Competitors
e.g. Mites

Ants
Free-living
nematodes

Fungi

Pathogens
e.g. Fungi

Phoretic hosts
e.g. Earthworms

Isopods

Predators
e.g. Mites
Springtails

Alternate hosts
e.g. Non-pest
insect larvae

Abiotic soil 
properties

Fig. 2. Diagram of the many different types of soil organisms and their effects on different
points in the EPN life/host infection cycle. Note that organisms can fit into multiple ca-
tegories and thus affect EPNs in different ways. Ecosystem engineers may affect EPNs
indirectly through their effects on soil abiotic properties.
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earthworms (Dash et al., 1980).
Despite the parallels that can be drawn between free-living nema-

todes and EPNs, two aspects of EPN biology distinguish them as a food
resource from most other nematodes: their symbiosis with pathogenic
bacteria and their association with insect cadavers. EPNs and their
symbionts can kill a wide variety of arthropod taxa, including ticks
(Samish et al., 1999; Samish and Glazer, 2001), prostigmatid mites
(Bussaman et al., 2006), isopods (Bathon, 1996; Sicard et al., 2014),
and millipedes (Bathon, 1996), so it is clear that the EPN bacterial
symbionts, Xenorhabdus and Photorhabdus, are toxic to more than just
insects. Epsky et al. (1988) saw poor survival of the nematophagous G.
vermivorax feeding on Heterorhabditis heliothidis (=bacteriophora)
Poinar IJs and total inability of eight other mite species to fully develop
on Steinernema feltiae Filipjev, a notable finding given that the mites
originated from colonies raised on bacterial-feeding nematodes. EPNs
have only rarely been observed to infect microarthropods (Epsky et al.,
1988), but their bacterial symbiont may nevertheless render EPNs
harmful to microarthropod predators. Thus, in some cases, micro-
arthropods may prefer to consume non-entomopathogenic nematodes,
such as free-living bacterivores, plant parasites, and predatory nema-
todes. Heidemann et al. (2011) noted that oribatid mites were less
likely to consume the EPN S. feltiae than the snail and slug parasite
Phasmarhabditis hermaphrodita Schneider, with 3 of the 7 tested mite
species consuming live S. feltiae and 5 of the 7 consuming dead S. feltiae,
whereas all mites consumed live and dead P. hermaphrodita. In contrast,
G. vermivorax shows no preference between S. feltiae and nematodes of
the bacterial-feeding genus Acrobeloides (Walter and Ikonen, 1989).
This indicates that feeding response may vary between predator taxa, or
between specialist predators and opportunistic omnivores. Feeding re-
sponse may also differ depending on the type of EPN being preyed
upon, as Steinernema spp. and Heterorhabditis spp. differ both in the
species of their bacterial symbionts and those symbionts’ placement
within the EPN gut (Goodrich-Blair and Clarke, 2007). However, more
research is needed to confirm any repellent or toxic effects of the EPN
symbiont on animals consuming IJs.

The association of EPNs with insect cadavers also sets them apart
from most other nematodes. The spatial distribution of EPNs in soil
varies from nearly uniform immediately following an aqueous appli-
cation to patchy, aggregated swarms of IJs (Campbell et al., 1998;
Shapiro-Ilan et al., 2014) to the extreme aggregation of IJs within an
insect cadaver. Cadavers may attract scavenging animals that would not
be significant threats to IJs in the soil, but when drawn to a cadaver
may consume the resident or emerging IJs. Ekmen et al. (2010b) found
that while just ten individuals of the astigmatid mite Sancassania
polyphyllae Zachvatkin could consume 96% of IJs emerging from ca-
davers, they were less able to find and prey upon IJs occurring freely in
the soil, as they were drawn primarily to the cadaver and not the IJs
(Ekmen et al., 2010a).

2.2. Fungal pathogenesis

Nematophagous fungi (NF) are perhaps the most prominent and
well-studied pathogens affecting EPNs. A few instances of micro-
sporidian pathogens of EPNs and phages attacking their symbiotic
bacteria have been noted (Kaya, 2002), but have not been extensively
studied. NF can be divided into two categories: endoparasitic fungi that
attach as conidia to the nematode cuticle and grow into the body cavity;
and nematode-trapping fungi that catch nematodes in specially struc-
tured hyphae (Kaya and Koppenhöfer, 1996). EPN species differ in their
morphological and behavioral defenses against NF. For example, IJs of
the genus Heterorhabditis retain the cuticle of their previous juvenile
stage more readily than do those of the genus Steinernema, which
sometimes (but see El-Borai et al., 2009) affords greater protection from
endoparasitic NF and suggests that heterorhabditid EPNs would be the
best species to employ in soils high in these pathogens (El-Borai et al.,
2009; Timper and Kaya, 1989). Also, EPN species differ in their

responses to different species of NF, with EPNs potentially being re-
pelled, attracted, or unaffected depending on fungal species (El-Borai
et al., 2011). Nematode-trapping species in particular exhibit variable
lifestyles, alternating between predatory and saprotrophic behavior
(Cooke, 1963; Pathak et al., 2012) in response to competition from
other saprotrophic fungi (Quinn, 1987). Therefore, the danger posed by
trapping NF to EPNs may vary depending on soil fungal community
structure, as well as the specific NF species present and EPNs employed
at a given site (El-Borai et al., 2009). Understanding characteristics of
soil fungal communities that control this switch to trapping behavior in
NF would again aid in assessing a soil’s suitability for EPN application,
and conversely, in efforts to employ NF against plant-parasitic nema-
todes (Kerry, 2000).

Both trapping and endoparasitic NF have been studied as EPN an-
tagonists in field settings (Campos-Herrera et al., 2016; Jaffee et al.,
1996; Pathak et al., 2012). However, whereas laboratory studies found
reduced infection of G. mellonella in soils with NF (Koppenhöfer et al.,
1996b), and though earlier studies did not show the same effect in the
field (Jaffee et al., 1996), modern molecular methods have allowed for
more accurate detection and measurement of NF populations in relation
to EPNs in field settings. These methods are able to detect NF in samples
of nematodes or bulk soil (Campos-Herrera et al., 2016; Pathak et al.,
2012) and have shown spatial associations between EPNs and NF
(Jaffuel et al., 2016; Pathak et al., 2017), though not always the ne-
gative associations that would be expected if NF substantially reduced
EPN populations (Duncan et al., 2013; Pathak et al., 2017). Thus, NF
may not always be major limiters of EPN performance. However,
Duncan et al. (2007) found higher EPN infection of the citrus root
weevil Diaprepes abbreviatus in soils mulched with animal manure, a
treatment that also decreased populations of trapping NF, indicating
that NF may still be a worthwhile target for management programs
seeking to increase EPN efficacy.

2.3. Plant amensalism

In addition to their prominence aboveground, plants are pivotal
members of the soil community in most terrestrial (and all agricultural)
ecosystems. Plant roots alter soil structure and chemistry, provide re-
sources for soil animals and microbes, and produce a wide variety of
secondary metabolites to sculpt the surrounding community for their
own benefit (Hinsinger et al., 2009; Philippot et al., 2013). Although
plants usually benefit from the presence of EPNs and some (discussed
below in Section 3.1) secrete EPN-attracting chemicals into the rhizo-
sphere (Rasmann et al., 2005), other root exudates can act as deterrents
or toxins (Kaya and Koppenhöfer, 1996). The thiophene α-terthienyl,
an extract of marigold (Asteraceae) roots, has long been known to
suppress plant-parasitic nematodes, and marigolds have even been in-
corporated into some agricultural systems as cover crops or green
manures for this exact purpose (Chitwood, 2002; Hooks et al., 2010).
However, α-terthienyl also displays toxicity to EPNs at high con-
centrations, causing decreased survival and lower numbers of nema-
todes penetrating hosts (Kanagy and Kaya, 1996). Interestingly, EPNs
did not perform better or worse in the presence of marigold roots than
in their absence, perhaps indicating that natural concentrations of the
exudate suppress plant-parasitic nematodes but not EPNs. However,
this interaction has not been extensively studied with marigold or any
other plant. Many plants, including other asters, brassicas, and sorghum
grasses, also produce nematicidal compounds to combat plant-parasitic
nematodes (Chitwood, 2002), which may also reduce EPN infectivity
against insect pests when incorporated into management practices. For
example, mustard green manures tilled into a potato field reduced in-
fection of Galleria mellonella larvae by a wide range of EPN species
(Ramirez et al., 2009). However, the use of mustard as a cover crop did
not significantly reduce EPN abundance compared to other cover crops
or bare soil (Jaffuel et al., 2017). Thus, the potential for plant antibiosis
should be studied in more detail and in a wider variety of crop systems.
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In some cases, the benefits of plant-parasitic nematode suppression by
toxic root exudates may outweigh any detriments of reduced EPN in-
fectivity against insect pests. Attempts to reduce the presence or effects
of these exudates would perhaps be best suited for cropping systems in
which plant-parasitic nematodes are not economically important pests,
or else for situations in which the plants producing the exudates toxic to
EPNs are cover crops or weeds rather than the main crop.

2.4. Competition

An EPN-killed insect, burgeoning with bacterial biomass, is an ex-
cellent food resource for many organisms outside of the EPN-bacteria
partnership. Xenorhabdus and Photorhabdus bacteria produce com-
pounds that deter a wide range of scavengers, such as beetles (Foltan
and Puza, 2009; Jones et al., 2015), ants (Baur et al., 1998), and even
vertebrates (Fenton et al., 2011; Jones et al., 2017; Raja et al., 2017).
However, ants, cockroaches, mites, and earwigs have still been found to
feed on EPN-infected cadavers (Baur et al., 1998; Ulug et al., 2014).
Scavengers can directly consume the developing and/or emerging EPNs
within (Ekmen et al., 2010b) or simply break open the cadaver and
leave the EPNs vulnerable to desiccation (Baur et al., 1998). Free-living
and necromenic nematodes can also compete for the bacterial resources
within an EPN-killed cadaver, substantially reducing the number of IJs
that eventually emerge (Blanco-Pérez et al., 2017; Duncan et al., 2003),
though susceptibility to bacterivore competitors can vary between EPN
species (Blanco-Pérez et al., 2017; Campos-Herrera et al., 2015). EPNs
can face similar conflicts with saprotrophic microbes that compete for
cadaver resources and impede the growth of both EPN and symbiotic
bacteria (Navarro et al., 2014a).

EPNs can also compete with other insect pathogens sharing their
host. Competition with entomopathogenic viruses, bacteria, and fungi
has been reviewed in depth by Kaya and Koppenhöfer (1996) and will
be discussed only briefly here. Co-infection of EPNs and many bacterial
and viral entomopathogens usually results in reduced viability of the
next EPN generation, due either to resource competition (Kaya and
Brayton, 1978) or to the other pathogen disintegrating the insect ca-
daver’s cuticle and desiccating the developing EPNs (Kaya and
Burlando, 1989). In contrast, effects of co-infecting entomopathogenic
fungi (EPF) on EPNs are timing- and temperature-dependent, and in
favorable circumstances, EPNs can exclude the fungi and develop nor-
mally (Barbercheck and Kaya, 1990). Compounds produced by EPF and
EPN symbiotic bacteria are generally antagonistic to one another, al-
though this can vary by individual EPF or symbiont species (Ansari
et al., 2005; Tarasco et al., 2011). In rare instances, EPNs and EPF can
colonize different parts of the same cadaver (Tarasco et al., 2011),
though this would still decrease the amount of resources available to
the EPNs. Interestingly, combined applications of EPNs and other en-
tomopathogens (in management contexts) sometimes have additive or
synergistic effects on pest mortality (Abdolmaleki et al., 2017; Ansari
et al., 2006; Jabbour et al., 2011), yet this is sometimes dependent on
the relative timing of both applications (Abdolmaleki et al., 2017). This
indicates that the relationship between EPNs and other entomopatho-
gens may be less adversarial when considering an entire population of
hosts rather than their interactions within a single host. Though outside
the scope of the present review, different EPN species can also compete
with one another within the soil profile (Koppenhöfer et al., 1996a) and
within single host cadavers (Koppenhöfer et al., 1995), with the vic-
torious species usually being the one with faster development time or
less specific bacterial symbiont association (Koppenhöfer et al., 1995).

Unlike predation, competition for cadaver resources can only reduce
EPN recycling and thus their potential to persist over time, not the
initial infectivity of an aqueous EPN application. However, the practice
of applying EPNs within infected insects (Raja et al., 2015; Shapiro-Ilan
et al., 2006), despite its advantages of increased EPN infectivity under
typical circumstances (Shapiro-Ilan et al., 2003; Shapiro and Lewis,
1999), may not be suitable for soils unusually high in potential

scavengers.

2.5. Bacterial encumbrance

There is also evidence that EPNs can be negatively affected by soil
microbes that exploit IJs for their own dispersal. The bacterium
Paenibacillus nematophilus can attach itself to many Heteorhabditis EPN
species and use them as phoretic hosts (Enright and Griffin, 2004), and
an unidentified congener, Paenibacillus sp., attaches to Steinernema
diaprepesi (El-Borai et al., 2005). Unlike many other Paenibacillus spe-
cies, these bacteria are not entomopathogenic, but instead will pro-
liferate inside of EPN-killed insects after reaching them as spores on the
IJs. Paenibacillus presence does not significantly impact EPN re-
production or development inside of cadavers, but spores can reduce
EPN mobility and ability to infect hosts in laboratory settings (El-Borai
et al., 2005; Enright and Griffin, 2005). From an evolutionary per-
spective, bacteria that benefit from transportation to a host would not
be expected to commonly overburden their source of transportation, as
that would decrease their own fitness as well as the fitness of the EPN
(Enright and Griffin, 2005). However, the Paenibacillus-EPN phoretic
association itself has been repeatedly confirmed in natural soils via real
time quantitative PCR (Campos-Herrera et al., 2016, 2011, 2012b), and
increases in Paenibacillus spore encumbrance have been linked to re-
duced EPN abundance (Campos-Herrera et al., 2013a).

3. Facilitation

3.1. Plant root signaling

Due to the protection EPNs provide plants in both natural (Ram
et al., 2008) and agricultural ecosystems (Chen et al., 2003; Toepfer
et al., 2008), plants would be expected to benefit from the ability to
attract EPNs to the site of belowground herbivory. As such, many plants
secrete exudates in response to root feeding that can attract and mo-
bilize EPNs against the feeding insects. Root exudates from citrus (Ali
et al., 2012), pea (Hiltpold et al., 2015), conifers (Van Tol et al., 2001),
and maize (Rasmann et al., 2005) all affect EPNs in this way, primarily
attracting them to defend the plant from belowground attack. Pea root
exudates can induce quiescence in both EPNs and plant-parasitic ne-
matodes when present in high concentrations (Hiltpold et al., 2015;
Jaffuel et al., 2015), but at low concentrations, the exudates increase
EPN infectivity to Galleria mellonella while still subduing plant-parasitic
nematodes (Hiltpold et al., 2015). Exudates from citrus roots have been
found to enhance biological control even when applied to the soil in
non-citrus cropping systems (Ali et al., 2012), though they also can
attract free-living bacterivorous nematodes, which can compete with
EPNs for cadaver resources (Ali et al., 2013). Conversely, the exudates
can also modify EPN behavior in the presence of NF, reducing infection
of the EPNs (Willett et al., 2017).

The interaction of EPNs with maize root exudates is the most in-
tensively studied. Certain maize cultivars exude the sesquiterpene (E)-
β-caryophyllene (EβC) from their roots in response to feeding damage
from the western corn rootworm Diobrotica virgifera LeConte, thus at-
tracting EPNs to kill the pest (Rasmann et al., 2005). EβC not only at-
tracts EPNs, but also helps them navigate complex root architecture to
locate hosts (Demarta et al., 2014). EPNs thus attracted can sig-
nificantly reduce D. v. virgifera numbers and damage to maize roots
(Hiltpold et al., 2010a,b,c). This interaction has led to extensive re-
search into ways to select for EPN populations more responsive to the
EβC signal (Hiltpold et al., 2010a,b) and, through genetic engineering,
to restore the signal to maize cultivars that have lost it (Degenhardt
et al., 2009). Interestingly, selecting for enhanced response to EβC re-
sulted in greater D. v. virgifera mortality and decreased root damage
when Steinernema feltiae and Heterorhabditis megidis Poinar, Jackson, &
Klein were applied to the soil, but selection had no effect on the insect-
killing or plant-protecting ability of H. bacteriophora (Hiltpold et al.,
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2010c). This suggests that some EPN species may be less reliant on host
plant chemical signals than other species, and so would be the optimal
choice of EPN for use on crops and cultivars lacking those signals.

It must be noted that while these interactions have been intensively
studied in a few crop plant systems, soil is an incredibly complex che-
mical environment, replete with volatile and solubilized compounds
from plant and microbial sources, most of whose functions are un-
known (Delory et al., 2016; Insam and Seewald, 2010; Leff and Fierer,
2008). Under natural conditions, the full importance of established
chemical cues relative to other compounds remains to be unearthed. In
addition, other physicochemical complexities of soil, properties such as
moisture, texture, and pH, can affect how volatile chemicals disperse
through the soil pore matrix (Chiriboga et al., 2017; Som et al., 2017),
impacting the efficiency with which damaged plants can recruit EPNs
(Chiriboga et al., 2017).

3.2. Phoresy on soil animals

One of the principal challenges EPNs face is that of dispersing
through the soil to locate patchily distributed insect hosts (Stuart et al.,
2006). Soil moisture and texture limit the ability of EPNs to disperse
independently through the soil matrix (Grant and Villani, 2003; Kung
et al., 1990a), however, like many other microinvertebrates, nematodes
are capable of dispersing phoretically on the surface of larger animals.
EPNs can disperse phoretically both at and below the soil surface on
isopods (Eng et al., 2005) and earthworms (Campos-Herrera et al.,
2006; Shapiro-Ilan and Brown, 2013; Shapiro et al., 1995, 1993). Other
macrofauna such as myriapods or slugs may also serve as phoretic
hosts, but those taxa have not been tested. Microarthropods may also
provide EPNs with transportation through the soil. Epsky et al. (1988)
observed EPNs exploiting mites as phoretic agents, although the study
was not conducted in soil, where EPNs may risk being abraded against
mineral grains or scraped from the mite’s exoskeleton as they move
through the soil pore matrix. However, EPNs were seen clustering on
the dorsal surface of mites, suggesting an active behavior of the ne-
matodes that they would presumably perform in soil.

3.3. Entomopathogen commensalism

Unlike the entomopathogens discussed above in Section 2.3, Pae-
nibacillus popillae (formerly Bacillus popillae), causative agent of the
milky spore disease in Japanese beetle Popillia japonica Newman, not
only avoids conflict with co-infecting EPNs, but also enhances EPN
penetration of the midgut of infected grubs (Thurston et al., 1994a).
Though this ‘compensatory infection’ may not result in greater insect
mortality following EPN application, it could potentially increase EPN
recycling and their ability to persist in controlling Japanese beetle over
the course of a season. However, native milky spore disease is not often
a major source of P. japonica mortality (Cappaert and Smitley, 2002;
Hanula and Andreadis, 1988), though it can be a dominant pathogen at
some sites (Redmond and Potter, 2010). In addition, commercial for-
mulations of P. popillae are often ineffective (Redmond and Potter,
1995). It is therefore unlikely that exploiting the EPN-milky spore
disease commensalism will lead to enhanced biological control strate-
gies.

4. Host community interactions

Although many of the previously discussed interactions represent
top-down pressures on EPN populations, some soil organisms could
provide bottom-up effects on EPNs and their ability to infect pests.
Obviously, characteristics of a pest population such as density (Ebssa
et al., 2011), dominant life stage (Power et al., 2009), and individual
pest species within a generalized group such as ‘white grubs’
(Koppenhöfer et al., 2006; Morales-Rodriguez et al., 2010) can affect
the success of an EPN application. However, effects of other, non-target

insect hosts on EPN success against a pest have received little attention.
Although some EPN species, such as Steinernema scarabaei Stock &
Koppenhöfer and S. scapterisci Nguyen & Smart, specialize on single or
limited numbers of related host species (Koppenhöfer and Fuzy, 2003;
Nguyen and Smart, 1991), others, including many commercially
available species, have wide host ranges and can infect organisms be-
yond the targeted pests (Bathon, 1996; Peters, 1996). This fact has
received some attention in the context of assessing EPN effects on non-
target organisms (Babendreier et al., 2015; Bathon, 1996). Less well
understood are the effects of alternate hosts on EPN population dy-
namics, persistence in soil, and especially their ability to infect pests.
Abundance of insect hosts, pest or otherwise, is predictably associated
with increased occurrence of EPNs (Efron et al., 2001; Harvey and
Griffin, 2016; Mráček et al., 2005; Mráček and Bečvář, 2000), though
not in all cases (Campbell et al., 1995; Půža and Mráček, 2005).
Susurluk and Ehlers (2008) found that persistence of Heterorhabditis
bacteriophora was nearly doubled in cropping systems with high avail-
ability of hosts throughout the course of the study compared to systems
lacking viable hosts.

The effect of alternate hosts on EPN infection of pests is likely de-
pendent on several variables, perhaps most importantly the relative
timing of the alternate host and the pest life cycles. Alternate hosts
present at the same time as the target pest could potentially reduce
infection of the pest via apparent mutualism or increase pest infection
via apparent competition, depending on a wide range of traits specific
to the EPN, pest, and alternate host under consideration (Abrams et al.,
1998; Holt and Lawton, 1994). In contrast, alternate hosts present at
different times from target pests could enhance EPN persistence, pro-
viding a temporal stepping-stone to sustain the population through
periods where pest insects are absent from the soil. This was observed
by Sulistyanto and Ehlers (1996), which found that EPNs applied to
control the scarab grub Aphodius contaminatus Herbst could control a
second grub occurring later in the season, Phyllopertha horticola (L.), at
a level high enough to suggest that recycling within the A. contaminus
and not simple persistence of the original application had occurred.

5. Habitat modification by ecosystem engineers

Soil organisms act not only on one another, but also on the abiotic
soil environment around them. Though abiotic properties may be more
important controls of EPN performance than biotic properties in some
systems (Campos-Herrera et al., 2016), abiotic properties can be shaped
by the activities of living ecosystem engineers. Soil macrofauna, espe-
cially earthworms, can alter many of the soil properties important for
EPN performance, notably soil moisture via burrowing-induced changes
in porosity, water infiltration, and water storage (Bottinelli et al., 2015;
Capowiez et al., 2009; Lavelle et al., 1997). Ants and termites can also
cause similar changes both in their mounds and in surrounding soils
(Frouz et al., 2003; Nkem et al., 2000). Some changes may be restricted
to their mounds, such as increases in deep-soil porosity in ant mounds
(Nkem et al., 2000), but other changes extend throughout their range of
activity. In addition, ants and termites are both capable of increasing
water infiltration rates through their tunneling activities (Mando et al.,
1996), to the point where excluding these organisms can decrease crop
yields in arid soils (Evans et al., 2011). A similar decrease in water
infiltration might also reduce EPN performance, suggesting that the
presence of these ecosystem engineers would be beneficial to EPNs.

Ecosystem engineers can also influence another major abiotic con-
trol of EPN performance, soil texture. Ingestion and passage through the
guts of earthworms (Carpenter et al., 2007; Suzuki et al., 2003) and
scarab larvae (Suzuki et al., 2003) can erode mineral grains to the point
of converting coarse and medium sand grains into fine and very fine
sand (Suzuki et al., 2003), though any potential effects of scarabs on
soil texture at field scales are not well characterized. Earthworms can
also alter the vertical distribution of a soil’s mineral constituents
(Resner et al., 2011), changing the soil profile that EPNs must penetrate
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to reach the target pest. Ants similarly redistribute soil particles, as
Nkem et al. (2000) found lower clay and higher silt and sand contents
in ant-impacted soils, even five meters from the mounds and in foraging
tracks extending farther. Any fauna-induced changes to soil texture
would likely occur over timescales much longer than those of any direct
ecological interaction such as predation. However, earthworms are
prominent invasive species in certain parts of the world, such as the
northern United States (Bohlen et al., 2004). Thus, their influence on
soil physical properties would be a new addition to those ecosystems,
one with potential to alter soils’ suitability for EPNs over time.

Whether these and other fauna-induced changes are beneficial or
detrimental to EPN performance would obviously depend on a variety
of factors, such as engineer species, soil characteristics, EPN foraging
strategy, and target pest. For example, earthworm burrow size, depth,
and structure differ considerably across species and ecological groups
(Capowiez et al., 2006), as do the size and distribution of ant and ter-
mite mounds (Greenberg et al., 1985), and so the activities of different
species would likely have different effects on EPNs. Thus, no single
‘engineer effect’ is likely to exist. To date, we are not aware of a single
study seeking to characterize indirect effects of faunal ecosystem en-
gineering on EPN performance, although Shapiro-Ilan and Brown
(2013) found higher dispersal and infectivity of Steinernema carpocapsae
in soils containing the earthworm Lumbricus terrestris compared to soils
without it, which the authors attributed primarily to phoresy but could
have also been a result of more favorable soil conditions generated by
the earthworms.

6. Challenges and future goals

A common theme emerges when considering the literature sur-
rounding ecological interactions between EPNs and other soil organ-
isms, as does a question that should be on every pest manager’s mind:
do biotic interactions matter? Can the action of other soil organisms
enhance or reduce the biological control potential of EPNs, either the
initial infectivity of an application or the efficacy and dynamics of a
persistent population? Soil organisms are well positioned to have a role
in the variable field performance of EPNs. Their abundance and com-
munity composition are highly variable in time and space (Frey, 2015;
Giller, 1996; Moore and de Ruiter, 1991), and also vary with soil
management practices (Chu et al., 2007; Donnison et al., 2000; Gan and
Wickings, 2017; Schon et al., 2008; Wickings and Grandy, 2013). For
example, springtails and mites, two key groups of soil microarthropods
with multiple potential effects on EPNs, range in abundance from
hundreds to hundreds of thousands of individuals per square meter
(Giller, 1996; Koehler, 1999). Thus, if these and other soil organisms
can influence EPN performance, then their overall effect would be
variable, and variable, unpredictable EPN performance would result.
The temporal variation in soil communities would perhaps be especially
important for management strategies seeking to establish persistent
EPN populations, as those EPNs would be exposed to many different soil
communities over the course of their time in the soil, which could affect
the EPNs differently at different times.

However, the question of other soil organisms’ effects on EPNs re-
mains largely unanswered, as the majority of studies so far quantifying
the impact of most ecological interactions on EPN performance have
been conducted in laboratory settings. In studying predation, analyses
of predator gut contents and soil community response to EPN applica-
tion may identify animal groups that consume EPNs in the field, but
cannot determine if predators impact EPN populations strongly enough
to interfere with pest control. A few studies have, directly or indirectly,
shed some light on this question, such as studies of biological control
practices combining EPNs and Hypoaspis predatory mites, which are
known to consume EPNs (Epsky et al., 1988). Borgemeister and Berndt
(2003) suggested intraguild predation by mites on EPNs as an ex-
planation for the not completely additive effect of EPNs and Hypoaspis
aculeifer Canestrini mites on thrips mortality, but they did not assess

EPN infection of the thrips themselves and so could not directly tie the
mites to decreased EPN efficacy per se. Wilson and Gaugler (2004)
correlated springtail and mite abundance in turfgrass with declining
EPN infection of Galleria mellonella, which could have been due to
predation by the microarthropods, especially since the correlations
were only present when EPNs were surface-applied as opposed to
subsurface-applied. However, G. mellonella infection was assessed under
laboratory conditions, not in the field. Similar knowledge gaps exist for
other interactions. Duncan et al. (2003) observed reduced EPN emer-
gence from field-collected cadavers in which free-living bacterivore
competitors were also present, but the effect of this competition on
future insect infection remains unknown. Phoresy of infective juveniles
has never been examined in the field, nor have indirect effects of eco-
system engineers ever been explicitly tested (but see Shapiro-Ilan and
Brown, 2013). To date, the only field studies assessing the effects of soil
organism interactions on EPN performance against an agricultural pest
have been those investigating root chemical signaling (Ali et al., 2012;
Hiltpold et al., 2010b) nematophagous fungi infection (Campos-Herrera
et al., 2014; Duncan et al., 2007), and Paenibacillus encumbrance
(Campos-Herrera et al., 2014; Duncan et al., 2013). Still, previous
studies under artificial conditions suggest that many other ecological
interactions could have important effects on EPN performance in soil.

A concerted effort to quantify the effect of other soil organism in-
teractions with EPNs under field conditions will help determine whe-
ther or not soil biota need to be taken into account when deciding to use
EPNs as a pest control tool. Several avenues of research show promise.
First, correlative studies associating biotic (and abiotic) soil properties
with native EPN occurrence or applied EPN efficacy have provided
understanding of which soil properties are most important (Campos-
Herrera et al., 2016; Campos-Herrera et al., 2013a), as well as the re-
lative importance of biotic and abiotic factors. In addition to informing
targets for soil management, such findings could eventually help
managers predict EPN performance in advance, reducing the likelihood
of one’s opinion being soured by an ineffectual application on a sub-
optimal soil. These studies should take wider ranges of soil biota into
account, and be continued in a wider variety of agricultural systems and
management regimes.

Continuing with the topic of management, soil biota could also be
incorporated to a greater extent into studies examining the effects of
agricultural management practices on EPNs, with the goal of de-
termining if the downstream consequences of different agronomic,
cultural, and pest management practices on soil communities comprises
part of their overall influence on EPNs. Studies in Florida citrus orch-
ards have already taken this approach, linking increased abundance of
EPN natural enemies as a result of specific management practices to
reduced EPN occurrence and increases in pest activity (Campos-Herrera
et al., 2014; Campos-Herrera et al., 2013b). However, more general and
widespread management practices have yet to receive attention of this
kind. For instance, tillage both reduces densities of earthworms and
microarthropods in soils (House and Parmelee, 1985; Reeleder et al.,
2006; Winter et al., 1990), and has varying effects on EPN infection
rates, including positive effects on Steinernema riobrave Cabanillas,
Poinar, & Raulston (Millar and Barbercheck, 2002). Whether the effects
of tillage on EPNs are entirely due to its abiotic changes to the soil or
partly mediated by tillage’s effects on the soil community remains to be
determined. Pesticide use is another example of a management practice
with potential indirect effects on EPNs. The direct toxicity of pesticides
to EPNs varies by active ingredient, with effects ranging from 100%
EPN mortality to no apparent harm (Krishnayya and Grewal, 2002;
Navarro et al., 2014b; Rovesti et al., 1988). EPNs can even be applied in
the same tank mix as certain pesticides, such as imidacloprid, with
which some EPNs have a synergistic effect on scarab grub mortality
(Koppenhöfer et al., 2000a), due to imidacloprid paralyzing the grub
and preventing them from grooming themselves to remove EPNs
(Koppenhöfer et al., 2000b). However, pesticides also have significant,
and usually negative, effects on other soil biota, such as arthropods
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(Kunkel et al., 1999; Peck, 2009) and saprotrophic fungi (Gan and
Wickings, 2017), effects which could again have downstream implica-
tions for EPNs.

As a potential avenue beyond correlative analysis for gauging the
relative importance of abiotic soil conditions and biotic communities
for EPNs, the ‘reciprocal transplant’ experimental design commonly
used by ecologists to determine the relative importance of abiotic (e.g.
environmental) and biotic (e.g. genotypic) factors in governing or-
ganism or community characteristics (Hedderson and Longton, 2008;
Meola et al., 2014; Pascoal et al., 2012) could be repurposed. Sterilized
soils from each of multiple sites could be placed in permeable field
mesocosms at each site, left for sufficient time to allow the sites’ native
biota to colonize, and be inoculated with EPNs and a host of interest.
However, the effects of one site’s community on another’s soil and vice
versa, separate from their effects on EPNs, would have to be accounted
for, as factors such as soil pH are known to affect interactions between
EPNs and other organisms (Campos-Herrera et al., 2014).

Further beyond the ‘soft’ manipulation of a reciprocal transplant
study, experiments directly manipulating soil communities, either by
excluding or augmenting different taxa, are commonplace in soil
ecology and provide insight into the effects of soil organisms on com-
munity dynamics and ecosystem processes (Crowther et al., 2013;
Soong et al., 2016; Uvarov and Karaban, 2015). Thus, alone and in
combination with correlative studies, these will likely also be useful for
understanding soil organism effects on EPN performance. One limita-
tion of this approach is that it can do little to separate the effects of
individual taxa and interactions on EPN performance (Fig. 3), especially
in exclusion experiments where manipulating specific taxonomic
groups instead of broad size classes is difficult. A single taxonomic
group or even single species could interact with EPNs in multiple,
possibly contrasting ways, and the magnitude and direction of each

group’s effects, whatever they happened to be, would likely be difficult
to determine. However, the relative strength of positive interactions
versus negative interactions would be determinable by the overall effect
on EPN performance of a community’s presence or increased abundance
of specific groups or overall community diversity. For example, Khan
et al. (2016) observed decreased survival of four EPN species in soils
containing organisms compared with sterilized soils, suggesting that
negative interactions with members of that soil community pre-
dominated, regardless of individual species-level interactions.

Future studies should also investigate differences in interactions
between soil biota and EPNs that occupy different ecological niches. For
instance, EPNs vary between species (and sometimes within species
depending on context, see Griffin, 2015) both in their movement be-
havior (‘ambush’ versus ‘cruise’ foragers) and their preferred foraging
depths (Ferguson et al., 1995; Kaya and Gaugler, 1993; Neumann and
Shields, 2006), potentially resulting in different EPN species en-
countering different biotic communities, as abundance and species
composition of many soil organism groups, from bacteria to springtails,
vary by depth (Frey, 2015). The different sizes of each EPN species’ IJ
stage may also affect their vulnerability to predators of different sizes.
Of the thirteen commercially available EPN species, the largest, Stei-
nernema longicaudum Shen &Wang, is nearly double the length of the
smallest, Heterorhabditis indica Poinar, Karunakar, & David (Adams and
Nguyen, 2002).

One particular area of research that has exploded in prominence in
recent years, both within general soil ecology (Oburger and Schmidt,
2016; Philippot et al., 2013; van Dam and Bouwmeester, 2016) and the
study of EPNs (Ali et al., 2013; Hiltpold et al., 2015; Jaffuel et al., 2015;
Willett et al., 2017, also see Section 3.1 above), is the role of root
exudates and volatiles in shaping complex community interactions
belowground. These rhizodeposits provide food for soil animals
(Garrett et al., 2001; Pollierer et al., 2007) and shape microbial com-
munities, likely both by releasing anti-microbial compounds and again
providing food resources (Brant et al., 2006; Broeckling et al., 2008).
Research over the last two decades has advanced our awareness of the
chemical complexity of plant rhizodeposition (Massalha et al., 2017)
and has also begun to elucidate the role of root-derived compounds as
info-chemicals mediating communication among plants, free-living and
symbiotic microbes, and animals including root herbivores and EPNs
(Huang et al., 2014; Lareen et al., 2016; Rasmann et al., 2005). These
efforts have generated interest in the potential for manipulating plant
rhizosphere traits in order to enhance belowground biological control
(Degenhardt et al., 2009). However, soilborne exudates, especially
volatile emissions, are variable in space and time (Dessureault-Rompré
et al., 2007Peñaloza et al., 2002) and notoriously difficult to track, and
our understanding of the impact of rhizodeposits on many other soil
animal taxa is still limited to only a handful of studies (Eisenhauer
et al., 2012; Ruf et al., 2006; Strickland et al., 2012). Thus, it will be
critical to expand this knowledge base in order to fully gauge the in-
fluence of rhizodeposit-mediated interactions on the biological control
capacity of EPNs. We see these potential effects as particularly inter-
esting to investigate further and potentially applicable to a wider range
of agricultural and horticultural systems and pest management sce-
narios. This is because such effects would be potentially relevant in
situations beyond those in which EPNs are directly attracted to roots as
a result of herbivory, such as cases in which roots do not secrete EPN-
attracting chemicals when consumed, or in which the pest targeted by
EPNs is a soil-dwelling stage of an aboveground feeder rather than a
root feeder that would trigger release of root volatiles.

Difficulties may arise in separating the effects of multiple interac-
tions with a single organism. For example, the overall effect of an
earthworm on EPNs may be a combination of phoresy, predation, and
ecosystem engineering effects. In field settings, the effects of multiple
species on each other as well as on EPNs further confound the issue to
potentially unmanageable levels. However, inventive experimental
designs and use of modern observational techniques such as molecular
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Fig. 3. Hypothetical positive (blue bars) and negative (red bars) effects of eight soil or-
ganism taxa on EPN performance contributing to and (perhaps) obscured by an overall
community effect. Individual species within each taxon may have positive effects, ne-
gative effects, or varying degrees of both that contribute to their group’s and the overall
community’s effect. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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gut content analysis, fatty acid analysis, real-time quantitative PCR, and
stable isotope probing, which have proven excellent tools for char-
acterizing belowground trophic ecology and species interactions in a
wide variety of systems (Campos-Herrera et al., 2016, 2012b;
Heidemann et al., 2014a, 2014b; Ruess and Chamberlain, 2010), should
still provide information valuable to both pest managers and soil
ecologists. Analytical procedures including path analysis, canonical
correspondence, and structural equation modeling may also aid in
teasing the directionality and relative importance of different biotic
interactions between EPNs and complex soil communities (Campos-
Herrera et al., 2012a).

7. Conclusions

EPNs interact with and are acted upon by a wide variety of soil
organisms spanning the full breadth of soil’s taxonomic diversity, and
these interactions and their potential effects on EPN performance
should be considered when studying the usefulness of EPNs against
belowground pests. Despite the fact that EPNs can be applied to the soil
in the same manner as a chemical pesticide, they are living organisms
subject to all the biotic and abiotic pressures of the soil environment.
Better understanding of these pressures, their relative importance, and
the limits they may impose on EPNs will aid in successfully leveraging
their pest control potential to its fullest extent.
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