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a b s t r a c t 

Mobile app development is an activity predominantly performed by software developers. 

Domain experts and future users are merely considered in early development phases as 

source of requirements or consulted for evaluating the resulting product. In the domain 

of business apps, many cross-platform programming frameworks exist but approaches also 

targeted at non-technical users are rare. Existing graphical notations for describing apps 

either lack the simplicity to be understandable by domain experts or are not expressive 

enough to support automated processing. The MAML framework is proposed as model- 

driven approach for describing mobile apps in a platform-agnostic fashion not only for 

software developers but also for process modelers and domain experts. Data, views, busi- 

ness logic, and user interactions are jointly modeled from a process perspective using a 

graphical domain-specific language. To aggregate multiple use cases and provide advanced 

modeling support, an inference mechanism is utilized to deduce a global data model. 

Through model transformations, native apps are then automatically generated for multiple 

platforms without manual programming. Our approach is compared to the IFML notation 

in an observational study, with promising results regarding readability and usability. 

© 2018 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

A decade after Apple triggered the trend towards smartphones with its first iPhone, mobile devices and apps have been

widely adopted. Business apps usually cover small-scale tasks and support the digitalization of processes which benefit

from the increased mobility and availability of ubiquitous devices. For example, salespersons can access company data from

a customer’s location, expenses can be followed up remotely, and employees can submit requests for vacations not only

from their office desk. 

Until now, app development remains a task predominantly executed by programmers, often considering other stakehold-

ers and future users primarily in requirements engineering phases upfront implementation. However, the research institute

Gartner predicted that within a few years, more than half of all company-internal business apps will be created using

codeless tools [1] . Many frameworks for programming mobile apps have emerged over the past years and cross-platform

approaches allow for a large user base with low development effort s (an overview is given in [2–4] ). Several commercial

platforms provide cross-platform capabilities but usually focus on source code transformations, partly supported by graphi-

cal editors for designing individual views (e.g., [5,6] ). 
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Modeling approaches that focus on platform-agnostic representations of mobile apps are rarely used in practice. Model-

driven software development using a domain-specific language (DSL) bears the advantage of transforming a concise spec-

ification of the target application into a software product (semi-) automatically [7] . DSLs are generally suited to cover a

well-defined scope with sensible abstractions for inherent domain concepts and increase productivity of developers com-

pared to general purpose languages (GPL) [8] . Several textual DSLs for mobile apps have been presented in literature (e.g.,

[9–11] ), although not all of them fully automate code generation [12] . However, textual DSLs provide only minor benefits to

non-technical users because they still feel like programming [13] . 

Graphical modeling is therefore particularly suitable to describe apps by stakeholders with strong domain knowledge in

order to better match the software product with their tacit requirements [14,15] . A suitable notation mandates a platform-

independent design to also consider emerging mobile devices such as wearables, smart home applications, and in-vehicle

apps. 

To model sequences of activities, a wide variety of general-purpose process modeling notations such as Business Process

Model and Notation (BPMN) exists [16] . Usually, those are not detailed enough to cover mobile-specific aspects and can

hardly be interpreted by code generators from a technical point of view. In contrast, technical notations such as the Interac-

tion Flow Modeling Language (IFML) are too complex to be understood by domain experts and require software engineering

knowledge [17,18] . 

Moreover, the editor component is of major importance for the usability of a graphical modeling approach. Comparisons

for graphical notations such as the Unified Modeling Language (UML) show that editors for the same notation differ sig-

nificantly in modeling effort, learnability, and memory load for the user [19] . Editor development is a challenge in itself

[20,21] and even the presence of a metamodel can only support the syntax of the resulting notation [22] . 

This article aims to alleviate the aforementioned problems by presenting the Münster App Modeling Language (MAML;

pronounced ’mammal’), a graphical DSL for describing business apps that tackles the trade-off between technical complexity

and graphical oversimplification in order to be understandable not only for software developers but also for domain experts

and process modelers. Model transformations allow for a fully automatic generation of native smartphone apps for the An-

droid and iOS platform from the specified graphical model without manually writing code. Besides the technical necessity

of such a global model for code generation, it enables advanced modeling support for the graphical editor. 

Four main research questions are addressed to investigate the potential of data model inference in the context of model-

driven code generation approaches for mobile business apps: 

(RQ1) How can user-oriented specification of business app functionality be achieved using a graphical modeling notation? 

(RQ2) Is the modular subdivision of mobile app functionality feasible from a technical perspective with regard to the re-

combination of partial data models? 

(RQ3) What additional support can data model inference provide for users to create semantically correct models? 

(RQ4) Does the process-oriented subdivision of functionality help non-technical users in understanding and creating mobile

app models? 

Extending on previous work presented at SAC 2017 [23] , this article presents the data model inference approach using

a the scenario of an inventory management app and focuses on the benefits of such a mechanism for modeling environ-

ments regarding semantic semantic and validation (RQ3). In addition, the evaluation of MAML is extended to investigate the

perceived usefulness of data model inference specifically for non-technical users (RQ4). 

After presenting related work in Section 2 , the proposed DSL and framework are presented in Section 3 . Section 4 dis-

cusses the approach and presents evaluation results from a usability study before concluding in Section 5 . 

2. Related work 

Since model-driven and cross-platform development of apps has been a topic for a few years now, there is plenty of

scientific work on the general topic. However, only few graphical modeling approaches with subsequent code generation

of mobile apps exist. Especially with regard to a workflow-related level of abstraction, related work on business process

modeling is also considered in the following. 

2.1. Cross-platform mobile apps 

Developing mobile apps that run on multiple platforms can be achieved using different approaches. El-Kassas et al.

[24] distinguish three major categories: compiling existing source code from a legacy application or different platform such

as in [25] , interpreting a single code base through a runtime or virtual machine such as Apache Cordova for developing

hybrid apps [26] , and model-driven generation of native app source code from a common representation. With regard to

the latter category, various academic and commercial frameworks exist [12] . Only few of them, such as Mobl [9] , PIMAR

[27] , and AXIOM [10] cover the full spectrum of runtime behavior and structure of an app; often providing a custom textual

DSL for this means. The work in this article is based on MD 

2 which focuses on the generation of business apps (i.e. form-

based, data-driven apps interacting with back-end systems [4] ). The input model is likewise specified using a platform-

independent, textual DSL [11] . After preprocessing the model, code generators transform it into native platform source code

for the Android and iOS platform [28,29] . Despite reducing development effort and complexity through domain-specific
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Fig. 1. Bubble’s app configurator [32] . 

Fig. 2. WebRatio mobile platform [33] . 

 

 

 

 

 

 

 

 

 

 

concepts, textual DSLs often feel like programming to non-technical users [18] . In order to include those stakeholders and

potential end users in the development of the app product, we consider graphical modeling of app contents [30,31] . 

Companies such as BiznessApps [34] and Bubble [32] (see Fig. 1 ) promise codeless creation of apps using detailed config-

urators and web-based user interface editors. Compared to these approaches, our work on the MAML framework abstracts

from concrete interface specifications by focusing on a process-centric and platform-agnostic representation. The level of ab-

straction is therefore significantly higher such that modelers can focus on the logical flow of actions instead of positioning

user interface (UI) elements on screen. The commercial WebRatio Mobile Platform [33] is closest to the work presented in

this article by generating apps from a graphically edited model (see Fig. 2 ). It uses a multi-viewpoint combination of IFML,

Unified Modeling Language (UML) class diagrams, and custom notations. This negatively influences learnability and compre-

hensibility for non-technical users who are first introduced to these technical notations (see Section 4 ). In contrast, we use

an integrated modeling approach for specifying the sequence of process steps together with data objects and abstract UI

information in a single model. 
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2.2. Process modeling notations 

Graphical notations for supporting business operations have been developed for several purposes, including domains

such as business process compliance [35] and data integration [36] . Specifically for mobile business applications, only few

approaches exist. For example, AppInventor encourages novices to create apps by combining building blocks of a visual pro-

gramming language [37] , and Puzzle enables visual development of mobile applications within a mobile environment itself

[38] . As semi-graphical approach, RAPPT represents a model-driven approach that mixes a graphical DSL for process flows

with a textual DSL for programming business logic [39] . Although all of them aim at simplifying the actual programming

work, they are often designed for novice or experienced developers and neglect non-technical stakeholders. 

In contrast, general-purpose modeling notations exist to describe applications and process flows. The UML is the most

prominent example for software developers, providing a set of standards to define the structure and runtime behavior of an

application [40] . In particular, the IFML notation (succeeding WebML) represents user interactions within a software system

[17] . To visualize process flows, a variety of modeling notations exist, e.g. BPMN [16] , Event-driven Process Chains (EPC)

[41] , YAWL [42] , or flowcharts [43] . As noted by Schalles [44] , process modeling languages dealing with behavioral aspects

are generally more usable than system modeling approaches that focus on structural concepts. However, process modeling

notations often lack the technical specificity required for automated processing such as app creation. For example, the YAWL

notation is constructed according to workflow management patterns [42] but initially did not provide a data perspective and

does not support the specification of task types that could be used for app view templates. 

Approaches specific to the Web or mobile domain, for example providing elements for mobile-specific functionality,

rarely reach beyond UI modeling. Some related work explicitly tries to incorporate non-technical users, e.g. through a sub-

division of models in content, form, navigation, and workflow viewpoints [45] . Franzago et al. [46] use a similar approach

(separating data, UI, navigation, and business logic) for collaborative multi-viewpoint modeling. Also, a combination of multi-

ple general-purpose notations can be used to describe all relevant application perspectives, for example in the model-driven

approach by Koch et al. [47] based on multiple UML standards. Others use existing modeling notations such as statecharts

[48] or extend them for mobile purposes, e.g. UML to model contextual information in mobile distributed systems [49] , IFML

with mobile-specific elements [50] , or BPMN to orchestrate web services [51] . Yet, technical modeling notations are often

considered as complex to understand for domain experts [52] . Cognitive studies have been conducted, e.g. for WebML [53] ,

and problems such as symbol overload are aggravated by introducing multiple notations to represent the full range of data,

business logic, UI, and user interaction modeling. As an example of integrating different application perspectives, Trætteberg

and Krogstie [54] combine BPMN models with additional elements for representing the UI of desktop applications. 

These works are mainly used to specify applications, not to automatically transform models in functional app source

code. However, we deem process models to be a suitable level of abstraction for creating cross-platform apps with MAML. 

2.3. Model aggregation 

Further relevant fields of research for identifying commonalities in models include model differentiation techniques and

schema matching of database structures [55,56] . According to the classification by Rahm [57] , a schema-only and constraint-

based approach on element level is suitable for the inference of a data model from multiple input models. For the given

problem of partial models, we focus on an additive and name-based approach, although more sophisticated strategies such

as ontology-based approaches may later improve the uncovering of modeling inconsistencies [58] . An application related to

mobile devices, but focused on data visualization instead of its manipulation, is MobiMash for graphically creating mashup

apps by configuring the representation and orchestration of data services [59] . 

In the context of metamodeling, reverse engineering approaches to track metamodel evolution have to cope with similar

problems of inferring object structures [60] and finding correspondences from model instances [61] . López-Fernández et al.

[62] presented a related idea of building a metamodel in a bottom-up fashion from sample model fragments. 

3. MAML framework 

The MAML framework consists of a graphical domain-specific language to specify mobile business apps as well as re-

quired tooling such as a model editor and code generators [63] . After presenting the overall design goals, these components

and their interaction for seamless app generation are explained in the following. 

3.1. Language design principles 

The MAML DSL is built around five main principles: 

Domain expert focus. Besides software developers, MAML should also be usable by non-technical users with knowledge

about the circumstances of the target application, including for example process modelers and domain expert with limited

software engineering experience. This requirement is relevant both for the notation itself and the surrounding tooling in

order to engage with MAML without steep learning curve. 
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Data-driven process. MAML focuses on the domain of business apps. However, a process perspective is adopted by graphi-

cally describing an app as a sequence of processing steps performed on one or several data objects. This distinguishes MAML

from similar approaches which provide far lower abstractions from the actual app development process. 

Modularization. Traditional software engineering promotes a separation of concerns with patterns such as Model-View-

Controller (MVC) [64] . To accommodate for the domain experts’ mindset, MAML-based apps are specified with data struc-

tures, process steps, and screen visualization combined in a single model. In addition, mobile apps are typically designed

to solve small and specific tasks. Therefore, processes are modeled as Use Case s, units of useful functionality with a self-

contained set of behaviors and interactions performed by the app user [40] . 

Declarative description. Because of its platform-agnostic nature, MAML use cases describe what modifications should be

performed on data objects. An imperative specification of how to perform the operation on a specific mobile device is

not part of the model. The concrete representation depends on the target platform and suitable defaults are automatically

provided during source code generation. 

Automatic cross-platform app generation. An essential feature of the MAML framework is the automatic transformation of

graphical models into fully-functional apps for multiple platforms. Cross-platform code generation constitutes an extensible

approach to reach a large user base equipped with heterogeneous mobile devices. It is therefore mandatory that MAML

models contain all technical details regarding app structure and runtime behavior in order to achieve a “zero coding” solu-

tion. 

3.2. Language overview 

For a fictitious inventory management system, the administration of item data and stock levels represents a typical busi-

ness process. In MAML, this task is modeled in a use case as depicted in Fig. 3 . The model contains a sequence of activities,

from a start event (labeled with (1) in Fig. 3 ) towards one or several end events (2). In the beginning, a data source (3) spec-

ifies the data type of the manipulated objects and whether they are only saved locally on the device or managed by the

remote backend system. Data can then be modified through a pre-defined set of (arrow-shaped) interaction process elements

(4), for instance to select/create/update/display/delete entities , show popup messages , or access device functionalities such as

the camera and starting a phone call . It should be noted that no device-specific assumptions on the appearance of a step can

be made from this platform-agnostic description of models. The code generator instead provides representations and func-

tionalities according to the platform capabilities, e.g., display a select entity step using a list of all available objects as well

as functionality to filter or search for specific entries. Furthermore, automated process elements (5) represent invisible pro-

cessing steps without user interaction, e.g., interacting with RESTful web services, including other models for process reuse,

or navigating through the object graph ( transform ). 

The navigation between connected process steps happens using an automatically created “Continue” button. Alternative

captions can be specified along the process connectors (6). Many workflows are nonlinear, therefore process flows can be

branched out using an XOR element (7). To decide which path is chosen, a condition can either be evaluated automatically

based on specified expressions, or let the app user decide by providing buttons for each possible process path (such as in

the example). 

The rectangular elements represent the data objects which are displayed within a respective process step. Attributes (8)

consist of a cardinality indicator, a name and the respective data type. Besides pre-defined data types such as String, Integer,

Float, PhoneNumber, Location etc., enumerations and custom types can be defined. Consequently, attributes may be nested

over multiple levels in order to further describe the content of such a custom data type. Labels (9) provide explanatory

text to be displayed on screen, and computed attributes (10) are used to calculate derived values at runtime based on other

attributes. 

In MAML, only those attributes are modeled which will be used in a particular process step, for instance for including it

in the graphical user interface or using its value in web service calls. Although this concept seems surprising to programmers

expecting fully specified data models, it simplifies the integrated modeling of process flows and data. Attributes which are

neither updated nor read do not contribute to the resulting app and are therefore ignored. 1 

Two types of connectors exist for attaching data to process steps: Dotted arrows represent a reading relationship (11)

whereas solid arrows signify a modifying relationship (12) with regard to the target element. This refers not only to attributes

displayed either as read-only text or editable input field. The interpretation also applies in a wider sense, for instance

concerning web service calls in which the server “reads” an input parameter and “modifies” information in the app through

its response. 

Every connector which is connected to an interaction process element also specifies an order of appearance and a field

description. For convenience, a human-readable field description is derived from the attribute name by default but can be
1 Such attributes may, however, be required for manually written business logic after the code generation step. In this case, respective attributes can be 

likewise introduced in the generated source code. 
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Fig. 3. MAML model with sample use case “Manage inventory”. 
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modified. To reduce the amount of elements to model, multiple connectors may point to the same UI element from different

sources (given their data types match). Alternatively, to avoid confusing connections across larger models, UI elements may

instead be duplicated to different positions in the model and will automatically be matched in the inference process (see

Section 3.3 ). 

Finally, MAML supports a multi-role concept because many business processes such as approval workflows involve differ-

ent people or departments. The modeler can specify arbitrary role names (13) and annotate them to the respective interac-

tion process elements (14). If the assigned role changes, the generated app automatically terminates the process for the first

app user, transfers modified data objects, and informs the subsequent user about an open workflow instance in his app. 

3.3. Data-model inference 

As described in the previous paragraphs, each process step within a model refers only to the attributes needed within

this particular step. Besides avoiding redundancies of separately specified data models, this proceeding suits the mindset of

non-technical users who focus on the task’s process and consider separate data models “technical clutter”. Also, due to the

modular development, modelers might not even be aware of particular data fields required in other processes. Nevertheless,

a global data model is a technical requirement for performing code generation. Therefore, the global view on all data struc-

tures in the resulting app is inferred from partial models on multiple levels: for each process element individually, then for

the whole use case, and finally across multiple use cases. 2 

3.3.1. Partial data-model inference 

In MAML, each process step effectively represents a partial data model describing the main data type of the step with

the connected attributes. The data model inference approach therefore constructs a directed graph structure with vertices

representing data types and edges denoting attribute relationships between two types. 3 For clarification, the term attribute

is further used to refer to the UI element in a MAML model whereas property signifies the corresponding member of the

UML class diagram representation. 

Firstly, all data types of the process element and its attached attributes are collected. Fig. 4 depicts a sample process

element with the set of (indirectly) related data types Item, Company, ItemCategory, StockItem, String , and Integer . For each

non-primitive data type in this set, a class is created in the partial data model (including enumerations such as ItemCate-

gory ). Secondly, relationships between those data types are identified. Three origins need to be considered (cf. numbered

circles in Fig. 4 ): 

(1) A relationship may exist between a process element and an attached attribute. 

(2) A nested attribute adds a relationship to the nesting attribute’s data type. 

(3) An attribute may be transitively connected to the process element through computed attributes, but still refers to the

process element’s data type. 

The identified relationships are transformed into properties of the containing class by distinguishing the following four

cases. 
2 However, semantic reasoning such as inferring generalization relationships and fuzzy matching techniques for identifying “similar” attributes are be- 

yond the scope of this work. 
3 It should be noted that the implemented algorithm [65] is more complex than sketched here for conveying the idea in a concise way. 

Fig. 4. Exemplary partial MAML model . 
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Fig. 5. Class diagram of inferred primitive types. 

Fig. 6. Class diagram including inferred unidirectional relationships. 

Fig. 7. Class diagram including inferred bidirectional relationships. 

Fig. 8. Class diagram of a second MAML model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Primitive. An attribute with primitive data type is converted to a single- or multi-valued property of the source data type.

For the exemplary process step depicted above, description, name, quantity and title , are added as properties to the respective

classes (see Fig. 5 ). 

Unidirectional. Attribute connections are usually represented as unidirectional relationships. Because multiple connections 

may be present in different parts of the MAML model, the opposite direction is unknown and must be interpreted with un-

restricted 0 .. ∗ cardinality, where i.. j = { i, i + 1 , ..., j} and ∗ represents infinity. For example, the stockItems property in Fig. 6

holds a collection of StockItem objects but may itself be referenced by multiple StockItem s in other parts of the application. 

Bidirectional. In contrast to the previous case, explicit bidirectional relationships in the model are transformed to named

properties in both classes. For instance, the producer attribute in Fig. 4 represents a multi-valued property and is converted

to the association shown in Fig. 7 . In addition to creating access methods for consistent updates and deletions, potential

cardinality restrictions need to be enforced in the generated code (e.g., forbid the removal of the last related item to comply

with the minimum cardinality in the company object). 

Singleton. An attribute of a singleton data type (not depicted in the example) is a variant of the unidirectional scenario in

which the opposite cardinality is known to be restricted to 0..1 (i.e., either the property is set in the single instance of the

referencing class or not) [64] . 

3.3.2. Merging partial data models 

After creating the graph data structure for an individual process element, the multitude of partial data models needs

to be merged both for the whole process within a use case and the overall app product consisting of multiple use cases.

Because of the additive merging process, partial models can be merged iteratively in arbitrary order. 

To continue the example of the previous section, the partial data model depicted in Fig. 7 is merged with another partial

model depicted in Fig. 8 . In a first step, the union of both sets of data types is created such that the global data model

contains the types Item, Company, ItemCategory, StockItem, Order, String , and Integer . 

Next, each edge of both partial models is added to the global data model if it introduces a new name or cardinality

to the respective combination of source and target data type. With this name-based matching strategy, specifying multiple

associations between the same pair of data types is unproblematic and will result in the same edge of the type graph. MAML

modelers are therefore free to either link to the same attribute from different origins in the model or clone the modeled

attribute for better readability. For the exemplary models, this results in the complete global data model depicted in Fig. 9 . 
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Fig. 9. Inferred global data model . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

However, two types of modeling errors may occur when merging these data structures as visualized in Fig. 10 : 

(1) A type error exists if any source data type has two properties of the same name pointing to different target data

types. Automatically resolving this error is impossible and the modeler needs to be informed. 

(2) A cardinality conflict exists if two properties with the same name differ with regard to their cardinality for any pair

of data types. In this case, the modeler should be warned, but automatic resolution is possible. 

In case of cardinality conflicts, the resulting cardinality for each side of the association is calculated as the union be-

tween the conflicting cardinalities (ignoring not navigable ends) to avoid invalidating existing data. Regarding the inferred

directionality, the merged association is bidirectional if any of the affected relationships is modeled to be bidirectional. In

the example class diagram depicted in Fig. 11 , the cardinality 0 .. 1 ∪ 0 .. ∗ = 0 .. ∗ is assigned to b and 1.. ∗ is assigned to a (as

0.. ∗ is not navigable in this direction). 

To sum up, this inference algorithm can be applied to partial models of different granularity in order to derive a global

data schema and simultaneously validate the individual models. 

3.4. Modeling support 

The developed editor for MAML is based on Eclipse Sirius and the underlying Eclipse Modeling Framework [66] . Be-

yond the structural constrains imposed by the DSL’s metamodel, semantic restrictions need to be considered for creating

valid models [67] . Language workbenches for developing DSLs usually provide additional features to help end users model

“correct” models [68] . For example, in the Xtext framework for developing textual DSLs, validators can be defined to pro-

grammatically apply rules to model elements and scope providers allow for context-sensitive filtering of references [69] .

Eclipse Sirius, as generic tool for graphical editor development, could be called an “editor workbench” and provides simi-

lar mechanisms for controlling the modeled result. These features can be classified into validation of the model itself and

semantic services of the editor [68] . 

3.4.1. Supporting model validation 

Different systems for categorizing the severity of faults are commonly used in software development, usually comprising

a fatal error state, one or more levels of error severity regarding the implications on functionality, and one level of trivial

issues [70,71] . Using the aforementioned data model inference approach, the developed tool support for MAML includes

rules on corresponding levels of severity. 
Fig. 10. Visualization of modeling errors [65] . 

Fig. 11. Exemplary model with cardinality error. 
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Fig. 12. Examples for semantic editing services. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Error. Blockers with regard to model editors signify the inability to execute or process the model. In addition to the graph

structure which describes the partial data models of Section 3.3 , the respective attribute in the MAML model is also tracked.

Unresolvable type errors identified by the merge algorithm (cf. Section 3.3.2 ) can therefore be traced back to all affected

model elements. This allows for a visual feedback of semantic discrepancies directly within the model. 

Warning. Without further differentiating severity levels, warnings can be regarded as subsuming all model inaccuracies that

are not technically incorrect but influence the processing result in probably unintended ways. For example, the self-resolved

cardinality conflict in Section 3.3.2 might have unintended consequences in views that initially expected single-valued el-

ements. Further, omissions such as defining but not assigning roles are considered as unintentional error. Obviously, the

modeler also needs to be notified about warnings, ideally presenting possible alternatives to repair the modeling mistake. 

Hint. Trivial issues do not affect the model outcome but are likewise displayed next to the respective model element in

order to inform the user about potentially unwanted effects or consistency issues. In MAML, naming conventions, e.g., low-

ercasing attribute names, can seamlessly be integrated as hints in the editor. 

3.4.2. Providing semantic services 

In addition to validating models, global data model inference allows for semantic support within and across MAML mod-

els. 

Continuous semantic assessment. The best level of modeling support is preventing the appearance of erroneous conditions in

the first place. Invisible to the user, semantic discrepancies are checked when modifying or adding elements in the model.

Because of the inferred knowledge, introducing semantic errors such as attaching incorrect data types is denied – similar to

scope providers that provide a context-dependent set of valid elements. Also, textual expressions for specifying branching

conditions of XOR elements or navigating through the data structure in a Transform element (cf. Fig. 3 ) are evaluated at

runtime. Beyond the syntactic correctness, the correspondence to elements in the data model is immediately checked. 

This real-time validation capability is also important for another type of continuous modeling support built into MAML:

At the bottom of each process element, the data type of the manipulated objects is automatically inserted as mental as-

sistance and additional guidance for non-experienced modelers (labeled (1) in Fig. 12 ). Whenever process flow elements

are (re-)connected, the validity of the process chain is checked. For example, merging multiple branches that operate on

different data types is automatically disallowed. 

Context-sensitive suggestions. Finally, the inference results are used to reduce modeling effort similar to intelligent code

completion features known from textual editors. For instance, matching attributes are suggested for process elements in

case the source data type is known from other steps in the model or different use cases within the same app (see (2) in

Fig. 12 ). Similarly, matching data types and cardinalities can automatically be completed for existing attributes. 

To sum up, using the data inference mechanism not only prepares the MAML model for automatic code generation as

described in the following section. It also strengthens the model’s consistency while at the same time reducing the overall

modeling effort. The graphical modeling environment thus evolves beyond the stage of just providing the infrastructure for

modeling “shapes filled with text” into a context-aware tool that promptly reevaluates the semantic validity while models

are built or modified. 

3.5. App generation 

One of the distinguishing features of the MAML framework is its automatic generation of apps for multiple target plat-

forms in order to eliminate the need for manual programming. MAML relies on a model-driven software development ap-

proach and the graphical models are used as sole input for the app generation. 
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Fig. 13. MAML generation process [23] . 

 

 

 

 

 

 

 

 

 

 

 

The current approach is based on previous work in the domain of business apps, notably the textual DSL MD 

2 (see

Section 2 ). Although both languages share common overall concepts, MD 

2 is programming-oriented and follows a MVC-

layered approach instead of the presented separation by functionality. For further details on MD 

2 language features the

reader is referred to [11,28] . 

A two-step generation process was established (cf. Fig. 13 ): First, a model-to-model transformation translates all related

MAML model instances to one MD 

2 model instance. This transformation is based on mappings between the metamodels of

MAML and MD 

2 , specified using the QVT Operational framework [72] . Because both DSLs are designed for the same domain

of business apps, many concepts such as roles and process flows are present in both notations and can be transformed un-

ambiguously. In addition, there are MD 

2 concepts such as content providers or view layouts which have no correspondence

because MAML operates on a higher level of abstraction. If mandatory for MD 

2 models, default representations are created

for these concepts during transformation. 

Second, existing MD 

2 generators perform the model-to-code transformation and output the app source code for the

target platforms, in particular Java code for Android and Swift code for iOS. Fig. 14 presents exemplary screenshots of the

resulting Android app for the first process steps shown in Fig. 3 . 
Fig. 14. Generated Android app screenshots . 
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4. Evaluation and discussion 

With regard to RQ1 and RQ2, the design of MAML shows the possibility of replacing the software engineering focused

separation of concerns in mobile app models by a business perspective using functional subdivision. The MAML framework

also aims for zero-code generation of cross-platform apps from the graphical model, thus requiring a minimum of technical

specificity to be interpretable by the data model inference process and subsequent generators. In this context, business pro-

cesses are seen as reasonable level of abstraction. It is, however, not intended to create yet another workflow management

system with the presented framework. Currently, variability in the process flow is deliberately limited to XOR elements and

deemed sufficient due to the sequential display on smartphone screens. 

There are other process modeling languages such as EPC with a high degree of usability [44] but which rely on humans

to interpret the meaning of models. Yet, a rigid representation of technicalities such as information propagation through

parameter declarations might alienate potential users with limited experience in software development. Finding a suitable

trade-off between technical detailedness and visual simplicity [44] was therefore essential for designing MAML’s modeling 

notation. This conflict can be alleviated by embedding domain knowledge and aligning with existing standard notations [7] .

With regard to modeling complexity, the MAML DSL is positioned between BPMN 2.0 and IFML. 

However, a platform-agnostic notation which is at the same time designed for mobile apps is not a contradiction. Con-

ceptual differences exist both with regard to the characteristics of mobile platforms in general as well as the usage context.

Regarding mobile specifics, the platforms are characterized by a heterogeneity of input and output mechanisms even among

devices of the same platform – much more than desktop- or browser-based applications which rely on established mouse

and keyboard inputs. For instance, smartphones typically provide capacitive displays but at the same time support different

modes of touch input (e.g., multi-touch gestures or pressure-sensitive “3D touch” on Apple devices 4 ) and can be controlled

using additional hardware buttons or voice commands [73] . Device capabilities differ with regard to sensors such as gy-

roscopes for motion detection, determination of position via GPS, or front/back cameras. Also, seamless interaction with

operating system functionality such as starting phone calls is possible [74] . Moreover, the usage behavior of mobile apps is

reflected in the design of the DSL. For example, splitting apps by use cases and modeling workflow and data perspectives

in a combined model is feasible for the scope of mobile processes but becomes unpractical for enterprise workflows such

as production processes. The suitability of partial data models might be questioned in large-scale models, but with regard

to app development, fully specified data models are often not pre-existing and need to be newly created. Although the no-

tation can of course be used in non-mobile development scenarios which make use of MAML’s independence from concrete

UI representations, these mobile specifics were considered during its development in order to create an understandable

notation primarily for describing mobile apps. 

Compared to other modeling notations, MAML models have the advantage of being self-contained and do not rely on

a synchronization with external information. In contrast, IFML models are connected to other UML standards and require

multiple models for data, business logic, and user interaction to be interpreted together. In addition, all pieces of information

are presented in an integrated model. MAML models can therefore also be seen as a means of communication, facilitating

the discussion between involved stakeholders concerning the structure, interactions, and data of an app product. We do

not claim that this design is better under all circumstances. However, we argue that the task-oriented approach chosen for

MAML is reasonable for the purpose of small-scale processes performed in apps. 

With regard to a comparable scope, IFML is the most similar approach to ours and can be compared to gain insights

regarding RQ4. Although BPMN and further simplified notations [75] seem more usable at first sight, they lack significant

capabilities to represent all perspectives of app development. Also, a notation with more elements does not necessarily lead

to a degradation of its usability [44] . To compare IFML with MAML, a qualitative, observational study was performed with

26 (mostly student) participants in individual sessions of 90 min duration. None of the participants had previous knowledge

of either modeling language. 

The first part of the study evaluated the readability and understandability of each notation. Therefore, one MAML and

one IFML model, both depicting similar scenarios (cf. online material [63] ), were shown to the participants (in random

order to avoid bias) without prior introduction to the notation. Additionally, a System Usability Scale (SUS) questionnaire

was answered for each notation, comprising ten questions on a 5-point scale between strong disagreement and strong

agreement. The result is obtained by converting and scaling the responses according to the method presented by Brooke

[76] . 

Overall, MAML surpasses IFML with 66.8 to 52.8 points (of maximum 100) regarding its readability without prior knowl-

edge. It should be noted that this score does not represent a percentage value but can instead be interpreted according to

the adjective rating scale depicted in Fig. 15 as proposed by Bangor et al. [77] . 

To gain additional insights, the participants were clustered in the three groups of software developers (11), process mod-

elers (9), and domain experts (6), according to their personal background in programming and process modeling. Although

differences can be observed, all groups rated MAML better, as summarized by Table 1 . 

In more detail, aspects regarding the ease of understanding and complexity of the notation scored better for MAML,

particularly for the group of domain experts without knowledge of programming or process models. This reflects the
4 https://developer.apple.com/ios/3d-touch/ . 

https://developer.apple.com/ios/3d-touch/
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Fig. 15. SUS ratings for IFML and MAML [23] . 

Table 1 

SUS scores by participant group. 

Group IFML score ( σ ) MAML score ( σ ) 

Software developers 45.91 (23.6) 64.09 (17.3) 

Process modelers 64.17 (19.0) 69.44 (12.0) 

Domain experts 48.33 (24.5) 67.92 (18.7) 

Overall 52.79 (23.0) 66.83 (15.6) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

observations in which seven participants emphasized MAML’s simplicity and reduction of “technical clutter”. Interestingly,

even software developers generally preferred MAML’s process-oriented approach. Only two participants critically noted the

absence of explicit data models, supporting the idea of integrated process modeling. The comparatively low baseline for

the group of software developers might result from a general disinclination to specify models for software products due to

the complexity of technical notations, supplementary effort to the “actual” development, or experienced problems of keep-

ing both artifacts synchronized over time [78] . Because of its model-driven approach that considers source code as derived

artifact, these issues do not apply to MAML. 

Data model inference as demonstrated in MAML alleviates three problems of graphical modeling: First, the modeler

is disburdened of separately maintaining a redundant data model. On-the-fly inference of the underlying data model is

particularly helpful for process modelers and domain experts without programming experience to quickly get started with

modeling the actual app behavior. The study confirms this, as the inference mechanism and enhanced modeling support was

welcomed as helpful guidance during the sessions, and scores favor MAML regarding consistency and explanatory power

(RQ4). 

Second, the availability of fine-grained partial data models (per process flow element) allows for improved security. Gen-

erators may tailor app-specific data models by splitting the global data model according to the required fields. This not only

reduces the volume of transferred data but allows for automatically generated validation mechanisms to control data access

permissions. 

Third, improved modeling support as described in Section 3.4 is only possible if interrelations between elements are

accessible to the editor component (RQ3). Many graphical editors focus on the usability of placing and connecting elements

on the canvas but lack the ability to provide context-sensitive modeling support similar to integrated development environ-

ments for textual programming languages. Further sophisticated inference techniques relying on ontology-based matching

[79] may be extensions to further improve model consistency. 

When comparing the answers of domain experts and technical users (developers and process modelers together) for

the SUS questionnaire (see Fig. 16 ; answers rescaled to an [0;4] interval), the contrasting approaches of using a technical

(IFML) or a process-oriented (MAML) separation of models become apparent. Of course, a net effect of modeling support

through the inference mechanism cannot be measured as it is intertwined with the graphical syntax of the notation itself

(e.g., inferred type hints for process elements). However, responses are significantly higher for domain experts assessing

whether the MAML notation is wieldy usable (+1.17 compared to IFML), fast to learn (+1.17), and self-descriptive (+1.00).

All three aspects relate to the ability to understand and apply the notation in modeling tasks. For technical users, the

largest differences are found in the self-learnability (+1.05), perceived consistency (+0.80), and pace of learning (+0.70), also

indicating that the process-oriented modeling approach does not harm their technical understanding but is less essential

than the emphasis on correctly applying the notation as expected in RQ3. 

Regarding app generation, all steps can be executed without additional configuration. The intermediate transformation

step is however no inherent limitation of the framework. Future generators targeting new platforms may just as well gen-

erate code based on MAML models directly. Apart from reusing existing MD 

2 generators developed in the last years, the

intermediate transformation adds a technical representation with detailed possibilities of configuration such as UI element

styling [4] . Users accustomed to MD 

2 may therefore adapt the default representations in the created textual model according

to their needs. 

The usability study also revealed potentials for further refinement: Although modeling activities were mostly performed

correctly, the lack of a screen-oriented representation similar to IFML’s nested element structure was mentioned by four

participants. A generic and read-only preview of a possible outcome on screen would improve this issue. Also, the wording

of some elements proved to be not clear enough. For instance, some data type names are hard to understand for domain

experts without further explanation and may be replaced by symbols for a more intuitive understanding. 



56 C. Rieger, H. Kuchen / Computer Languages, Systems & Structures 53 (2018) 43–58 

Fig. 16. S US answers for domain experts (left) and technical users (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Conclusion and outlook 

In this article, the MAML framework was proposed to model mobile apps using a declarative graphical DSL. In contrast

to the current practice of graphically configuring user interfaces by positioning UI elements on a screen-like canvas, MAML

focuses on a process-centric definition of business apps. Using a sequence of platform-agnostic process elements, the nota-

tion aligns with the business perspective of managing processes and data flows, and makes app development accessible to

domain users without software engineering experience. The approach is based on existing work on cross-platform business

app generation and uses model-driven techniques to transform the models first into an intermediate textual representation

before generating platform-specific source code. In particular, a data model inference mechanism was presented that enables

real-time validation and consistency checks on partial data models, and overcomes the need for explicitly modeling a global

data schema. Moreover, the inferred data can be used to provide contextual modeling support and enhanced semantic val-

idation in the editor component. An empirical evaluation study supports the advantage of MAML over the related technical

IFML notation, specifically with regard to its readability by domain experts. MAML therefore achieves the desired balance of

abstracting programming-heavy tasks to understandable process flows while keeping the technical expressiveness required 

for automatic source code generation for multiple target platforms. 

The study results support the benefit of MAML and the participants can be seen as realistic sample for app-experienced

adults in the general workforce. Still, the amount of student participants may pose a threat to validity and more extensive

studies are necessary to confirm these results. Applying the prototype to real-world use cases might reveal further need for

improvements and at the same time constitutes future work. Programmers may want to deviate from the default configu-

ration used for automatic app generation, for example by performing manual changes to the intermediate representation.

Further research needs to be done on how to avoid interference of generated and custom DSL content in the context of

iterative development with frequent re-generation cycles. 

Finally, the principles of MAML can be applied to mobile devices beyond smartphones and tablets. Regarding the

emergence of novel app-enabled devices such as smartwatches, interesting questions arise on transferring model-driven

development approaches to different device classes. Ideally, best practices can be found for reusing the same input models

for generating mobile business apps on heterogeneous devices with different capabilities and user interaction patterns. 



C. Rieger, H. Kuchen / Computer Languages, Systems & Structures 53 (2018) 43–58 57 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

References 

[1] Rivera J, van der Meulen R. Gartner says by 2018, more than 50 percent of users will use a tablet or smartphone first for all online activities. 2014.

http://www.gartner.com/newsroom/id/2939217 . 

[2] Palmieri M, Singh I, Cicchetti A. Comparison of cross-platform mobile development tools. In: Proceedings of the 16th international conference on
intelligence in next generation networks (ICIN); 2012. p. 179–86. doi: 10.1109/ICIN.2012.6376023 . 

[3] Charkaoui S, Adraoui Z, Benlahmar EH. Cross-platform mobile development approaches. In: Proceedings of the colloquium in information science and
technology, CIST; 2014. p. 188–91. doi: 10.1109/CIST.2014.7016616 . 

[4] Majchrzak TA, Ernsting J, Kuchen H. Achieving business practicability of model-driven cross-platform apps. OJIS 2015;2(2):3–14. doi: 10.19210/OJIS _
2015v2i2n02 _ Majchrzak . 

[5] Esperalta D. Decsoft - App Builder. 2017. https://www.davidesperalta.com/appbuilder . 

[6] Xamarin Inc. Developer center - xamarin. 2017. https://developer.xamarin.com . 
[7] Mernik M, Heering J, Sloane AM. When and how to develop domain-specific languages. ACM Comput Surv 2005;37(4):316–44. doi: 10.1145/1118890.

1118892 . 
[8] Kosar T, Mernik M, Carver JC. Program comprehension of domain-specific and general-purpose languages: comparison using a family of experiments.

Emp Softw Eng 2012;17(3):276–304. doi: 10.1007/s10664- 011- 9172- x . 
[9] Hemel Z, Visser E. Declaratively programming the mobile web with Mobl. In: Proceedings of the international conference on object oriented program-

ming systems languages and applications. OOPSLA. ACM; 2011. p. 695–712. ISBN 978-1-4503-0940-0. doi: 10.1145/2048066.2048121 . 

[10] Jones C, Jia X. Using a domain specific language for lightweight model-driven development. In: Proceedings of the ENASE 2014; 2015. p. 46–62. ISBN
978-3-642-23390-6. doi: 10.1007/978- 3- 642- 23391- 3 . 

[11] Heitkötter H, Majchrzak TA. Cross-platform development of business apps with MD 2 . In: Proceedings of the international conference on design science
at the intersection of physical and virtual design (DESRIST). In: LNBIP , vol. 7939. Springer; 2013. p. 405–11. doi: 10.1007/978- 3- 642- 38827- 9 _ 29 . 

[12] Umuhoza E, Brambilla M. Model driven development approaches for mobile applications: a survey. In: Younas M, Awan I, Kryvinska N, Strauss C,
van Thanh D, editors. Mobile web and intelligent information systems (MobiWIS). Springer; 2016. p. 93–107. ISBN 978-3-319-44215-0. doi: 10.1007/

978- 3- 319- 44215- 0 _ 8 . 
[13] Zdun U , Strembeck M . Reusable architectural decisions for DSL design: foundational decisions in DSL development. In: Proceedings of the European

conference on pattern languages of programs (EuroPLoP); 2009. p. 1–37 . 

[14] Breu R, Kuntzmann-Combelles A, Felderer M. New perspectives on software quality. IEEE Softw. 2014;31(1):32–8. doi: 10.1109/MS.2014.9 . 
[15] Meliá S, Cachero C, Hermida JM, Aparicio E. Comparison of a textual versus a graphical notation for the maintainability of mde domain models: An

empirical pilot study. Softw. Qual. J. 2016;24(3):709–35. doi: 10.1007/s11219-015- 9299- x . 
[16] Object Management Group. Business process model and notation 2.0, 2011. 

[17] Object Management Group. Interaction flow modeling language 1.0, 2015. 
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