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Abstract

In order to perform medical surgeries, hospitals keep large inventories of surgical in-

struments. These instruments need to be sterilized before each surgery. Typically the

instruments are kept in trays. Multiple trays may be required for a single surgery, while

a single tray may contain instruments that are required for multiple surgical procedures.

The tray optimization problem (TOP) consists of three main decisions: (i) the assignment

of instruments to trays, (ii) the assignment of trays to surgeries, and (iii) the number of

trays to keep in inventory. The TOP decisions have to be made such that total operating

costs are minimized and such that for every surgery sufficient instruments are available.

This paper presents and evaluates several exact and heuristic solution methods for the

TOP. We compare solution methods on computation time and solution quality. Moreover,

we conduct simulations to evaluate the performance of the solutions in the long run. The

novel methods that are provided are the first methods that are capable of solving instances

of realistic size. The most promising method consists of a highly scalable advanced greedy

algorithm. Our results indicate that the outcomes of this method are, on average, very

close to the outcomes of the other methods investigated, while it may be easily applied

by (large) hospitals. The findings are robust with respect to fluctuations in long term OR

schedules.

Keywords: OR in Health Services, Sterile Inventory, Integer Linear Programming, Row

and Column Generation, Heuristics.

1 Introduction

Throughout the developed world, health care costs have shown a tremendous increase over

the last decades. Since 1970 the inflation adjusted government spending on health care

has risen by nearly 5 percent per year (Hagist and Kotlikoff [2005]), currently averaging 9
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percent of gross domestic product (OECD [2014]). At the same time, patient waiting lists

have become longer and are nowadays a major problem (Worthington [1991]). Managerial

efforts to control the steeply rising health care costs and long patient waiting lists have not

only placed attention on main health care processes, but have focused especially on efficiency

management of various, priorly neglected, side processes. One such side process which has

received recent attention is hospital sterilization logistics.

Hospital sterilization logistics is a relatively large side process in the hospital sector.

Hospitals in developed countries typically have invested millions of euros in sterile instruments

used for surgeries and other procedures. Optimizing the logistic design of the sterilization

processes can free substantial amounts of money and working capital. It is estimated that in

a small country such as the Netherlands, the saving potential is well over 100 million euros

(Van de Klundert et al. [2008]). Moreover, the optimization of the sterilization logistics can

lead to increased throughput, allowing more patients to be helped in a fixed time frame.

This can help reduce patient waiting lists and reduce opportunity cost of health care which

is currently not provided.

In this paper, we focus on the inventory management of sterile instruments. These sterile

instruments flow in a return cycle between the central sterilization department (CSD) and for

instance the operating theater. The sterile instruments are mostly grouped in special trays.

Such a tray can contain the items needed for a particular surgery, but it can also happen that

the content of a tray is needed for several types of surgery, or that one type of surgery requires

multiple trays of different types. Hospitals face three questions regarding the management of

instrument trays: (i) how many trays of each type should be obtained, (ii) how should the

tray types be composed, and (iii) how should the tray types be assigned to surgeries? The

problem of optimizing the tray composition is called the tray optimization problem (TOP).

The first two questions of the TOP are interlinked: the number of required trays and

instruments depends largely on the composition of the trays. Optimizing the composition

of trays can lead to substantial cost savings and to increased availability of instruments, see

Van de Klundert et al. [2008]. In this research, we investigate ways for solving the TOP to

minimize cost whilst guaranteeing instrument availability.

Substantial savings can already be achieved by removing unused instruments from the

existing trays. The contents of a tray develop historically as new surgeons place additional

instruments on a tray while the instruments used by retired surgeons remain on the tray. In

addition, surgeons may prefer different instruments for the same surgery which increases the

inventory and sterilization costs. By reaching consensus on which instruments to use for each

surgery type, substantial savings can be made.

As mentioned, even higher cost savings can be achieved by composing the trays from

scratch by solving the TOP. Currently, only few papers consider this tray optimization prob-

lem. Van de Klundert et al. [2008] present an Integer Linear Program (ILP) to solve the TOP.

However, the TOP is also proven to be NP-hard, and therefore, no solution is guaranteed

within polynomial time.

Reymondon et al. [2008] introduce a Simulated Annealing (SA) approach to solve the

TOP. As the computation time for the presented SA approach is still extremely long for
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realistic instance sizes, they also introduce a simpler heuristic. This heuristic starts with two

extreme solutions, namely (i) one tray for each instrument, and (ii) one tray for each surgery

type. For both extreme solutions, the cost per instrument is calculated. If it is cheaper

to individually wrap an instrument, this particular instrument is removed from the trays in

the second extreme solution. A next step would be to distribute the individually wrapped

instruments over the created trays to further reduce costs. However, this step is not yet

implemented.

The contribution of this paper is threefold. First, we give an overview of the existing

models and solution approaches for the TOP. Second, we present three new solution method-

ologies. The first one is based on delayed row & column generation, the second is a greedy

heuristic, and the third is a genetic algorithm. Third, we compare the new solution method-

ologies to the existing approaches on several problem instances derived from real-world data

sets. We perform numerical experiments to assess both the quality and the computation time

of the solution approaches.

A key aspect of the TOP is that the composition of the trays and the assignment of

trays to surgeries is considered simultaneously. A similar structure is observed in many other

applications as well. For example, consider a workforce consisting of employees with different

skill sets. A number of tasks is given that all require a set of skills and have to be performed

by a group of employees. In order to be able to manage the workforce smoothly, the employees

are distributed over teams. Then, the teams are assigned to the tasks. In this assignment, it

must be ensured that the employees in a team have the required skills for the tasks the team

is assigned to. The approaches described in this paper can be applied to this problem as well.

This paper is structured as follows. In Section 2, we formally introduce the problem.

In addition, we describe several variants for the objective function and capacity constraints.

In Section 3, several exact and heuristic solution approaches are described. A simulation

approach to compare the developed solution approaches in a realistic setting is introduced

in Section 4. In Section 5, we describe and analyze the computational results for the intro-

duced solution methods and their performance in the simulation study. Section 6 presents

conclusions and gives recommendations for future research.

2 Problem formulation

The basis of the considered problem is creating instrument trays and assigning these instru-

ment trays to surgeries. The instrument trays are created by assigning several instruments

to a tray while respecting some capacity constraints which are described in Section 2.1. The

created instrument trays are assigned to surgeries such that for each surgery the required

instruments are available in the assigned instrument trays. The set of instruments is given by

set I, the set of surgeries by set J , and the set of instrument trays by set K. Integer variable

Xik denotes the amount of instruments i ∈ I assigned to instrument tray k ∈ K. Integer

variable Yjk indicates how many instrument trays of type k ∈ K are assigned to surgery

j ∈ J . For each surgery j ∈ J , the number of instruments of type i ∈ I needed to perform

this surgery is given by parameter dij . Then, the following constraint ensures that at least
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dij instruments of type i ∈ I are available in the instrument trays k ∈ K assigned to surgery

j ∈ J .

∑
k∈K

XikYjk ≥ dij , ∀i ∈ I, j ∈ J. (1)

Note that this constraint is non-linear, however, it can be easily linearized as shown in Section

3.

2.1 Capacity restrictions

As mentioned, the created instrument trays must respect some capacity constraints. Nor-

mally, a tray has a restriction on the weight and volume it can contain. To specify the

restrictions on the total weight and volume a tray can contain, we introduce αi and βi as

the volume and weight of instrument i ∈ I, respectively. The maximum allowed weight

and volume on a tray is given by rα and rβ, respectively. This leads to the following two

constraints.

∑
i∈I

αiXik ≤ rα, ∀k ∈ K, (2)∑
i∈I

βiXik ≤ rβ, ∀k ∈ K. (3)

However, in practice, the weight and volume of the available instruments are often not

known. Therefore, an alternative is to limit the number of instruments that can be placed

on a certain tray. This can be done with the following constraint, where rγ represents the

maximum number of instruments allowed on a tray.

∑
i∈I

Xik ≤ rγ , ∀k ∈ K. (4)

These three constraints can also be summarized into the following constraint:

∑
i∈I

pni Xik ≤ rn, ∀k ∈ K,n ∈ N, (5)

where N = {1, 2, 3} is the set of characteristics of the instruments and trays. In particular,

p1
i = αi, p

2
i = βi, p

3
i = 1, r1 = rα, r2 = rβ and r3 = rγ .

2.2 Objective function

The preferred assignment made by variables Xik and Yjk is the one that minimizes the total

incurred costs. These costs can be divided into several parts, namely:
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• Fixed periodic costs

• Sterilization costs

• Handling costs

• Costs for new tray type

2.2.1 Fixed periodic costs

The fixed periodic costs consist of several parts, namely acquiring or depreciation costs and

storage costs. These fixed periodic costs can be specified for instrument i ∈ I by ai and for

each tray by c1. To determine the total fixed periodic costs, we need to know how many trays

of type k ∈ K should be acquired, which is denoted by variable Nk. Usually, a tray can only

be used once a day due to the time needed to sterilize a tray and its instruments. This means

that when multiple surgeries needing tray k ∈ K are scheduled on the same day, more trays

of this type are needed. To determine these costs correctly, we thus need the OR-schedule.

The OR-schedule is described by parameter sjt which indicates the number of times surgery

j ∈ J is performed on day t ∈ T . Here, set T gives the set of days in the considered planning

horizon. Then, the total fixed periodic costs are given by

∑
k∈K

∑
i∈I

aiXikNk + c1

∑
k∈K

Nk, (6)

where the value of Nk is determined by

∑
j∈J

sjtYjk ≤ Nk, ∀k ∈ K, t ∈ T. (7)

Note that cost function (6) is non-linear, however, this can be easily linearized as shown in

Section 3.

Unfortunately, the OR-schedule may change over time and may even not be available.

Therefore, another way to determine the fixed periodic costs is to use parameter mj which

indicates an estimation of the maximum number of times surgery j ∈ J is scheduled on the

same day. Then, the variable Nk can be determined by

mjYjk ≤ Nk, ∀k ∈ K, j ∈ J. (8)

The downside of this approach is that we do not consider the case that two types of surg-

eries needing the same instrument tray are scheduled on the same day. Thus, this approach

gives a lower bound on the realized fixed periodic costs. An upper bound on the fixed periodic

costs is given when the value of Nk is determined by
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∑
j∈J

mjYjk ≤ Nk, ∀k ∈ K. (9)

2.2.2 Sterilization costs

The sterilization costs are incurred whenever an instrument tray is sterilized after it has been

used for surgery. In practice, all instruments placed on a tray used for surgery are sterilized,

even though they might not have been used during surgery. Similarly as for the fixed periodic

costs, the sterilization costs can be divided into sterilization cost bi for instrument i ∈ I and

sterilization cost c2 for an instrument tray. The number of times fj a tray and its instruments

are sterilized in a given planning horizon can be deduced from the OR-schedule sjt and is

given by fj =
∑

t∈T sjt if an OR-schedule is available. When no OR-schedule is available,

often an estimate of fj can be made which can be used to determine the sterilization costs as

follows:

∑
k∈K

∑
i∈I

∑
j∈J

bifjXikYjk + c2

∑
k∈K

∑
j∈J

fjYjk. (10)

2.2.3 Handling costs

The third mentioned costs are the handling costs. These are the costs for preparing instrument

trays to be used during surgery. These costs are defined by the number of times fj a certain

instrument tray is used during the planning horizon. The total handling costs is given by the

following formula, where c3 gives the handling costs for a tray:

c3

∑
k∈K

∑
j∈J

fjYjk. (11)

2.2.4 Costs for new tray type

The costs mentioned last are the costs for creating a new tray type. These costs c4 are

incurred because creating a new tray type increases the amount of administrative work and

inventory control. These costs thus depend on the number of tray types that are created. To

determine this number, we introduce binary variable Zk which indicates whether tray type

k ∈ K is used, i.e., whether one or more instruments are assigned to this tray type. This

leads to the following costs:

c4

∑
k∈K

Zk, (12)

where the value of Zk is determined by
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Nk ≤MZk, ∀k ∈ K. (13)

with M a sufficiently large number.

If costs c4 are not known, we can also put a limit r on the number of created tray types.

This can be achieved with the following two constraints:

Nk ≤MZk, ∀k ∈ K, (14)∑
k∈K

Zk ≤ r. (15)

3 Solution methodology

In the previous section, we have introduced the TOP and specified the objective function and

all the relevant constraints. We noted that Constraint (1) and the cost contributions in (6)

and (10) are non-linear in the decision variables. In this section, we present several solution

methods to solve the TOP. First, we present an exact, compact formulation in which the

quadratic terms are linearized. Then, we present four heuristic approaches. The first one is

based on row & column generation. The second one is a greedy construction heuristic. The

third heuristic applies simulated annealing and the fourth one a genetic algorithm.

3.1 Exact solution method

In this section, we formulate the problem defined in Section 2 as an integer linear program

(ILP). This ILP is based on the model presented by Van de Klundert et al. [2008]. Its main

feature is a linearization of the terms XikYjk and XikNk. In order to linearize these terms,

the variable Xik is first written as a sum of binary variables X̄lk, where the index l ranges

over a set of instruments specimen of type i:

Xik =
∑
l∈Li

X̄lk.

Recall that the index i ∈ I indicates the instrument type. This means that if instruments of

a certain type i ∈ I might appear more than once in a tray, there are several variables X̄lk

corresponding to instruments of type i. In order to determine the required size of the set Li,

define Di = maxj∈J dij as the maximum number of instruments of type i needed for a surgery.

Given that surgeries require at most Di instruments of type i, each tray will contains at most

Di instruments of type i as well. Therefore, we need Di elements in the set Li. Second, we

introduce variables Q1
jkl and Q2

kl that represent the products YjkX̄lk and NkX̄lk, respectively.

By definition, it then holds for all i ∈ I, j ∈ J and k ∈ K that∑
l∈Li

Q1
jkl =

∑
l∈Li

YjkX̄lk = Yjk
∑
l∈Li

X̄lk = YjkXik.
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Similarly, for all i ∈ I and k ∈ K, we have∑
l∈Li

Q2
kl =

∑
l∈Li

NkX̄lk = Nk

∑
l∈Li

X̄lk = NkXik.

Using the equations above, the TOP can be formulated as follows.

min c1

∑
k∈K

Nk + (c2 + c3)
∑
k∈K

∑
j∈J

fjYjk + c4

∑
k∈K

Zk

+
∑
k∈K

∑
i∈I

∑
l∈Li

∑
j∈J

bifjQ
1
jkl +

∑
k∈K

∑
i∈I

∑
l∈Li

aiQ
2
kl. (16)

such that

Q1
jkl ≤ Yjk, ∀j ∈ J, k ∈ K, i ∈ I, l ∈ Li, (17)

Q1
jkl ≤M1X̄lk, ∀j ∈ J, k ∈ K, i ∈ I, l ∈ Li, (18)

Q1
jkl ≥M1(X̄lk − 1) + Yjk, ∀j ∈ J, k ∈ K, i ∈ I, l ∈ Li, (19)

Q2
kl ≤ Nk, ∀k ∈ K, i ∈ I, l ∈ Li, (20)

Q2
kl ≤M2X̄lk, ∀k ∈ K, i ∈ I, l ∈ Li, (21)

Q2
kl ≥M2(X̄lk − 1) +Nk, ∀k ∈ K, i ∈ I, l ∈ Li, (22)∑

k∈K

∑
l∈Li

Q1
jkl ≥ dij , ∀i ∈ I, j ∈ J, (23)

∑
i∈I

αni
∑
l∈Li

X̄lk ≤ rn, ∀k ∈ K,∀n ∈ N, (24)

∑
j∈J

sjtYjk ≤ Nk, ∀k ∈ K, t ∈ T, (25)

Nk ≤MZk ∀k ∈ K, (26)

Q1
jkl, Q

2
kl, Yjk, Nk ∈ N, ∀j ∈ J, l ∈ L, k ∈ K, (27)

X̄kl, Zk ∈ {0, 1}, ∀k ∈ K, l ∈ L. (28)

The objective function contains all terms presented in Sections 2.2. It has been linearized by

replacing the quadratics terms, X̄lkYjk and X̄lkNk, by Q1
jkl and Q2

kl, respectively. Constraints

(17)-(19) make sure that the variables Q1
jkl obtain their correct value. Here, M1 is an upper

bound on the number of times a certain tray is used for the same surgery. Similarly, Con-

straints (20)-(22) make sure that the variables Q2
lk obtain their correct value. The parameter

M2 is an upper bound on the number of trays of a certain type that are needed. Constraints

(23) ensure that the required instruments are available for each surgery. Constraints (24)

impose a capacity restrictions for the nets. Constraints (25) compute the number of trays

of each type that are needed. If the surgery schedule is not available, this constraint can be

replaced by (8) or (9). Constraints (26) ensure that the number of different tray types is

counted correctly. The other constraints give the ranges of the decision variables.

Note that the set K of instrument trays is assumed given. This means that the maximum
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number of trays to be formed is input to the model and must be specified before the model can

be solved. In our computational experiments, the size of the set K is based on the solution

of the greedy heuristic, which is described in Section 3.2.2.

Even though this formulation is compact, it requires many decision variables. In partic-

ular, for every combination of j ∈ J , k ∈ K, i ∈ I and l ∈ Li, a decision variable Q1
jkl and

three constraints are introduced. Therefore, for real-life instances, this ILP might become

huge. Furthermore, because of the big-M constraints that are needed for the linearization,

the LP-bounds might be relatively weak. In order to improve the quality of the LP-relaxation,

we can add the following valid inequalities to the formulation.∑
k∈K

Nk ≥
∑
j∈J

sjt, ∀t ∈ T, (29)

∑
k∈K

∑
l∈Li

X̄lk ≥ 1, ∀i ∈ I. (30)

Constraints (29) ensure that the number of trays that are acquired is larger than the number

of surgeries on each day. This holds because for all surgeries on a given day, at least one tray

must be acquired. Constraints (30) make sure that at least one instrument of every type is

present in the collection of trays.

Another concern with the formulation is the symmetry that is present. To give an example

of this symmetry, consider two indices k1, k2 ∈ K. If one would, for a given solution, replace

the values of all decision variables with index k1 for those with index k2 and vice versa, the

same solution would be obtained. A consequence of symmetries like these are a multitude of

feasible solutions with exactly the same solution value. This might lengthen the computation

time considerably.

By introducing symmetry-breaking constraints into the model, the number of solutions

with exactly the same objective value can be reduced. As stated by Sherali and Smith

[2001], such symmetry-breaking constraints might shorten the computation time. One way of

breaking symmetry in the model is to ensure that the trays generated are ranked in a certain

order. For example, one could make sure that the trays that are not used are those with

higher indices k. In order to do so, denote K = {1, 2, . . . , |K|}. The following constraints can

be added to the model.

Z1 ≥ Z2 ≥ . . . ≥ Z|K|.

One other way to rank the trays would be to sort them by the number of instruments included

in the trays. The number of instruments in a given tray k ∈ K can be found by summing

over the variables X̄lk. This leads to the following symmetry-breaking constraints:∑
i∈I

∑
l∈Li

X̄l1 ≥
∑
i∈I

∑
l∈Li

X̄l2 ≥ . . . ≥
∑
i∈I

∑
l∈Li

X̄l|K|.

9



3.2 Heuristic solution methods

In the previous section, we formulated the TOP as a compact ILP. However, this ILP contains

many decision variables and big-M constraints. As a consequence, it might be impossible to

find a solution for larger, real-world TOP instances. In this section, we develop four heuristic

approaches to find a feasible solution to the TOP.

3.2.1 Delayed row & column generation

In this section, we develop a row & column generation approach to solve the linear relaxation

of the TOP. Afterward, we heuristically generate a solution to the TOP itself by iteratively

fixing some of the variables. The key aspect of our approach is that it considers a set of given

instrument trays. As a consequence, for a tray k ∈ K, the number of instruments Xik is a

parameter instead of a variable. To emphasize this aspect, we denote for a given tray k ∈ K,

the parameter xik as the number of instruments of type i in tray k.

We start with a given set of trays K̄ ⊆ K. Then, we alternately solve a master problem

with this reduced set of trays and a pricing problem where we generate new trays that can

be added to the set K̄. When adding a newly generated tray k to the set K̄, we also have

to add constraints to the relaxed ILP. We have to take this into account when solving the

pricing problem. The ILP formulation of the TOP, with a given set of instrument trays K̄,

reads as follows.

min
∑
k∈K̄

c4Zk +
∑
k∈K̄

c1
kNk +

∑
k∈K̄

c2
k

∑
j∈J

fjYjk (31)

such that ∑
k∈K̄

Yjkxik ≥ dij , ∀i ∈ I, j ∈ J, (32)

∑
j∈J

sjtYjk ≤ Nk, ∀k ∈ K̄, t ∈ T, (33)

Nk ≤MZk, ∀k ∈ K̄, (34)

Nk ∈ N, ∀k ∈ K̄, (35)

Yjk ∈ N, ∀k ∈ K̄, j ∈ J, (36)

Zk ∈ {0, 1}, ∀k ∈ K̄. (37)

Here, we define the cost parameters c1
k and c2

k as follows.

c1
k = c1 +

∑
i∈I

aixik,

c2
k = c2 + c3 +

∑
i∈I

bixik.

From now on, we refer to this problem of assigning a given set of trays to surgeries as the tray

assignment problem. Note that Constraints (32) are the only constraints coupling the different
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trays. If we would dualize these constraints into the objective function, the problem would

decompose over the tray types. This observation is key for our row & column generation

framework.

As is common for a column generation approach, we solve the LP-relaxation of the above

ILP for a given set K̄ of tray types. Given the dual solution to this problem, we generate new

tray types in a pricing problem and add these to the set K̄. We repeat this procedure until

no tray types with negative reduced costs can be found. When solving the pricing problem,

we generate complete tray types: we simultaneously add the variables Zk, Nk, and Yjk and

Constraints (33) to the LP. When solving the pricing problem, we therefore have to anticipate

the interaction between these variables. It is proven in Appendix B that the reduced costs of

a given tray k ∈ K are given by the following linear program.

zk(λ) = min
c4

M
+ c1 +

∑
i∈I

aixik +
∑
j∈J

(
(c2 + c3)fj +

∑
i∈I

(bifj − λij)xik

)
Yjk,

such that ∑
j∈J

sjtYjk ≤ 1, ∀t ∈ T,

Yjk ∈ [0, 1], ∀j ∈ J.

Here, the variables λij are the dual multipliers corresponding to Constraints (32). If there

does not exist a new tray k ∈ K \ K̄ with negative reduced costs, we obtained the optimal

solution to the LP-relaxation of the TOP. (The proof is given in the appendix). Otherwise,

if a tray k ∈ K \ K̄ with negative reduced costs exists, we add it to the set K̄ and repeat the

procedure.

In order to determine whether zk(λ) is positive for all k ∈ K \ K̄, we solve the following

non-linear pricing problem.

zPP (λ) = min
c4

M
+ c1 +

∑
i∈I

aiXi +
∑
j∈J

(
(c2 + c3)fj +

∑
i∈I

(bifj − λij)Xi

)
Yj ,

such that ∑
i∈I

αni Xi ≤ rn, ∀n ∈ N,∑
j∈J

sjtYj ≤ 1, ∀j ∈ J,

Xi ∈ N, ∀i ∈ I,

Yj ∈ [0, 1], ∀j ∈ J.

In order to solve this non-linear program, we first linearize it and then solve it as an ILP

using a commercial solver. For completeness, the linearization is given in the appendix. The

solution of this pricing problem is a new tray that should be added to the set K̄. By iterating
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this process, the linear relaxation of the TOP can be solved. The next step is to find an

integer solution. In order to do so, we apply a commercial solver to the ILP (31)-(37) using

all trays that are generated when solving the linear relaxation.

3.2.2 Greedy heuristic

In Section 3.2.1, the quadratic terms in the model were dealt with by decomposing the TOP

into a pricing problem of composing the trays and a master problem of assigning the trays

to surgeries. For a given set of trays, the master problem is to decide which trays to use and

which trays to assign to each surgery. We now describe an alternative approach to decide

on the tray composition. In this approach, the composition of the trays is generated via a

greedy heuristic.

For this greedy heuristic, we generate a set of trays and determine the optimal selection

of the trays to be used and the assignment of trays to surgeries by (31)-(37).

A tray is specified by how many instruments of each instrument type i ∈ I are placed on

this tray. The set of trays used in solving the ILP given by (31)-(37) is determined by the

greedy heuristic. We include nine options for constructing trays which guarantee a feasible

solution to our original problem.

1. Create trays for each surgery type j ∈ J . For each instrument i ∈ I, we add dij

instruments to the tray until the tray is full, i.e., if the next instrument type would be

added, Constraint (5) would be violated. In this case, we open a new tray and continue

the process.

2. Sort the surgeries in decreasing order of
∑

i∈I dij . For each surgery j ∈ J , add an

instrument type to the tray if this instrument is used for surgery j ∈ J and if this

instrument is not yet added to another tray in this step. For this instrument type i ∈ I,

we add maxj∈J dij instruments to the tray. If Constraint (5) is violated, we open a new

tray.

3. Sort the instrument types in decreasing order of the number of surgeries that use this

instrument type. Then, fill the tray with maxj∈J dij instruments of this type. If Con-

straint (5) is violated, we open a new tray.

4. Same as 3. except that we add
⌈∑

j∈J dij
|J |

⌉
instruments of type i ∈ I to the tray.

5. Same as 3. except that we add one instrument of type i ∈ I to the tray.

6. Create trays with instruments needed for all surgeries. For each instrument i ∈ I that is

used for all surgeries, add maxj∈J dij instruments of this type to the tray. If Constraint

(5) is violated, we open a new tray.

7. Same as 6. except that we add
⌈∑

j∈J dij
|J |

⌉
instruments of type i ∈ I to the tray.

8. Same as 6. except that we add one instrument of type i ∈ I to the tray.
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9. Create trays with instruments needed for only one surgery. For each surgery j ∈ J , add

dij instruments of type i ∈ I to the tray if this instrument is only used for this surgery.

If Constraint (5) is violated, we open a new tray.

After these instrument trays are generated, we solve the ILP given by (31)-(37) to deter-

mine which trays will be used and to determine the assignment of the chosen trays to the

surgeries.

3.2.3 Simulated Annealing

The approach described in this section is similar to the greedy heuristic described in Section

3.2.2, however, the initial set of trays found by the greedy heuristic is further improved by

using simulated annealing as proposed by Reymondon et al. [2008]. Simulated annealing has

proven to be very effective for solving large-scale combinatorial optimization problems, (see

Kirkpatrick et al. [1983]). In this section, we develop a simulated annealing algorithm for the

TOP.

Simulated annealing is a local search heuristic specially designed to escape from local

minima. In every iteration, a feasible solution is slightly modified and evaluated. If the

solution quality has improved, the new solution is accepted. In plain local search approaches,

the new solution is rejected if the solution quality deteriorates. By doing so, the algorithm

might get stuck in a local minimum. In simulated annealing, a solution with a worse quality

is therefore accepted with a certain probability. This probability depends on the quality

decrease and on a parameter called the temperature. By decreasing the temperature during

the execution of the algorithm, the algorithm rejects more solutions with a worse quality in

later iterations. In contrast, in early stages of the algorithm, when the temperature is higher,

the method is able to escape from local minima. In what follows, we describe how to evaluate

a given solution, which modifications of the current solution are allowed, and which cooling

scheme we employ. The initial solution for SA is determined by the greedy heuristic.

In the simulated annealing algorithm, a solution s is represented by a set of trays. For

a given set of trays, the used ILP solver is given a fixed amount of time to determine the

assignment of trays to surgeries using the ILP given by (31)-(37). The value of the objective

function given by (31) represents the solution value of s which is denoted by f(s). Note that

the costs of composing the trays are included in (31).

For a given solution s1, we apply one of the following modifications with equal probability

to obtain a neighbour solution s2.

1. Exchange of instruments: Randomly select two trays. Randomly select one instrument

from the first tray and place it on the second tray. Then, randomly select one instrument

from the second tray and place it on the first tray.

2. Adding instruments: Randomly select a tray. Then, randomly select one instrument

type and add a random number of instruments of this type to the selected tray.

3. Removing instruments: Randomly select a tray. Then, randomly select one instrument

type and remove a random number of instruments of this type from the selected tray.
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4. Exchange for one instrument type: Randomly select two trays. Then, randomly select

one instrument type and exchange all instruments of this type between the two selected

trays.

5. Exchange for multiple instrument types: Randomly select two trays. Next, randomly

select two different instrument types from the ordered set of instrument types. Then,

exchange all instruments of the instrument types that are in between the two selected

instrument types between the two selected trays. More specific, for each instrument

type between the two selected instrument types, the total number of instruments of

this type is exchanged between the two trays.

If the modification applied to s1 leads to trays violating Constraint (5), we reset the

solution to s1 and apply another modification. This step is repeated until a new solution s2

is obtained for which none of the trays violate (5).

After a new solution s2 is obtained, we determine the objective function value f(s2). If

f(s2) ≤ f(s1), we always accept s2 as the current solution. Otherwise, if f(s2) > f(s1), we

accept the new solution with a probability

p(s1, s2) = exp

(
f(s1)− f(s2)

T

)
,

where T is the current temperature. The temperature T equals T at initialization and de-

creases during the execution of the algorithm. In our implementation, the temperature is

multiplied by a factor α < 1 every N iterations. The algorithm terminates if T < T . The

parameters T , T , α and N are control parameters of the algorithm and are specified in Section

5.

3.2.4 Genetic Algorithm

In this section, we describe a Genetic Algorithm (GA) to improve the initial set of instru-

ment trays found by the greedy heuristic described in Section 3.2.2. GA is a probabilistic

search algorithm, which imitates the process of natural selection and evolution. The process

starts with an initial population of solutions, where solutions are treated as individuals. The

fitness of each individual is determined by the corresponding objective function value. Pairs

of individuals of a given population are selected to act as parents and reproduce the next

population of better individuals through a structured yet randomized information exchange,

known as crossover. Diversity is added to the population by mutation. Unfit individuals

in the population are replaced using the concept of survival of the fittest. This evaluation-

selection-reproduction cycle is repeated until a satisfactory solution is found or other stopping

criteria are met.

In our implementation of GA, we consider the trays to be individuals in our population,

i.e., for each instrument type i ∈ I it is defined how many instruments are placed on a certain

tray. Our approach to GA is slightly different from standard GA, as multiple individuals

are needed to provide a solution to our original problem. As in the other described heuristic
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solution methods, our set K̄ consists of the trays in our population, which means that xik

is an input parameter instead of a variable. Given a certain population, the ILP given by

(31)-(37) has to be solved to find a solution to our original problem.

As previously stated, the initial population is given by the set of instrument trays gener-

ated by the greedy heuristic. In the next sections, we describe how we determine the fitness

value of each individual and our reproduction scheme.

Fitness function As we need several trays to form a feasible solution, it is hard to define

a fitness value for each individual. We have chosen to determine the fitness value by solving

|K̄| + 1 ILPs. The used ILP solver is given a fixed amount of time to solve each of these

|K̄|+ 1 ILPs. The first ILP to be solved is the ILP given by (31)-(37). This ILP determines

a solution for our given population represented by set K̄. After this, we solve another ILP

for each tray. If tray k ∈ K̄ is chosen in the solution for (31)-(37), we solve the ILP again

without tray k ∈ K̄. If tray k ∈ K̄ is not chosen in the solution for (31)-(37), we solve the

ILP again with the additional constraint that tray k ∈ K̄ should be chosen. Then, we define

the fitness value based on the following four criteria:

1. Number of times Tk that tray k ∈ K̄ is chosen in a solution of one of the |K̄|+ 1 ILPs.

2. Total number of trays NTk of type k ∈ K̄ chosen in the solutions of the |K̄|+ 1 ILPs.

3. The objective function if tray k ∈ K̄ is used in the solution, Ok.

4. The objective function if tray k ∈ K̄ is not used in the solution, NOk.

Using this information, the fitness value of tray k ∈ K̄ is given by

(
max
k′∈K̄

Ok′ −Ok
)

+

(
(NOk −Ok)− min

k′∈K̄
(NOk′ −Ok′)

)
+ (Tk +NTk) . (38)

The first part of the fitness value describes the relative advantage of using tray k ∈ K̄ in

the solution compared to the other trays in K̄. In the second part of the fitness value, we

consider the difference in the objective function when tray k ∈ K̄ is used or not. For each

tray k ∈ K̄, we compare this to the minimum difference over all trays. The third part of

the fitness value counts the number of times Tk that a tray of type k ∈ K̄ is selected in the

solution of one of the |K̄| + 1 ILPs and the total number of trays NTk of type k ∈ K̄ that

are selected in the solutions of the |K̄|+ 1 ILPs.

Reproduction In each iteration, we reproduce either a fixed number of individuals by

children or we replace all individuals that have not been selected in all but one ILP solved

to determine the fitness function. To reproduce children, we first have to select parents. In

order to do this, we first translate the fitness value to a probability such that the probabilities

of all individuals together sum up to one. To actually reproduce a child, we consider four

different methods.
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1. 1-point crossover: we randomly select two parents according to their selection probabil-

ity. Then, we randomly select an instrument type from the ordered set of instrument

types. For the reproduced child, the number of instruments of the types up till this

instrument type are a copy of the first parent and the number of instruments from this

type on are a copy of the second parent.

2. 2-point crossover: we randomly select two parents according to their selection probabil-

ity. Then, we randomly select two instrument types from the ordered set of instrument

types. Up till the first selected instrument type and from the second instrument type

on, the child is a copy of the first parent, and from the first selected instrument type

until the second selected instrument type, the child is a copy of the second parent.

3. Uniform crossover: we randomly select two parents according to their selection prob-

ability. Then, for each instrument type, we randomly choose one of the parents to

determine how many instruments of that type will be placed on the tray for the child.

4. Cloning: we randomly select one individual to be cloned.

After the reproduction process, we apply mutation. This means that the number of

instruments of type i ∈ I placed on the tray can be modified. For each instrument type i ∈ I,

we apply mutation with a fixed mutation probability. If we apply mutation for instrument

type i ∈ I, the number of instruments of this type placed on the tray is randomly generated

and lies between 0 and maxj∈J dij .

After a child is reproduced, we have to check if this child fulfills the capacity Constraints

(5). If not, we repeat the reproduction process.

The process ends after a fixed number of iterations V or if after a fixed number of iterations

W no improved solution is found with W < V .

4 Simulation design

To compare the performance of the algorithms, we use a realistic simulator based on actual

data from Dutch hospitals. The simulator is described in detail in Van der Kooij [2015]. In

this section, we briefly explain the main aspects of the simulation procedures and the data

sets they are based on. We distinguish between instance generation, in which we use a simu-

lator to generate instances to evaluate the performance at the planning stage, and dynamic

simulations, in which we evaluate the performance over a longer time horizon. The former is

useful for comparing computation times and optimality gaps of the various algorithms. The

latter is useful for comparing long term costs.

4.1 Data

Our simulations are based on actual CSD data from two large Dutch hospitals. We indicate

these data sets as hospital 1 (H1) and hospital 2 (H2). Table 1 gives an overview of the

characteristics of each data set. In this table, ‘OR schedule’ refers to the availability of
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a daily schedule of all surgeries, ‘Surgery frequencies’ refers to the availability of surgery

specific scheduling frequencies (the overall number of times surgeries are performed in the

data set), ‘instrument demand’ refers to the instruments required per surgery, and ‘current net

composition’ refers to a description of the composition of the current nets and the quantities in

which they are available. The other fields concern statistics regarding the number of surgeries

in the data set, the number of instruments, the number of days in the OR schedule, the annual

tray depreciation costs, the maximum number of instruments per tray, the sterilization costs,

and the handling costs.

H1 H2

OR schedule yes yes
Surgery frequencies yes yes
Instrument demand yes yes
Current tray composition yes -

# Surgeries 16 174
# Instruments 87 1125
# Days 365 337
Annual tray depreciation 475 500
Max # instruments per tray 60 65
Sterilization costs 1 1
Handling costs 20 20

Table 1: Characteristics of the three data sets

As we do not have data on the weight and volume of the instruments, each instrument is

assigned a unit volume and unit weight.

4.2 Instance generation

Instance generation is needed to evaluate how well algorithms perform in the planning stage.

The data sets themselves can be used directly as instances. However, we also want to randomly

generate instances. Such random instance generation allows for a larger variety of instances

and for instances of larger size.

An instance for the TOP consists of instrument demand, an OR schedule, cost parameters

and maximum tray sizes. The cost parameters and maximum tray sizes will be directly

inherited from the hospital data set the new instance is based on. Therefore, it remains to

randomly generate instrument demand and an OR schedule.

In order to generate instrument demand and an OR schedule for instances of arbitrary

size, we make two assumptions. The first assumption concerns the generation of instrument

demand and entails that the number of different instrument types required per surgery does

not change when the ratio between instrument types and surgery types changes. In other

words, we assume an individual surgery always requires about the same number of different

instrument types, irrespective of how many instrument types there are in total. The sec-

ond assumption concerns the generation of an OR schedule and entails that the number of

performed surgeries increases linearly with the number of surgery types.
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In our instance generator, we randomly generate instances based on one of the original

data sets. This means that each generated instance is derived from either the H1 or the H2

data set.

4.2.1 Generation of instrument demand

In order to randomly generate instrument demand, we generate instruments as well as surg-

eries that are not included in the original data sets. The idea behind generating new instru-

ments is that each instrument is based on a random instrument from the original instance

(hospital data set). In our instance generator, a newly generated instrument inherits the de-

mand frequency (percentage of surgeries demanding it) and the distribution of the demanded

amount per surgery of a randomly selected instrument in the original data set. For each

surgery requiring the new instrument, we randomly generate the demanded amount from the

empirical distribution of the parent instrument.

As with instrument generation, new surgeries are also based on random surgeries from

the original instance. Each surgery requires a different set of instruments. Some surgeries

may require many specialized tools, while others may only require basic tools. Based on data

analysis, Van der Kooij [2015] concludes that for H1 and H2, instruments can be categorized

into three groups with a different demand frequency (number of surgeries for which the

instrument is required): rarely used instruments, moderately used instruments and frequently

used instruments. Table 2 shows the demand frequencies for the different groups. A surgery

can be characterized by the number of instruments it needs from each of the three instrument

groups. When generating a new surgery, a random ‘parent’ surgery is selected from the

original instance and the new surgery inherits the number of instruments used from each

instrument group.

1: Rarely used instr. 2: Moderately used instr. 3: Frequently used instr.

H1 0-5 6-8 8-16
H2 0-40 40-100 101-152

Table 2: Number of surgeries requiring an instrument for different categories of
instruments

Formally, the process of instrument demand generation can be described as follows. Let I

and I ′ denote the set of all original instrument types and the set of all new instrument types,

respectively, and let nI denote the number of new instruments that need to be generated.

Similarly, let J and J ′ denote the set of all original and all new surgery types, respectively,

and let nJ denote the number of surgeries that need to be generated. Let Ig ⊂ I and I ′g ⊂ I ′

be the collections of all instruments belonging to group g ∈ G = {1, 2, 3}. These groups

represent the categories of (1) rarely used instruments, (2) moderately used instruments, and

(3) frequently used instruments, respectively. Let gi denote the group of instrument i ∈ I
and let fj,g and f ′j,g be the number of instrument types from group g ∈ G required by surgery

j ∈ J and j ∈ J ′, respectively. Let pi and p′i denote the percentage of surgeries demanding

instrument i ∈ I and i ∈ I ′, respectively, and let di and d′i denote the empirical distribution
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of the demanded amount per surgery for instrument i ∈ I and i ∈ I ′, respectively. Finally,

let D = {Dij} be the new instrument demand, with Dij ∈ N the number of times instrument

i ∈ I ′ is needed for surgery j ∈ J ′. The new instrument demand can then be created using

Algorithm 1.

Algorithm 1 Generation of instrument demand

1: procedure Demand–Generation
2: set D ← 0, I ′ ← 0, J ′ ← 0
3: for k = 1 . . . nI do
4: draw a random instrument i from I
5: set I ′ ← I ′ ∪ {i}, p′i ← pi, d

′
i ← di, I

′
gi ← I ′gi ∪ {i}

6: end for
7: for k = 1 . . . nJ do
8: draw a random surgery j from J
9: set J ′ ← J ′ ∪ {j}, f ′j,g ← fj,g ∀g ∈ G

10: end for
11: for each j ∈ J ′ do
12: for each g ∈ G do
13: set S ← I ′g
14: for k = 1 . . . f ′j,g do
15: for each i ∈ S do
16: compute π′i = p′i/(

∑
i′∈S p

′
i′)

17: end for
18: draw a random instrument i from S (every instrument a has a probability

π′a of being selected)
19: draw Dij from d′i
20: set S ← S \ {i}
21: end for
22: end for
23: end for
24: end procedure

4.2.2 Generation of an OR schedule

The OR schedule is a matrix with the surgeries as rows and the days as columns. The

elements of the matrix indicate the number of times that a particular surgery is performed

on a particular day. When generating a new OR schedule based on an existing one, we want

to preserve some characteristics of the original plan. There are two different characteristics

we want to maintain. The first characteristic is the week pattern for individual surgeries and

the second characteristic is whether the plan for a particular surgery can be modeled by a

Poisson distribution.

If, for a particular surgery, a Poisson distribution provides a significant fit for the planning

distribution, the parameter of the Poisson distribution has to be determined. In order to

preserve the week pattern in the new surgery plan, seven different λ’s are computed, one for

every day of the week. As estimator for these parameters, the Maximum Likelihood Estimator

(MLE) for the Poisson distribution, is used. This MLE is equal to the sample mean for the
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respective day of the week.

If, for a particular surgery, a Poisson distribution does not provide a significant fit for the

planning distribution, the empirical planning distribution is used. In order to also preserve

the week pattern in this case, the number of times a surgery is performed on a given weekday

in the new surgery plan is set equal to a random value in the past on the same weekday.

4.3 Dynamic simulation

Dynamic simulations are intended to evaluate the long term costs associated with the tray

compositions generated by the algorithms. As all algorithms optimize with respect to either

surgery frequencies or a fixed OR schedule, they are essentially heuristics to the dynamic

setting in which the surgery plan is subject to change. At the very best, the frequencies with

respect to which is optimized can be considered as estimates of the actual future frequencies.

Similarly, the fixed OR schedule with respect to which is optimized can only be considered

to be a proxy of the OR schedule over the entire time horizon. Of particular importance

to cost assessment is that optimal tray combinations may depend on patterns of typical day

combinations of surgeries. These factors make it important to assess long term costs in

addition to the costs determined in the static simulation procedures.

For each algorithm, we use the following procedure to assess long term costs. First, an

algorithm is used to construct a tray composition based on an instance generated by the

static simulation procedure described in Section 4.2. Next, a realization of the OR schedule

is generated for a longer time period. This time period contains twenty times the number

of days of the original OR schedule. The tray composition is then evaluated based on this

realization of the OR schedule. Outcome measures of interest are the total sterilization and

handling costs over the longer time period, and the percentage of surgeries for which not all

instruments are available in time.

We consider four methods for simulating an OR schedule:

1. historical frequencies;

2. perturbed historical frequencies;

3. historical sampling;

4. perturbed historical sampling.

All methods rely on Monte Carlo simulation using 1000 iterations.

4.3.1 Historical frequencies

The first method, ‘historical frequencies’, randomly allocates surgeries to planning days based

on relative historical frequencies of surgery types. The number of surgeries scheduled on a

day is equal to the number of surgeries of a random day in the original OR schedule.
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4.3.2 Perturbed historical frequencies

The second method, ‘perturbed historical frequencies’, is similar to the first method except

that now the surgery type frequencies are ex-ante perturbed by a perturbation factor. We

consider a perturbation factor of 10 %. This means that if for a certain surgery type the

historical frequency is, for example, 8 %, then the perturbed frequency used to determine the

actual planning is within the range 7.2 % - 8.8 %.

4.3.3 Historical sampling

The third method, ‘historical sampling’, uses sampling with replacement to assign to each

planning day a surgery schedule identical to the schedule on a randomly selected historical

planning day. This method preserves the day combinations of surgeries in the planning stage,

and therefore, none of the solutions should have a canceled surgery.

4.3.4 Perturbed historical sampling

The last method, ‘perturbed historical sampling’, is similar to the previous method except

that now there is a 10 % perturbation for each assignment of a surgery to a planning day

compared to the historical planning day. To be more specific, each surgery that is scheduled

on a given historical planning day has a probability of 10% to be replaced by another surgery

on the same day. The idea behind this method is to test what happens when small changes

occur in the schedule.

5 Computational results

In this section, we evaluate the performance of the TOP solution methods presented in Sec-

tion 3. First, we consider the performance of each solution method on randomly generated

instances (Section 5.1). Next, we consider how the solutions perform over a simulated longer

time horizon (Section 5.2). The latter is particularly relevant as the solution methods opti-

mize with respect to a small planning horizon and, therefore, it is worthwhile to know how

the solution performance metrics, e.g., costs, over the optimization horizon correspond to the

performance metrics over a longer time horizon.

We specifically test the following TOP solution methods: Greedy (GR), Column Gen-

eration with Greedy initial solution (CGG), Column Generation with Greedy trays (CG),

Simulated Annealing (SA), Genetic Algorithm (GA), Integer Linear Program with Greedy

initial solution (ILPG), and Integer Linear Program without Greedy initial solution (ILP)

(see Section 3 for a description of all methods). Note that (CG) starts with the trays gen-

erated by (GR), but not with the assignment of trays to surgeries. In contrast, (CGG) also

uses the assignment of (GR). Finally, (ILP) does not use any trays from (GR) at all to start

with.

Some of the algorithms require parameters to be set. We list the values of the parameters

used in our experiments for each algorithm below.
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• For GR, the tray assignment problem is solved to optimality.

• For GA, 10 minutes of computation time is allowed each time the tray assignment

problem is solved in order to find the costs of a solution. For some of the larger

instances, this implies that the costs of a solution are not proven to be minimal. The

population size of GA is set to 40.

• For SA, also 10 minutes of computation time is allowed whenever the tray assignment

problem is solved. The number of trays is set to 30.

• For ILP and ILPG, the maximum number of instrument trays that can be used is set

two higher than the number of trays in the solution obtained by GR.

• In CG and CGG, a maximum of 50 minutes of computation time is reserved for generat-

ing new trays, while 10 minutes are reserved for solving the tray assignment problem. In

every column generation iteration, the pricing problem is truncated after 1000 seconds.

All tests are performed with an Intel Xeon E5-1620 v3 processor and 16 GB of RAM. We

used Cplex 12.6.1 to solve the ILPs.

5.1 Performance evaluation on randomly generated instances

In order to compare the performance of the TOP solution methods presented in Section 3,

we randomly generate 150 instances using the instance generator described in Section 4.2.

Half of the instances (75) are generated based on the H1 data set, and half (75) are generated

based on the H2 data set (see Section 4.1 for a description of the data sets). The instances

vary with respect to the number of instruments (25, 50, 75, or 100), the number of surgeries

(10, 15, 20, 30, or 50) and the number of days in the planning horizon (10, 20, or 40). For

each instance and method, we allow a maximum computation time of 3600 seconds in order

to make a fair comparison between solution methods.

Table 3 displays the average computation time and the standard deviation of the compu-

tation time over all instances (nota bene: computation time is capped at 3600 seconds). The

greedy algorithm has the overall shortest computation time, followed by the genetic algorithm

and then simulated annealing. The substantial difference in computation time for the greedy

algorithm between the H1 and H2 based instances is caused by five instances in the H1 set for

which the ILP solver used by the greedy algorithm has difficulty solving the underlying ILP.

For all solution methods, the standard deviation of the computation time is substantial. In

order to better analyze the relationship between the size of the instances and the computation

time, we next study the computation times in more detail.

Figure 1 displays a plot of the average computation time versus instance size (the number

of variables in the problem formulation of Section 2) for GR, CGG, SA, GA, and ILPG.

We have excluded ILP and CG from these plots, because they are outperformed by their

counterparts ILPG and CGG. The plots are based on both H1 and H2 instances. GR has a

reasonably low computation time for most instances. For ILPG and CGG, the computation
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(c) (d)

(e)

Figure 1: Average computation time versus instance size (the number of variables
in the problem formulation of Section 2) for (a) GR, (b) CGG, (c) SA, (d) GA,
and (e) ILPG.

time quickly increases with the instance size. For SA and GA, the computation time shows

a more moderate growth pattern.

GR CGG CG SA GA ILPG ILP

Average H1: 165 2,841 2,853 1,906 807 3,176 3,077
Std H1: 636 1,101 1,110 1,425 1,239 1,155 1,270

Average H2: 3 2,658 2,645 1,217 459 2,772 2,869
Std H2: 5 1,142 1,144 1,239 891 1,487 1,429

Table 3: Average computation time (in seconds) and standard deviation over 75
randomly generated instances based on the H1 and H2 datasets.

Table 4 displays the average objective function value over all instances for which a feasible

solution can be found, as well as the percentage of instances for which a feasible solution was

found. With the exception of the ILP solution method, all methods find a feasible solution

for all instances (nota bene: as the ILP solution method could not find a feasible solution for

all instances, the average for the ILP solution method is computed over less instances than
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the average for the other methods). For the H1 based instances, SA achieves the highest

average objective function value and ILPG the lowest (the relative difference is 1.6 percent).

For the H2 based instances, ILP achieves the highest average objective function value and,

again, ILPG the lowest.

The effect of starting with a greedy solution (compare columns CGG and CG, and ILPG

and ILP) is clearly visible. Although SA and GA also start with a greedy solution, sometimes

the number of nets used in the greedy solution exceeds the limit on the number of nets used

for SA and GA, and therefore, the greedy solution can only be partially used. Also, for two

instances, the 10 minute time limit imposed for solving the ILP subproblems in SA and GA

is too short for computing optimal net assignments. This negatively impacts the performance

of SA and GA.

GR CGG CG SA GA ILPG ILP

Average H1: 29,138 29,135 29,258 29,390 29,238 28,927 29,282
% feasible H1: 100.00 100.00 100.00 100.00 100.00 100.00 86.67

Average H2: 10,933 10,870 10,876 10,853 10,892 10,156 19,997
% feasible H2: 100.00 100.00 100.00 100.00 100.00 100.00 98.67

Table 4: Average objective function value (if a feasible solution is found), and
percentage of instances for which a feasible solution is found, over 75 randomly
generated instances.

Table 5 shows the average performance ranking of the various TOP solution methods.

In particular, it shows for each base data set the average rank, the number of instances for

which a TOP solution method ranked first (possibly tied), the average ratio to the best ranked

solution, and the maximum ratio to the best ranked solution. ILPG has the lowest average

rank (and thus the best performance) for both H1 and H2 based instances. When ILPG is

not the best performing solution method, the ratio to the best performing solution method

is at most 1.08 for H1 based instances and 1.19 for H2 based instances. On the other hand,

a simple technique such as the greedy algorithm returns solutions that are, on average, only

2 percent (H1) or 12 percent (H2) worse than those computed by the best solution method.

GR CGG CG SA GA ILPG ILP

Average rank H1: 2.44 2.29 2.55 2.25 2.33 1.20 4.75
# rank 1 H1: 18 20 16 23 18 61 24

Avg ratio to best H1: 1.02 1.02 1.02 1.02 1.02 1.00 1.18
Max ratio to best H1: 1.19 1.19 1.19 1.19 1.19 1.08 3.11

Average rank H2: 4.04 3.39 3.28 3.51 3.43 1.37 1.92
# rank 1 H2: 6 7 7 7 10 54 46

Avg ratio to best H2: 1.12 1.11 1.11 1.11 1.11 1.01 1.35
Max ratio to best H2: 1.60 1.42 1.42 1.53 1.52 1.19 22.90

Table 5: Performance ranking from 1 to 7 (1 is best, 7 is worst) over 75 randomly
generated instances.

Table 6 displays the number of solutions for which optimality has been proven. Inter-
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Figure 2: Optimality gap versus instance size (the number of variables in the
problem formulation of Section 2) for ILPG.

estingly, for the H1 based instances, whenever ILP or ILPG could prove that a particular

solution is optimal, that solution is also achieved by all of the other methods. For H2 based

instances this is not the case. There, ILPG finds provably optimal solutions in 24 out of 75

of the instances, but the heuristic methods find provably optimal solutions in at most 8 out

of 75 instances.

GR CGG CG SA GA ILPG ILP

H1: 11 11 11 11 11 11 11

H2: 6 7 7 6 8 24 23

Table 6: Number of solutions for which optimality has been proven (out of 75
randomly generated instances).

Figure 2 displays the optimality gap of ILPG versus instance size (again measured by the

number of variables in the problem formulation of Section 2). The gap clearly increases with

instance size and the relationship appears to be concave. For instances with a size up to

250 variables, ILPG could always solve the problem to optimality. For instances with a size

exceeding 1000 variables, ILPG was never able to prove optimality.

5.2 Performance evaluation over a longer time horizon

In this subsection, we evaluate the performance of the solutions generated by the various

TOP solution methods over a longer time horizon. We do this using the dynamic simulation

procedure described in Section 4.3.

Table 7 displays cost and failure rate metrics of the solutions generated by the TOP

solution methods over a longer time horizon. The upper part of the table shows the deviation

in total costs from the expected total costs based on the (extrapolated) static solution. The

lower part of the table shows the percentage of surgeries for which not all instruments are

available in time. Both averages and standard deviations are reported.

The static solutions appear to perform quite well in the dynamic setting. The long term
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costs are very close to what can be expected based on an extrapolation of the static solution.

In fact, the costs are likely to be slightly lower than the expectation, mainly because no costs

are incurred for surgeries for which not all instruments are available in time. Of course, in

reality there may be costs associated to this percentage of ‘missed’ surgeries, but as we do

not have a measure of these costs we only report the percentage.

Out of the four investigated dynamic simulation policies, the surgery schedule based on

historical sampling is closest to the surgery schedule used in the static solution approach.

Perturbed historical frequencies on the other hand is expected to generate a surgery schedule

that is substantially more different. In general, the closer the long term surgery plan is to the

surgery plan used in the static solution approach, the better the availability of instruments

can be guarantueed.

Deviation of total costs from expectation based on static solution

Hist. Freq. Pert. Hist. Freq. Hist. Sampling Pert. Hist. Sampling

H1 GR -1.68% ( 1.81% ) -1.69% ( 1.81% ) 0.00% ( 0.05% ) -1.04% ( 0.76% )
CGG -1.71% ( 1.83% ) -1.72% ( 1.83% ) -0.01% ( 0.06% ) -1.07% ( 0.78% )
SA -1.65% ( 1.76% ) -1.66% ( 1.76% ) 0.00% ( 0.06% ) -0.97% ( 0.73% )
GA -1.83% ( 1.89% ) -1.84% ( 1.89% ) 0.00% ( 0.05% ) -1.03% ( 0.77% )
ILPG -1.64% ( 1.64% ) -1.65% ( 1.64% ) 0.00% ( 0.05% ) -1.22% ( 0.79% )

H2 GR -3.60% ( 4.25% ) -3.61% ( 4.23% ) 1.71% ( 2.56% ) 1.18% ( 2.59% )
CGG -4.16% ( 5.31% ) -4.17% ( 5.32% ) 1.20% ( 3.87% ) 0.42% ( 3.99% )
SA -3.81% ( 4.40% ) -3.82% ( 4.38% ) 1.74% ( 2.57% ) 1.40% ( 2.42% )
GA -3.58% ( 4.27% ) -3.59% ( 4.26% ) 1.68% ( 2.52% ) 0.96% ( 2.49% )
ILPG -4.17% ( 4.64% ) -4.18% ( 4.64% ) 1.42% ( 3.25% ) -0.04% ( 3.2% )

Percentage of surgeries for which instruments are not available in time

Hist. Freq. Pert. Hist. Freq. Hist. Sampling Pert. Hist. Sampling

H1 GR 6.12% ( 4.00% ) 6.13% ( 4.00% ) 0.00% ( 0.00% ) 1.73% ( 1.03% )
CGG 6.12% ( 4.01% ) 6.14% ( 4.01% ) 0.00% ( 0.00% ) 1.68% ( 0.99% )
SA 6.04% ( 3.84% ) 6.06% ( 3.84% ) 0.00% ( 0.00% ) 1.79% ( 1.10% )
GA 6.35% ( 4.28% ) 6.37% ( 4.29% ) 0.00% ( 0.00% ) 1.86% ( 1.20% )
ILPG 6.15% ( 3.97% ) 6.17% ( 3.97% ) 0.00% ( 0.00% ) 1.61% ( 0.96% )

H2 GR 7.97% ( 4.94% ) 8.02% ( 4.94% ) 0.00% ( 0.00% ) 1.61% ( 1.15% )
CGG 8.03% ( 5.19% ) 8.08% ( 5.20% ) 0.00% ( 0.00% ) 1.52% ( 1.01% )
SA 8.14% ( 5.16% ) 8.19% ( 5.16% ) 0.00% ( 0.00% ) 2.21% ( 1.53% )
GA 7.91% ( 4.95% ) 7.96% ( 4.95% ) 0.00% ( 0.00% ) 1.74% ( 1.33% )
ILPG 7.98% ( 5.52% ) 8.02% ( 5.52% ) 0.00% ( 0.00% ) 1.42% ( 0.92% )

Table 7: Long run performance metrics: average and standard deviation (in
brackets)

6 Conclusions and recommendations

In this paper, we have developed several solution methods for the tray optimization problem

(TOP). In the TOP, one simultaneously determines the composition of instrument trays, the
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assignment of these trays to surgeries, and the number of trays of a certain type to acquire.

In particular, we have considered an exact ILP formulation, a row & column generation

approach, a greedy heuristic, and some metaheuristics. In an extensive computational study,

we have compared these solution methods on several instances that are inspired by practice.

Furthermore, we have tested the performance of the solutions on a longer time horizon using

simulation.

The greedy heuristic constructs several tray types and then solves the ILP model for the

tray assignment problem optimally. Our computational results indicate that this method

performs surprisingly good, especially considering the short computation times. The greedy

heuristic gives solutions that are on average roughly 7% worse than the best solutions we

found.

The exact ILP formulation, the row & column generation approach, and the metaheuristics

can all make use of the solution obtained by the greedy heuristic. Among these solution

methods, solving the ILP model gives the best performance. Next to that, it is the only exact

method we considered, which means that is able to prove optimality for some of the instances.

However, this does not hold for the larger instances, where the improvement in comparison

to the greedy heuristic is small.

Summarizing the above, the greedy heuristic is a good method if solutions have to be

found quickly. If more time is available, and if the instances are small- to medium-sized,

solving the ILP model can improve this greedy solution considerably. For the other methods,

the improvements in comparison to the greedy approach are limited.

We have also tested the solutions in a dynamic setting. Here, we first obtained the tray

composition and the number of trays to be acquired by solving a static instance. Then, we

generated a surgery schedule for a longer time horizon and evaluated the sterilization costs

and the number of times an instrument was not available. The results show that all solutions

of the static problem perform well in the dynamic setting. First, the average costs are slightly

lower than in the static simulation. Second, only for a small percentage of the surgeries an

instrument is missing.

For our experiments, we have generated the instances based on data of two different

hospitals and considered instances of various sizes. Nonetheless, some simplifying assumptions

had to be made. For example, we have not considered the weight and size restrictions of the

trays due to a lack of reliable data, but have assumed that every combination of a fixed

number of instruments fits in a tray. Similarly, we have omitted instrument depreciation

costs. Note, though, that our algorithms are capable to deal with these parameters if they

would be available.

To summarize, we have presented and evaluated multiple solutions methods for the TOP

and are the first to provide TOP solution methods that can actually be used to solve instances

of realistic size. The most promising method that we presented is, perhaps, the greedy method

as it is highly scalable. Moreover, our results indicate that the outcomes of the greedy method

are, on average, very close to the other methods investigated. As it is easy to implement, the

greedy method could therefore be easily used by (large) hospitals. We hope our findings may

contribute to health care management practice by making it possible to achieve substantial
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cost savings on inventory of medical instruments.
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A Sets, parameters and variables

Sets:

• I: set of instruments

• Li: set of instrument specimen of type i ∈ I

• J : set of surgeries

• K: set of trays

• T : set of days in planning horizon

Parameters:

• ai: cost of buying instrument i ∈ I

• bi: cost of sterilizing instrument i ∈ I

• c1: cost for acquiring a tray

• c2: cost for sterilizing a tray

• c3: cost for handling a tray

• c4: cost for creating a new tray type

• r: maximum number of different tray types

• rα: maximum volume of a tray

• rβ: maximum weight of a tray

• rγ : maximum number of instruments on a tray

• αi: volume of instrument i ∈ I

• βi: weight of instrument i ∈ I

• mj : number of times surgery j ∈ J is performed on the same day

• fj : number of times surgery j ∈ J is performed per year

• dij : number of instruments i ∈ I needed for surgery j ∈ J

• sjt: number of surgeries j ∈ J on day t ∈ T

29



Variables:

• Nk: number of trays k ∈ K to be acquired

• Xik: number of instruments i ∈ I assigned to tray k ∈ K

• Yjk: number of trays k ∈ K assigned to surgery j ∈ J

• Zk: binary variable indicating whether tray k ∈ K is used or not

• X̄lk: binary variable indicating whether instrument specimen l is assigned to tray k ∈ K

• Q1
jkl: product of X̄lk and Yjk.

• Q2
kl: product of X̄lk and Nk.

B Column & row generation: Proofs and derivations

In this section, we derive an optimality criterion for the row & column generation approach

presented in Section 3.2.1. Our analysis is based on a Lagrangian relaxation, in a similar

fashion as in Muter et al. [2012]. Consider therefore the linear relaxation of (31)-(37). In

any optimal solution, it holds that Zk = 1
MNk. We can therefore replace Zk by 1

MNk in the

objective and discard constraints (34) and (37). The costs c4
1
MNk can be absorbed in the

term c1
kNk. From now on, we assume that this has been done. For a given subset K̄ ⊆ K

of tray types, we then denote this linear relaxation and its objective by zLP (K̄). Now relax

constraints (32) with Lagrangian multipliers λ ≥ 0. We then get the following Lagrangian

subproblem.

z(λ; K̄) = min
∑
k∈K̄

c1
kNk + c2

k

∑
j∈J

fjYjk

+
∑
i∈I

∑
j∈J

λij

dij −∑
k∈K̄

xikYjk


= min

∑
i∈I

∑
j∈J

λijdij +
∑
k∈K̄

c1
kNk +

∑
j∈J

(
c2
kfj −

∑
i∈I

λijxik

)
Yjk


such that

Nk ≥
∑
j∈J

sjtYjk, ∀k ∈ K̄, t ∈ T,

Yjk, Nk ≥ 0, ∀k ∈ K̄, j ∈ J.

We define a Lagrangian relaxation zLR(K̄) = max{z(λ; K̄) : λ ≥ 0}. In order to solve the

Lagrangian subproblem for given λ, we can consider the trays k ∈ K̄ individually, because

all constraints that couple different trays have been dualized into the objective function. For

given k ∈ K̄, we have to solve

z̄k(λ) = min c1
kNk +

∑
j∈J

(
c2
kfj −

∑
i∈I

λijxik

)
Yjk
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such that

Nk ≥
∑
j∈J

sjtYjk, ∀t ∈ T. (39)

and Yjk ≥ 0, Nk ≥ 0.

Substituting Nk = 0 and Yjk = 0 for all j, we observe that z̄k(λ) ≤ 0. Furthermore, the

problem is linear in (Nk, Yjk). Therefore, if (Nk, Yjk) is feasible, then (cNk, cYjk) is feasible,

too, for all c ≥ 0. We can therefore restrict attention to the case Nk = 1. Then, the problem

reduces to

zk(λ) = c1
k + min

∑
j∈J

(
c2
kfj −

∑
i∈I

λijxik

)
Yjk

such that ∑
j∈J

sjtYjk ≤ 1, ∀t ∈ T.

and Yjk ≥ 0. Whenever this value zk(λ) < 0, then the problem z̄k(λ) is unbounded. If

zk(λ) = 0, Nk = 0 and Yjk = 0 is an optimal solution. We are now ready to derive the

reduced cost criterion.

Theorem Let λ∗ be the optimal dual multipliers for a given set K̄ ⊆ K of trays and define

zLP (K̄) as the objective value for the corresponding linear problem. If

zk(λ
∗) ≥ 0

for all k ∈ K \ K̄, then zLP (K̄) is also the optimal solution if all trays are considered. As a

consequence, we can interpret zk(λ
∗) as the reduced cost of tray k ∈ K.

Proof The proof consists of three parts. We first show that the optimal dual multipliers λ∗

for zLP (K̄) corresponding to constraints (32) are also optimal multipliers for the Lagrangian

relaxation zLR(K̄). Then, we show that the columns in K̄ suffice to solve the Lagrangian

relaxation optimally. Finally, we conclude that the linear problem is solved to optimality,

too.

To simplify notation, we write our linear program in standard form. That is, we define a

primal problem

zP = min{c · x : Ax ≤ a;Bx ≤ b;x ≥ 0}.

The dual problem is given by

zD = max{a · u+ b · v : Atu+Btv ≥ c;u ≥ 0, v ≥ 0}.

We also define, for given vectors u, the Lagrangian subproblem

zLR(u) = min{c · x+ u · (a−Ax) = (c−Atu) · x+ u · a : Bx ≤ b;x ≥ 0},
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in which some of the constraints are relaxed. The corresponding Lagrangian relaxation is

zLR = max{zLR(u) : u ≥ 0}. For a given vector u, the dual of the Lagrangian subproblem

reads

max{b · v : Btv ≥ c−Atu, v ≥ 0}.

By strong duality, zP = zD, so there exist an optimal primal solution x̄ and an optimal dual

solution (ū, v̄) that satisfy

c · x̄ = a · ū+ b · v̄ ⇒ c · x̄− a · ū = b · v̄.

Furthermore, by complementary slackness, we have

ūi(a−Ax̄)i = 0∀i ⇔ ūiai = ūi(Ax̄)i ∀i ⇒ ū · a = ū ·Ax̄.

Combining these results, we obtain

(c−Atū) · x̄ = c · x̄− ū ·Ax̄ = c · x̄− a · ū = b · v̄. (40)

Furthermore, feasibility of (ū, v̄) implies that

Atū+Btv̄ ≥ c ⇒ Btv̄ ≥ c−Atū

We conclude that v̄ is dual feasible for zLR(ū). This implies that x̄ is optimal for zLR(ū).

Furthermore,

zLR(ū) = (c−Atū) · x̄+ ū · a = c · x̄+ ū(a−A · x) = c · x̄ = zP .

This shows that the vector ū is an optimal Lagrangian multiplier.

We now want to apply the above to our situation. Constraints (32) are encoded in

the inequality Ax ≤ a, while constraints (33) are encoded in Bx ≤ b. Define zLP (K̄) as

the optimal solution when only the subset K̄ of trays is considered. Assume that we have

solved this linear program and obtained dual multipliers λ̄ and µ̄. It then holds that the

variables λ̄ are also optimal Lagrangian multipliers, if we consider the same subset of trays

in the Lagrangian relaxation. Hence, zLP (K̄) = z(λ̄; K̄). As z̄k(λ̄) ≥ 0 for all k ∈ K \ K̄,

the objective of the Lagrangian subproblem does not change if we include any of the trays

k ∈ K \ K̄. Hence, z(λ̄;K) = z(λ̄; K̄). We then obtain

zLP (K) ≤ zLP (K̄) = z(λ̄; K̄) = z(λ̄;K) ≤ zLR(K) = zLP (K).

It follows that all inequalities in the formula above are actually equalities. Hence, z(λ̄, K̄) =

zLR(K). This shows that the columns in K̄ solve the Lagrangian relaxation optimally.

Furthermore, this shows that zLP (K̄) equals zLP (K). Thus, the linear problem is solved

to optimality, too. This suggests to define zk(λ
∗) as the reduced costs of tray k ∈ K. �
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In order to linearize the pricing problem, we substitute Xi =
∑Li

l=1 X̄il for a suitable upper

bound Li on the number of instruments of type i in a tray. It then holds that

XiYj =

(
Li∑
l=1

X̄il

)
Yj =

Li∑
l=1

X̄ilYj =

Li∑
l=1

Qijl.

We obtain the following integer linear program for the pricing problem.

zPP (λ) = min
c4

M
+ c1 +

∑
i∈I

Li∑
l=1

aiX̄il +
∑
j∈J

(
(c2 + c3)fjYj +

∑
i∈I

Li∑
l=1

(bifj − λij)Qijl

)
,

such that

∑
i∈I

Li∑
l=1

αni X̄il ≤ rn, ∀n ∈ N,∑
j∈J

sjtYj ≤ 1, ∀t ∈ T,

Qijl ≤ X̄il, ∀i ∈ I, j ∈ J, l ∈ {1, . . . , Li},

Qijl ≤ Yj , ∀i ∈ I, j ∈ J, l ∈ {1, . . . , Li},

Qijl ≥ Yj + X̄il − 1, ∀i ∈ I, j ∈ J, l ∈ {1, . . . , Li},

X̄il ∈ {0, 1}, ∀i ∈ I, l ∈ {1, . . . , Li}

Yj ∈ [0, 1], ∀j ∈ J,

Qijl ∈ [0, 1], ∀i ∈ I, j ∈ J, l ∈ {1, . . . , Li}.

We obtained a MILP formulation for the pricing problem that can be solved by a standard

solver.

C Tray assignment problem is NP-hard

In this section, we will show that the tray assignment problem, as defined by (31)-(37) in

Section 3.2.1, is NP-hard. In order to do so, we reduce the set-covering problem to it. Let

therefore a set-covering instance be given. Such an instance is specified by a so-called universe

U = {1, . . . , n} and a set S containing subsets of U . A cover is now defined as a subset C ⊆ S,

whose union is U . The aim is to find the smallest such subset C.
Assume now that a set-covering instance is given. We show that we can solve the set-covering

problem if we can solve the tray assignment problem. In order to do so, define I = U , J = {1},
K̄ = S, and T = {1}. (Thus, we consider only one surgery and the planning horizon consists

of only one day.) Set s11 = 1, di1 = 1 for all i ∈ U , and define the cost coefficients as c1 = 1,

c2 = c3 = c4 = 0, and ai = bi = 0 for all i ∈ U . It follows that c1
k = 1 and c2

k = 0. Finally, for

i ∈ U and k ∈ S, we define xik = 1 if i ∈ k. The ILP for the tray assignment problem can
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then be written as

min
∑
k∈S

Nk

such that ∑
k∈S

Y1kxik ≥ 1 ∀i ∈ U

Y1k ≤ Nk ∀k ∈ S

Nk ≤MZk ∀k ∈ S

Nk ∈ N ∀k ∈ S

Y1k ∈ {0, 1} ∀k ∈ S

Zk ∈ {0, 1} ∀k ∈ S.

It follows easily from the above that Nk = Y1k for all k ∈ S in any optimal solution. Fur-

thermore, setting Zk = 1 for all k ∈ S does not change feasibility nor the solution value of a

solution. We can thus restrict the range of Nk to {0, 1} and remove the Zk variables for all

k ∈ S. This yields the following ILP.

min
∑
k∈S

Nk

such that ∑
k∈S

Nkxik ≥ 1 ∀i ∈ U

Nk ∈ {0, 1} ∀k ∈ S.

This is precisely the ILP formulation of the set-covering problem [Wolsey, 1998]: A set k ∈ S
is included in the smallest possible cover if and only if Nk = 1. Given that xik = 1 if and

only if i ∈ k for all i ∈ U and k ∈ S ensures that the union of all selected subsets contain

every i ∈ U . We conclude that any algorithm for the tray assignment problem can be used to

solve the set-covering problem. Given that the set-covering problem is NP-hard [Karp, 1972],

it follows that the tray assignment problem is NP-hard as well.
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