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Abstract—In this paper, a mathematical model for vehicle-to-
vehicle frontal crash is developed. The experimental data are
taken from the National Highway Traffic Safety Administration
(NHTSA). To model the crash scenario, the two vehicles are
represented by two masses moving in opposite directions. The
front structures of the vehicles are modeled by Kelvin elements,
consisting of springs and dampers in parallel, and estimated
as piecewise linear functions of displacements and velocities
respectively. To estimate and optimize the model parameters,
a genetic algorithm (GA) approach is proposed. Finally, it is
observed that the developed model can accurately reproduce the
real kinematic results from the crash test.
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I. INTRODUCTION

Car accidents are one of the major causes of mortality in
modern society. While it is desirable to maintain the crash-
worthiness, car manufacturers perform crash tests on a sample
of vehicles for monitoring the effect of the occupant in
different crash scenarios. Car crash tests are usually performed
to ensure safe design standards in crash-worthiness (the ability
of a vehicle to be plastically deformed and yet maintains a
sufficient survival space for its occupants during the crash
scenario). However, this process is very time consuming and
requires sophisticated infrastructure and trained personnel to
conduct such a test and data analysis. Therefore, to reduce
the cost associated with the real crash test, it is worthy to
adopt the simulation of a vehicle crash and validate the model
results with the actual crash test. Nowadays, due to advanced
research in simulation tools, simulated crash tests can be
performed beforehand the full-scale crash test. Therefore,
the cost associated with the real crash test can be reduced.
Finite element method (FEM) models and lumped parameter
models (LPM) are typically used to model the vehicle crash
phenomena and hence can help the designer to better design
the vehicle with less number of crash tests. Vehicle crash-
worthiness can be evaluated in four distinct modes: frontal,
side, rear and rollover crashes.

In the past few decades, much research has been carried
out in the field of vehicle crash-worthiness, which resulted in

several novel computational models of vehicle collisions in
the literature, and a brief review is given in this paper. An
application of physical models composed of springs, dampers
and masses joined in various arrangements for simulating a
real car collision with a rigid pole, was presented in [1].
The same authors in [2], proposed a method of modeling for
vehicle crash systems based on viscous and elastic properties
of the materials and explained the differences in simulating
vehicle-to-rigid barrier collision and vehicleto-pole collision.
A method to reproduce car kinematics during a collision using
a nonlinear autoregressive (NAR) model, where parameters are
estimated by the use of feed-forward neural network model,
was proposed in [3]. In [4], a Five-Degrees of Freedom (5-
DOFs) lumped parameter model for the frontal crash was
investigated to analyze the response of occupant during the
impact. Ofochebe et al. in [5], studied the performance of
vehicle front structure using a 4-DOFs lumped mass-spring
model composed of body, engine, the cross-member, the
suspension and the bumper masses.

In [6] and [7], an optimization procedure to assist multi-
body vehicle model development and validation was proposed.
In the work of [8], the authors proposed an approach to
control the seat belt restraint system force during a frontal
crash to reduce thoracic injury. Klausen et al. [9] used firefly
optimization method to estimate parameters of vehicle crash
test based on a single-mass. Munyazikwiye et al. in [10] and
[11], used different approaches to model the vehicle frontal
crash using a double-spring-mass-damper model. In [12], a
mathematical model for vehicle-occupant frontal crash was
studied using genetic algorithm. Tso-Liang et al. in [13],
examined the dynamic response of the human body in a crash
event and assessed the injuries sustained to the occupant’s
head, chest and pelvic regions.

Apart from the commonly used approaches, recently intel-
ligent approaches have been used in the area of vehicle crash
modeling. The most commonly used, are Fuzzy logic in [14],
Neuro-fuzzy in [15], genetic algorithm and firefly algorithm
in [9]. Vangi in [16] developed an approach to determine
the impact severity indexes of oblique impact with a non-
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zero restitution. While in [17], the author developed a fuzzy
logic model for vehicle frontal crash to predict vehicle crash
severity from acceleration data. The kinetic energy and jerk
inputs data were used to find the crash severity index. Vangi
and Begani [18], demonstrated the usefulness of the triangle
method for evaluating the kinetic energy loss of a vehicle
during road traffic accident, while in [19], the authors used
a fuzzy approach to reconstruct the accident history at time
of crash and calculated the velocity of an impacting vehicle.
A genetic algorithm has been used in [20] for calculating the
optimized parameters of a 12-DOFs model for two vehicle
types in two different frontal crashes.

The main challenge in accident reconstruction is the system
identification, described as the process of constructing math-
ematical models of dynamical systems using measured input-
output data, where the input data is the acceleration measure-
ment and output data is the deformation of the vehicle. In [21],
a novel wavelet-based approach was introduced to reproduce
acceleration pulse of a vehicle involved in a crash event. In the
case of a vehicle crash, system identification algorithm is used
to retrieve the unknown parameters such as the spring stiffness
and damping coefficient. A possible approach is to identify
these parameters directly from experimental data. From the
literature, System Identification Algorithms (SIA) have been
developed based on various methodologies, for instance, sub-
space identification, genetic algorithm, eigensystem realization
algorithm and data-based regressive model approaches.

After scanning through the literature, it is noted that the
authors could reconstruct the kinematics of the car crash, but
less attention was taken on the nonlinearity behavior of the
deformed vehicles involved in crash scenarios. To the best of
our knowledge, the problem of reconstruction of a piecewise
linear model for a vehicle-to-vehicle frontal crash scenario
based on the genetic algorithm has not yet been completely
considered in the literature and this forms our motivation for
the present study.

The main contribution of this paper is threefold: 1) A
mathematical model is developed to reconstruct a vehicle-to-
vehicle frontal crash scenario and to estimate the nonlinear
behaviors of the front parts of the vehicle undergoing crash
deformation; 2) A genetic algorithm is proposed to estimate
the parameters of the vehicle’s front structures in terms of
piecewise linear functions, which can assist car designers or
manufacturers to reduce the cost associated with the real phys-
ical crashes which are generally costly and time consuming;
3) The accuracy of the predicted results are verified using
the available experimental data. It should be mentioned that
according to the methodology proposed in this paper, the
dynamic crash can be predicted and allows the designer to
redesign the vehicle for vehicle crashworthiness.

II. EXPERIMENTAL SET UP

Two physical crash tests data sets for the Caravan crashing
into the Neon and the Chevrolet crashing into the Dodge are
obtained from the NHTSA Database [22]. These tests were
carried out on typical mid-speed vehicles colliding each other

in the frontal direction. The test set up consisting of vehicle-
to-vehicle crash (Caravan into Neon) is shown in Figure 1. The
data were obtained relative to the Federal Motor Vehicle Safety
Standards (FMVSS) No. 208 - Occupant Crash Protection. In
the first test, the target vehicle (a 1996 Plymouth Neon) and
the bullet vehicle (a 1997 Dodge Caravan) were instrumented
with seven longitudinal axis accelerometers, three lateral axis
accelerometers, four vertical axis accelerometers, and their
specified impact velocity range was 55.5 km/h to 57.1 km/h.

The bullet vehicle’s centerline was aligned with the target
vehicle’s centerline. This test was a full frontal car-to-car
moving test. The test weights and impact speeds of the target
and bullet vehicles were: 1378.0 kg and 55.9 km/h, and 2059.5
kg and 56.5 km/h respectively.

The same test set up was used on a Chevrolet car crashing
into a Dodge car. The test weights and impact speeds of the
Chevrolet and Dodge cars were: 2109 kg and 50.3km/h, and
1997 kg and 50 km/h respectively.

In general during vehicle frontal crash, the vehicles are
subjected to impulsive forces. When a vehicle crashes into
another vehicle, the heavier one is less deformed than the
lighter one and at time of crash, both vehicles loose their
kinetic energy in a fraction of a second through front-end
structural deformations. The amount of deformation is equal
to the stopping distance of the vehicle. Since the stopping
distance of a vehicle in the crash is normally short, a much
higher force is generated at the front interface. The vehicle
stopping distance (or dynamic crash) in vehicle-to-vehicle
crash tests largely depends on crash pulses. The dynamic crash
can be determined by double integration of the vehicle crash
pulse with known initial impact velocity. The decelerations for
both, bullet and target vehicles are shown in Figure 2.

 

Figure 1: Vehicles deformations after crash (Caravan left
front-view, Neon right front-view)

III. MODEL DEVELOPMENT

The main objective of this section is to develop a dynamic
model which can represent a vehicle-to-vehicle frontal crash
scenario. The real crash test results are shown in Figure 2, and
the model which can reproduce these results consists of two
masses moving in opposite directions, as shown in Figure 3.
In line of the model development to capture the values as
mentioned earlier during the crash scenario, the dynamical
model proposed in [23] for the free vibration analysis are



2169-3536 (c) 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2671357, IEEE Access

t [s]
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

D
ec

el
er

at
io

n[
g]

-150

-100

-50

0

50

100

150

Bullet deceleration
Turget deceleration

Figure 2: Test decelerations for bullet and target vehicles

adopted for solving the impact responses. Then, the genetic
algorithm is used to estimate the model parameters.

A. Vehicle-to-Vehicle crash model

An impact between two masses can be represented schemat-
ically as in Figure 3, where each of the two masses has a
contact with the Kelvin element, a set of spring and damper
in parallel. If the connection between the mass and the element
is a rigid contact, the element may undergo tension and
compression. If not, due to separation between the mass and
element, the element can only be subjected to compression.
To simplify the analysis, the two sets of Kelvin elements
can be combined into one resultant Kelvin element as shown
in Figure 4. The parametric relationship between the two
individual Kelvin elements and the resultant Kelvin element
can be obtained in the sequel. From the spring deformation
relationship, the total deformation of the combined spring k
is equal to the sum of the deformations of the two individual
springs (an additive deflection relationship). The spring force
relationship can then be established as follows:

α = x1 + x2 (1)

Fk

k
=
Fk

k1
+
Fk

k2
(2)

where α and Fk are total deflection and force due to mass m1

and m2 respectively. Similarly, by taking the time derivative
of the deformation relationship, the deformation rates are also
found to be additive for the dampers. The damping relationship
is shown as follows.

α̇ = ẋ1 + ẋ2 (3)

Fc

c
=
Fc

c1
+
Fc

c2
(4)

The equivalent relationships for spring stiffness and damping
coefficients are then established as follows:

k =
k1k2
k1 + k2

c =
c1c2
c1 + c2

In a two-mass system, shown in Figure 4, the mass M2 is
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Figure 3: A vehicle-to-vehicle impact model - Two Kelvin
elements in series [23]
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Figure 4: A vehicle-to-vehicle impact model - A Kelvin model

impacted by M1 at an initial relative speed (or closing speed)
of v12 where v12 = v1 + v2 = v0. If one of the masses in the
two-mass system is infinite, the system becomes a vehicle-to-
barrier (VTB) model.

The only mass moving in this system is referred to as the
effective mass, Me. The relative motion of the mass with
respect to the fixed barrier is the same as the absolute motion
of the mass with respect to a fixed reference frame. In a system
where there are multiple masses involved in an impact, the
analysis can be simplified by using the relative motion and
effective mass approaches. The relative displacement of the
effective mass, Me, is α. The dynamic responses of the two-
mass system and one effective mass system are summarized
as referred to [23]

ẍ1 = γ1α̈ ẍ2 = γ2α̈ (5)

where

α̈ = −v12ωesin(ωet) (6)
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ωe =

√
k

Me
(7)

γ1 =
M2

M1 +M2
(8)

γ2 =
M1

M1 +M2
(9)

Me =
M1M2

M1 +M2
(10)

where ωe is the natural frequency, γ1 and γ2 denote mass
reduction factors and Me is the effective mass. The dynamic
equation of the effective mass system is represented as follows:

Meα̈ = −cα̇− kα (11)

or
α̈ = (−cα̇− kα)/Me (12)

Substituting (1) and (3) into (12), we get:

α̈ = (−c(ẋ1 + ẋ2)− k(x1 + x2))/Me (13)

From the response obtained from the test, the displacement
and velocity are nonlinear. Therefore the Kelvin element of
the model should be estimated as nonlinear parameters. In
the first estimation the spring and the damping forces in the
model are nonlinear cubic function of x and ẋ, respectively.
Therefore, the dynamic responses of the two-mass system in
Equation (5) are:

ẍ1 = γ1(−c(ẋ1 + ẋ2)− cnl(ẋ1 + ẋ2)
3 (14)

− k(x1 + x2)− knl(x1 + x2)
3)/Me

ẍ2 = −γ2(−c(ẋ1 + ẋ2)− cnl(ẋ1 + ẋ2)
3 (15)

− k(x1 + x2)− knl(x1 + x2)
3)/Me

where cnl and knl are nonlinear components of the damping
coefficient and the spring stiffness in the model respectively.

B. Piecewise linear approximations for springs and dampers
The springs and damping coefficients in the model described

in the previous sections, are defined by the piecewise functions
in (16) - (17) and shown graphically in Figure 5.

The predefined shape of the spring and damper characteris-
tics in Figure 5, are chosen based on the shapes of the displace-
ment and velocity responses from the crash test. The maximum
displacement occurs when the velocity of the target vehicle
reduces to zero, during the breaking phase, where the vehicle
is overdamped and undamped during low and high velocities
respectively. This justifies a high damping coefficient at the
time of crash and a low value of damping coefficient at the
initial velocity. The stiffness is low during elastic deformation,
but after crash, the vehicle is plastically deformed, therefore
the stiffness increases drastically to maintain the deformation.
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Figure 5: Predefined stiffness and damping coefficient
characteristics of the vehicle’s front structure

k(xi) =


ki1 +

ki2−ki1

xi1
xi xi ≤ xi1

ki2 +
ki3−ki2

xi2−xi1
(xi − xi1) xi1 ≤ xi ≤ xi2

ki3 +
ki4−ki3

Ci−xi2
(xi − xi2) xi2 ≤ xi ≤ Ci

(16)

c(ẋi) =


ci1 − ci1−ci2

ẋi1
ẋi ẋi ≤ ẋi1

ci2 − ci2−ci3
ẋi2−ẋi1

(ẋi − ẋi1) ẋi1 ≤ ẋi ≤ ẋi2

ci3 − ci3−ci4
v0−ẋi2

(ẋi − ẋi2) ẋi2 ≤ ẋi ≤ v0

(17)

Therefore, using the piecewise linear functions defined in
Equations (16) and (17), the dynamic responses in Equation
(5) can be represented as follows:

ẍ1 = γ1(c(ẋ1 + ẋ2)− k(x1 + x2))/Me (18)

ẍ2 = −γ2(−c(ẋ1 + ẋ2)− k(x1 + x2))/Me (19)

C. Optimization Scheme of the Genetic Algorithm
Genetic Algorithm (GA) is an adaptive heuristic search

based on the evolutionary ideas of nature selection and ge-
netics. It represents an intelligent exploitation of a random
search used to solve optimization problems. This Evolutionary
Algorithm holds a population of individuals (chromosomes),
which evolve by means of selection and other operators like
crossover and mutation. Every individual in the population gets
an evaluation of its adaptation (fitness) to the environment.
In the terms of optimization this means that the function
which is maximized or minimized is evaluated for every
individual. The selection chooses the best gene combinations
(individuals), which through crossover and mutation should
drive to better solutions in the next population. The Genetic
Algorithm consists of seven steps [24].

1) Generate initial population: in most of the algorithms the
first generation is randomly generated, by selecting the
genes of the chromosomes among the allowed alphabet
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for the gene. Because of the easier computational pro-
cedure, it is accepted that all populations have the same
number (N) of individuals. In our problem N is 24, the
number of parameters to be estimated.

2) Calculation of the values of the function that we want
to minimize or maximize. In our work the cost function
minimizes the error between the experimental results and
the model results.

3) Check for termination of the algorithm: as in the most
optimization algorithms, it is possible to stop the genetic
optimization by:
- Value of the function: the value of the function of
the best individual is within defined range around a
set value. It is not recommended to use this criterion
alone, because of the stochastic element in the search
the procedure, the optimization might not finish within
sensible time;
- Maximal number of iterations: this is the most widely
used stopping criteria. We have set 109 iterations to get
the optimum solution. It guarantees that the algorithm
will give some results within some time, whenever it has
reached the extremum or not;
- Stall generation: if within the initially set number of
iterations (generations) there is no improvement of the
value of the fitness function of the best individual, the
algorithms stops.

4) Selection: this is used to select the fittest from the pop-
ulation among all individuals. This step is followed by
crossover and mutation, which produce the population
offspring. At this stage the best n individuals are directly
transferred to the next generation.

5) Crossover: this is used to explore the search space.
Here, the aim is to get offspring individuals that in-
herit the best possible combination of the characteristics
(genes) of their parents.

6) Mutation: is used to remove the problem like genetic
drift (some individuals may leave behind a few more
off-springs than other individuals), and replacement is
used to progress to the next new generation.

7) New generation: the elite individuals chosen from the
selection are combined with those who passed the
crossover and mutation, and form the next generation.

The proposed algorithm seeks to find the minimum function
between several variables as can be stated in a general form
minf(p),

The cost function f(p) is the objective function which
should be optimized. The cost function to be minimized is the
norm of the absolute error between the displacement, velocity
and acceleration of the simulated cash and the experimental
crash data and is defined as:

[Error] = sum(|Est− Exp|T × |Est− Exp|) (20)

where Est and Exp are the model and experimental vari-
ables (displacement, velocity and acceleration) respectively.

The algorithm for solving the problem defined by Equations
(14) and (15) is shown in Figure 6. An initial guess of parame-
ters is chosen and substituted in equations (16) and (17). Then
the obtained stiffness and damping coefficients are substituted
into equations (14) and (15) which in turn are numerically
solved using time integration to get the simulated kinematic
results i.e., accelerations, velocities and displacements. These
kinematic results are finally compared with the time history
from the crash test. Then the cost function is evaluated.
When the cost function is minimum the solver terminates.
Otherwise the GA is used to tune the parameters to match
the experimental results.
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Figure 6: A flowchart for problem solving

The GA method is used here for optimization of the cost
function. The GA-type of search schemes is function-value
comparison-based, with no derivative computation. It attempts
to move points through a series of generations, each being
composed of a population which has a set number (population
size, 24 in this work) of individuals or parameters. Each
individual is a point in the parameter space (in our case, the
displacement and velocity of experimental data). The schemes
that are applied to the evolution of generations have some
analogy to the natural genetic evolution of species, hence the
term genetic.

IV. RESULTS AND DISCUSSION

This section presents the simulation results for two crash
tests. The fist crash scenario is a Caravan car crashing into
a Neon car, and the second is the Dodge car crashing into a
Chevrolet car. Finally, some concluding remarks in regards
to implementation of GA to the vehicle-to-vehicle model
development are drawn.

The results of the model presented in (14) and (15) are
shown in Figure 7 which reconstructs the dynamic crash of a
Caravan crashing into a Neon. The results show a trend similar
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Figure 7: Model vs Experimental results for
vehicle-to-vehicle (Caravan-Neon) crash using IPA

to that obtained from the test. But the maximum dynamic crash
is less than that from the test. The result presented in Figure
7 were obtained using fmincon, an optimization function
available in MATLAB, with interior point algorithm (IPA).
A big difference between the bullet (Caravan) model response
and the test results is noted. The bullet model presents a re-
bounces velocity which is not observed on the test results.

To solve this problem, the genetic algorithm was used to
optimize the parameters defined by the piecewise functions
presented in Figure 5 and Equations (16) and (17), where
the stiffness and damping coefficients are a function of x
and ẋ respectively. The improved results are presented in
Figure 8. It is noted that the model results are much closer
to the experimental results from the crash test. The maximum
dynamic crash of 70.24 cm is observed on the target (Neon)
from the test, while the dynamic crash from the model is
69.92 cm. At the maximum dynamic crash, the bullet vehicle
keeps on moving in the same direction as before crash, but
the target vehicle rebounces. The rebound velocities are -19.6
m/s and -18.3 m/s from the test and the model respectively.
This is observed by the velocity curves of the two vehicles,
where a negative velocity is noted for the target vehicle and
a positive velocity is noted for the bullet vehicle after the
maximum dynamic crash. The front structure of the target
vehicle is plastically deformed, while the front structure of the
bullet vehicle experiences an elastic deformation. The accuracy
of the model is also observed on the time at the maximum
dynamic crash, tm. The time at the maximum dynamic crash,
tm is 0.06568 s from the test and 0.06824 s from the model
respectively, as observed on the Neon’s kinematic results.

The labels s-Exp, v-Exp, a-Exp, s-Mod, v-Mod, a-Mod, in
Figures 7 and 8 stand for: experimental and model displace-
ments, velocities and accelerations, respectively.

The stiffness coefficient (k) and damping coefficient (c)
characteristics of the target and bullet vehicle’s front structure
are shown in Figure 9 and Figure 10, respectively. From these
Figures it is noted that the stiffness and damping coefficients
are piecewise functions with high magnitude at the maximum
dynamic crash, when the velocity of the target vehicle is
reduced to zero. This justifies the forced breaking of the target
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Figure 8: Model vs Experimental results for
vehicle-to-vehicle (Caravan-Neon) crash using GA
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Figure 9: Piecewise spring and damper coefficients of the
Neon’s front structure
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Figure 10: Piecewise spring and damper coefficients of the
Caravan’s front structure

vehicle at the time of collision. A high damping coefficient at
the time of crash and a low value of damping coefficient at the
initial velocity are observed. It is also noted that the stiffness
is low during elastic deformation, but after crash, the vehicle
is plastically deformed, therefore stiffness increases drastically
to maintain deformation. A summary of estimated parameters
for the Caravan - Neon crash is shown in Table I.

To verify the model, the Chevrolet-Dodge crash test was
used to demonstrate the accuracy of the GA. The comparison
between the model and the crash test results are shown in
Figure 11. It is observed from Figure 11 that the maximum
dynamic crashes and their occurrence time , for both vehicles,
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Table I: Estimated Parameters for Caravan-to-Neon model
Parameter for 

Bulet vehicle 

Value  Unit  Parameter for 

Target vehicle 

Value  Unit  

k11 1.2843e+05 N/m k21 1.5030e+04 N/m 

k12 2.5142e+05 N/m k22 3.5161e+04 N/m 

k13 1.4932e+05 N/m k23 4.1930e+05 N/m 

k14 6.5159e+05 N/m k24 5.1878e+04 N/m 

x11 0.7168 m x21 0.7168 m 

x12 0.8316 m x22 1.5994 m 

c11 4.1688e+04 Ns/m c21 6.3884e+05 Ns/m 

c12 1.7727e+04 Ns/m c22 7.3768e+04 Ns/m 

c13 3.0696e+03 Ns/m c23 3.3250e+03 Ns/m 

c14 2.6614e+03 Ns/m c24 860.3030 Ns/m 

𝑥 11 10.6044 m/s 𝑥 21 1.9138 m/s 

𝑥 12 11.7252 m/s 𝑥 22 14.6957 m/s 
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Figure 11: Model vs Experimental results for
Dodge-to-Chevrolet crash using GA

are almost equal to those observed from the physical crash
tests. The maximum dynamic crashes and the times of crash,
for the Chevrolet and Dodge cars are: 62.20 cm and 0.055 s,
and 49.63 cm and 0.048 s respectively.

A summary of estimated parameters for Dodge- Chevrolet
crash is shown in Table II. The stiffness and damping coef-
ficients characteristics of the Dodge’s and Chevrolet’s front
structures are shown in Figures 12 and 13 respectively.

V. CONCLUSION AND FUTURE WORK

In this paper, a mathematical-based method is presented to
estimate the parameters of a vehicle-to-vehicle frontal crash. It
is observed that the model results in responses in vehicle crash
model match with the experimental crash tests. Therefore,
the overall behavior of the models matches the real vehicle’s
crash well. Hence the implication of the proposed model is
that it can help vehicle designer to better design the vehicle
with fewer physical crash tests. Two of the main parameters
characterizing the collision are the maximum dynamic crash
(Cm), which describes the highest car’s deformation, and
the time ( tm) at which it occurs. They are pertinent to
the occupant crashworthiness since they help to assess the
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Figure 12: Piecewise spring and damper coefficients of the
Dodge’s front structure
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Figure 13: Piecewise spring and damper coefficients of the
Chevrolet’s front structure

Table II: Estimated Parameters for Dodge-to-Chevrolet model

Parameters 

for  

Dodge   

Value  Unit  Parameters 

for 

Chevrolet    

Value  Unit  

k11 2.5726e+03 N/m k21 7.9266e+03 N/m 

k12 4.9029e+03 N/m k22 6.8819e+03 N/m 

k13 7.3699e+04 N/m k23 8.9521e+04 N/m 

k14 9.1342e+05 N/m k24 8.6448e+05 N/m 

x11 2.8633e-06 m x21 1.5314e-06 m 

x12 0.1048 m x22 0.4387 m 

c11 9.5321e+05 Ns/m c21 2.5087e+05 Ns/m 

c12 8.3382e+04 Ns/m c22 5.5703e+04 Ns/m 

c13 7.4707e+03 Ns/m c23 5.2663e+03 Ns/m 

c14 5.0879e-07 Ns/m c24 363.1498 Ns/m 

𝑥 11 9.7443 m/s 𝑥 21 5.1470 m/s 

𝑥 12 13.4024 m/s 𝑥 22 13.6221 m/s 

 

maximum intrusion into the passenger’s compartment. The
results show that we can obtain an optimum solution with GA
Toolbox Matlab than the fmincon optimization algorithm. It
has been demonstrated that the model and the GA parameter
optimization procedure used in this work can be successfully
extended for different range of crash speeds.

The authors will extend the work by including other parts
of the vehicle such as an engine in the model. The authors
also intend to investigate the application of genetic algorithm
for different crash scenarios such as oblique crash and side
impact. Further investigations will be carried out using Finite
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Element Model (FEM) approach for validation of the results
form Lumped Parameter model of vehicle-to-vehicle crash
scenario.
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