

Accepted Manuscript

Woodpecker: Detecting and Mitigating Link-flooding Attacks via SDN

Lei Wang, Qing Li, Yong Jiang, Xuya Jia, Jianping Wu

PII: S1389-1286(18)30972-1
DOI: https://doi.org/10.1016/j.comnet.2018.09.021
Reference: COMPNW 6603

To appear in: Computer Networks

Received date: 15 February 2018
Revised date: 23 August 2018
Accepted date: 26 September 2018

Please cite this article as: Lei Wang, Qing Li, Yong Jiang, Xuya Jia, Jianping Wu, Wood-
pecker: Detecting and Mitigating Link-flooding Attacks via SDN, Computer Networks (2018), doi:
https://doi.org/10.1016/j.comnet.2018.09.021

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.comnet.2018.09.021
https://doi.org/10.1016/j.comnet.2018.09.021

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Woodpecker: Detecting and Mitigating Link-flooding Attacks via SDN

Lei Wanga, Qing Lib,∗, Yong Jianga, Xuya Jiaa, Jianping Wuc

aGraduate School at Shenzhen, Tsinghua University, Shenzhen, China
bSouthern University of Science and Technology, Shenzhen, China

cDepartment of Computer Science and Technology, Tsinghua University, Beijing, China

Abstract

Link-flooding attack (LFA), as a new type of DDoS attack, can degrade or even cut off network connectivity of a target
area. This attack employs legitimate, low-density flows to flood a group of selected links. Therefore, these malicious
flows can hardly be distinguished by traditional defense technologies. In our scheme, we first select M routers and
upgrade them into SDN switches to maximize the network connectivity. Then, we propose a proactive probe approach
to rapidly locate the congested links. Next, our scheme employs a global judgment algorithm to determine whether
the network is under LFA or not. Finally, Woodpecker employs the core defense measure that based on the centralized
traffic engineering to make the traffic balanced and eliminate the routing bottlenecks that are likely to be utilized by the
adversary. We evaluate our scheme through comprehensive experiments. The results show that the bandwidth utilization
of LFA-attacked links can be reduced by around 50% and that the average packet loss rate and jitter can be effectively
decreased under LFA attacks.

Keywords: Link-flooding Attack, DDoS, Software-Defined Networking

1. Introduction

Recently, distributed denial of service (DDoS) attacks
are the biggest threat to the availability of networks, ap-
plications and cloud services. The adversary generally ex-
plores resource asymmetry between the bots and victim5

servers, and abuses vulnerabilities of many network pro-
tocols to launch DDoS attacks [1, 2]. Many effective ap-
proaches have been proposed to detect and defend against
the DDoS attacks, including Pushback [3], Ingress filter
[4], PacketScore [5] and so forth. These methods all need10

to identify malicious traffic in advance, but this operation
is very difficult for link-flooding attack (LFA) — a new
type of DDoS attack.

Different from the traditional DDoS attacks, LFA floods
a well-chosen group of links to cut off the network con-15

nections of a target area, instead of attacking the target
servers directly. To this end, the adversary first detects
the paths from bots to the public servers and constructs
a link map accordingly. Then, the adversary floods the
selected links by employing a large number of bots to send20

legitimate, low-density flows to the certain public servers.
In this way, these congested links will severely degrade or
even cut off the network connections of the target area.
We show a simple example of LFA in Figure 1.

Over the last few years, LFA has quickly moved from the25

realm of academic curiosity [6, 7] to real-world incidents.
We have already witnessed the real-life demonstration of

∗Corresponding author
Email address: liq8@sustc.edu.cn (Qing Li)

Public
ServersBots

Target Link

Figure 1: An Example of Link-flooding Attack

LFA in the core of the Internet [8, 9]. The target areas of
these attacks include internet exchange points, enterprises
and campus. Worth still, such an attack may be more30

frequent and massive due to inability to resist in reality.
LFA typically has two remarkable characteristics. Un-

detectablity: The target area is not directly attacked.
Thus the servers in the target area cannot perceive any
suspicious traffic. Indistinguishability: The adversary35

usually employs legitimate, low-rate flows with real IP ad-
dresses. Consequently, it is difficult to distinguish mali-
cious flows from legitimate ones.

Because of the above characteristics, the traditional
countermeasures, such as local rerouting and flow filtering40

based on traffic-intensity, have little effect on mitigating
LFA. Moreover, LFA can change the selected links or the
bot-server pairs periodically. Take a typical LFA — the
Crossfire attack [6] as an example. Such attack alternately
floods the optimal group of links for 3 minutes and another45

non-intersecting sub-optimal group of links for 30 seconds.
In summary, there are three significant challenges to de-

Preprint submitted to Elsevier September 26, 2018

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

fend against LFA: 1) How to monitor the link congestion
that is caused by LFA in time? In current networks, the
distributed Internet protocols take a long time to diagnose50

the congested links as a failure. 2) How to determine the
congestion caused by the LFA or other reasons? The lack
of a global view of the network makes such judgement ex-
tremely difficult. 3) How to deal with the numerous attack
flows that are almost the same with normal flows?55

In this paper, we present a scheme called Woodpecker
that can effectively mitigate LFA by software-defined net-
working (SDN). First, we upgrade the current router-
s/switches to SDN-enabled devices. Since the global view
of network status and flexible flow manipulation are re-60

quired in our scheme. Considering the complexity of the
actual deployment, we propose an incremental deployment
scheme that can maximize the available paths of the net-
work. Then, we design a detection mechanism that can
significantly shorten the response time to identify LFA.65

We use predefined rules as triggers to detect the conges-
tion and probe the congested links with the help of the con-
troller and upgraded devices. We also design an identifica-
tion algorithm to judge whether the congestion is caused
by the LFA according to the global congestion information.70

Finally, to mitigate the impact of LFA, Woodpecker em-
ploys centralized traffic engineering based on the upgraded
nodes, which makes the traffic balanced enough to elimi-
nate the routing bottlenecks. Additionally, we design an
algorithm to drop some packets according to a blacklist as75

an emergency measure when LFA is beyond the capacity
of the network, which means packet dropping is inevitable.

To demonstrate the performance of Woodpecker, we
simulate the scheme by comprehensive experiments based
on the real Internet topologies of Rocketfuel [10]. The80

results show that: 1) the bandwidth utilization of LFA-
attacked links can be reduced by around 50%, even though
in different network topologies; 2) the average packet loss
rate and jitter can be adequately mitigated after Wood-
pecker has taken effect.85

We organize the other sections of this paper as follows.
We first introduce background and related work in Section
2. We formalize the threat model for LFA in Section 3 and
outline our Woodpecker scheme in Section 4. Then we de-
scribe our incremental deployment algorithm in Section 590

and design an approach to rapidly locate the congested
links and judge the attack type in Section 6. Next, we
illustrate the LFA defense measures in Section 7. Finally,
we evaluate Woodpecker by real network topologies in Sec-
tion 8 and draw the conclusion in the last section.95

A preliminary version of this work appeared in a confer-
ence paper [11] which briefly discussed ideas of this work.
In this paper, we formalize the threat model and analyze
the design decisions theoretically. We also redesign our
link congestion detection mechanism and develop a novel100

algorithm to determine whether the congestion is caused
by LFA. Additionally, we have added the evaluations of
the new LFA detection mechanism and the effectiveness of
our prototype under different network conditions.

2. Related Work105

Although link-flooding attack (LFA) is one of the latest
types of DDoS attacks, there have been some pioneering
research works on the characteristics of LFA and how to
defend against this attack. Our scheme is inspired by many
previous works, and we cover them briefly as follows.110

2.1. Background of LFA

In recent years, LFA has become a hot topic in the
academia. Coremelt attack [7] which is proposed by Studer
et al. is the earliest LFA. It uses a large number of bots and
causes significant congestion in the target links through115

the traffic between these bots. An improved version of the
LFA is the Crossfire attack [6]. This attack uses bots as
sources and some public servers as destinations and floods
the target links through the traffic between the sources
and the destinations. This type of LFA is easier to enforce120

in reality because it only needs to continually probe the
public servers in the target area to construct the link map
without having strict requirements on the deployment of
bots like the Coremelt. Therefore, in this paper, we focus
on the Crossfire like LFA.125

Besides of the academic curiosity, LFA has already oc-
curred in the real world. The well-known technology blog-
gers (Ars Technica) have reported such attacks several
times, including attacking Internet exchanges on April
2nd, 2013 [9] and an email provider on November 10th,130

2015 [8].
LFA is completely different from the brute-force DDoS

attacks that aim to exhaust the resources of the end target
(e.g., computation, memory, or bandwidth). Instead, LFA
creates a large number of low-density attack flows crossing135

the targeted links to flood and virtually cut off them as
described in Figure 1.

Recent research [12] reveals that scalable LFA can be
feasible because of the ubiquitous routing bottlenecks.
Such bottlenecks are defined as the power-law distribu-140

tions of link occurrence in the paths of chosen destinations
and are caused by the shortest-path-first principle of the
current routing protocols.

Lei Xue et al. proposes a network measurement sys-
tem, called LinkScope[13], to capture abnormal path per-145

formance degradation for detecting LFA. This work is an
excellent way to detect the heavy congestion caused by
LFA, but it is required to deploy many additional probe
points. Moreover, this work does not consider the distri-
bution of all the congested links and lacks related counter-150

measures to mitigate or defend against LFA.

2.2. State-of-the-art Defense Strategies

To defend against LFA, [14] presents a scheme Codef
that uses collaborative rerouting and rate control strate-
gies to lead the adversary into a decision-making dilemma.155

Though this scheme is a good way to identify the malicious
traffic, it introduces a specialized server, named as router
controller, to maintain a routing control message in each

2

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

participating AS. This message manipulates a multi-path
routing policy in the network. Thus, this scheme is known160

to be harder and expensive to orchestrate and deploy. G.
Dimitrios also uses an SDN framework and similar mea-
sures to mitigate LFA, but its local rerouting approach is
also difficult to take effect in reality [15].

To improve the feasibility of Codef [14], the team pro-165

posed SPIFFY [16]. This improved scheme employs SDN
to perform a rate change test, where we temporarily in-
crease the effective bandwidth of the bottlenecked core
link and observe the response. It also games with the
attacker through the rate or the path selection. However,170

SPIFFY makes a strong assumption that the adversaries
who try to utilize the bots’ upstream bandwidth fully will
be detected. Since the throughput of attack traffic is un-
able to increase proportionally with bandwidth expansion.
Another assumption is that all attack flows must be TCP-175

based. Our scheme does not have these restrictions, and
we will show the threat model analysis and design deci-
sions in the following sections.

Similarly, [17] proposed a software-defined honeynet to
mitigate the LFA. This scheme leverages global network180

visibility of SDN to infer the potential honey nodes which
connect the honeynet. The scheme can increase the at-
tack cost by selecting the furthermost node from the honey
node as a final response node in order to force the attacker
to fully visit the honeynet topology. This scheme can be in-185

tegrated with ours as a defensive measure before the global
traffic engineering. However, in [17], this scheme is only a
preliminary idea, and it needs many details to be supple-
mented and improved.

LFADefender [18] also uses SDN framework to infer190

the possible target links. By monitoring these links, this
scheme uses traffic rerouting and malicious traffic blocking
to mitigate the LFA. Although the defense process of this
scheme is similar to ours, there are significant differences in
the specific implementation. Our scheme employs a probe-195

based method of locating the target links and design an
algorithm for attack judgment since we cannot consider all
link congestion is an LFA. Moreover, we use optimized TE
instead of rerouting the traffic in the target links.

2.3. DDoS Defense via SDN200

Software-defined networking (SDN) [19], which stems
from the project 4D[20] and Ethane[21], has gradually
moved from academic research to industrial deployment.
Separating the control plane from the data plane and log-
ically centralized control are its main features [22, 23].205

Moreover, OpenFlow [24, 25, 26], as the de facto standard
of SDN southbound protocol, supports rich and flexible
match fields and programmability, which make it easy to
implement fine-grained flow control [27, 28, 29]. Owing to
these features, SDN offers a promising approach to resolve210

security issues.

[30] proposes a neural network-based approach to de-
tect DDoS attack using SDN framework. This approach

extracts six critical features of traffic and employs an un-
supervised Self-Organizing Map (SOM) to classify the pat-215

tern of traffic. It is feasible for the traditional DDoS at-
tacks, but not for LFA. Because according to these selected
flow characteristics, the attack flows in LFA are almost the
same as the normal ones. Therefore, our work, which aims
at balancing all the traffic by TE to mitigate the effect of220

LFA, is orthogonal to the traditional DDoS defense work.
There are many other research works [31, 32, 33] fo-

cus on defending against tradition DDoS attacks. Among
them, an influential scheme is Bohatei [31], which steers
suspicious traffic through the defense VMs while minimiz-225

ing user-perceived latency and network congestion. It pro-
poses an adaptation strategy to handle dynamic adver-
saries that can change the DDoS attack mix over time,
and a proof-of-concept implementation to handle several
traditional DDoS attack types using industry-grade SD-230

N/NFV platforms. The premise of these schemes is to be
able to identify DDoS attack traffic, but this is very diffi-
cult for LFA. Our scheme is designed without the ability
to identify LFA attack traffic.

A realistic problem that we must consider is that it is235

risky and unrealistic to replace all the network infrastruc-
tures with SDN devices on a flag day due to diversity and
complexity of the network. Therefore, incremental deploy-
ment is required. Dan Levin et al. propose a feasible
scheme Panopticon [34] for incremental deployment, and240

show that the SDN benefits can extend over the entire
network.

In our scheme, traffic engineering via SDN is a primary
measure in our scheme. There are many related works on
traffic engineering in fully deployment SDN, such as B4245

[35] and SWAN [36]. They are both extremely solutions
for the traffic management across data centers in Google
and Microsoft respectively. [37, 38] also implement feasible
traffic engineering in the incremental SDN deployment sce-
nario, and they provide an excellent reference for our traf-250

fic engineering scheme. The difference is that these works
do not emphasize the selection of SDN nodes. While in
Woodpecker, we believe that an optimal selection of SDN
nodes is crucial for the maximization of network connec-
tivity. [39] shows that only 30% of the SDN nodes are255

deployed, the traffic engineering can obtain near-optimal
performance. In our scheme, our evaluation results also
show that even in a low deployment rate, Woodpecker can
mitigate LFA effectively.

3. Threat Model260

In this section, we describe a typical attack and defense
scenario of LFA in this paper and then formally summarize
the adversary’s goals and constraints.

3.1. Terminologies

To illustrate the threat mode clearly, we first define some265

terminologies in an attack and defense scenario of LFA
shown in Figure 2.

3

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

17

1

2

16

6

4 155

12

3

10

9 14

7 11

13

8
Source
node

Source
node

Destination
 node

SDN-enabled
node

SDN-enabled
node

Public
Server Destination

 node

Source
node

Source
node

Figure 2: A Typical Attack and Defense Scenario of LFA

Source node and destination node: The source node
is an ingress switch that connects to other networks, and
we color them in Figure 2 (e.g., s1, s7, s8). The destination270

node (dotted line in Figure 2 , e.g., s10, s12, s13) is the
node that connects to the public servers. We use S to
denote the set of source nodes and D to denote the set
of destination nodes. In this figure, the triangle denotes a
public server, which can be accessed by any user. Since the275

attack traffic is usually from the bots that are outside of
the target network, we assume that all attack flows come
from S and flow intoD to simplify the representation of the
flow behavior. That means the topology in our discussion
only consists of the switches and the links between them,280

and the internal traffic is considered as the background
traffic. Such assumption only shortens two hops of the
actual path and does not affect the flow behaviors in the
network. Therefore, it does not affect the correctness of
our design.285

Ordinary node and SDN-enabled node: The ordi-
nary node (circle in Figure 2, e.g., s1, s3, s5) is a tradi-
tional router or switch in the network, which speaks tra-
ditional protocols such as OSPF or IS-IS. We assume that
for each destination IP or subnetwork, the forwarding be-290

havior of an ordinary node will not change, that is, the
packet will forward to a fixed next hop. These nodes can
be upgraded into SDN-enabled nodes by supporting the
south-bound protocol(s). An SDN-enabled node can for-
ward packets to different neighbours even though these295

packets have the same destination IP since the packets
can match other fields (e.g., source IP address or VLAN
tag). These SDN-enabled nodes (square in Figure 2, e.g.,
s2, s7, s13), although controlled by a remote controller,
can communicate with the ordinary nodes according to300

the traditional protocols. Based on the information gath-
ered by the SDN-enabled nodes, the controller can get a
global view of the whole network.

LFA attack process: To launch an LFA, the adver-
sary is required to enforce three steps: (1) the adversary305

first detects the paths from bots to the public servers in or
around the target area and constructs a link map accord-
ingly. To obtain the paths precisely, the adversary uses
the traceroute tool multiple times. If a link that always

appears on the paths between a fixed bot-server pair, it310

will be considered as a persistent link and included in the
link map. (2) Some persistent links surrounding the tar-
get area are carefully chosen according to the flow density
distribution. The flow density of a link is defined as the
number of flows passing through between bots and decoy315

servers. (3) The adversary floods these selected links by
employing a large number of bots to send legitimate, low-
density flows to the selected public servers. In this way,
these congested links will severely degrade or even cut off
the network connections of the target area.320

3.2. System Assumptions

Threat model: There are two basic assumptions of the
threat model: (1) The adversary is rational and has limited
resources. That means the adversary expects to maximize
the damage to the network connections of the target area325

using as few resources as possible. (2) The network follows
a per-flow fair-share allocation of link bandwidth since this
mechanism is already widely applied in today’s Internet.
If the adversary sends faster than the fair-share rates, the
attack flows can be detected by other security mechanisms330

like [40]. Formally, the LFA adversary pursues three goals:
1) Degradation ratio maximization: Based on the

basic assumptions, we define rpre as the per-flow fair-share
for the flows between the source nodes and nodes of the tar-
get area under normal circumstances. Similarly, we define335

rattack as the per-flow fair-share under LFA. The degra-
dation ratio is defined as (rpre − rattack)/rpre. This index
shows the degree of decline in the communication of the
target area. The adversary would like to maximize the
minimum degradation ratio of nodes in the target area or340

maximize the degradation ratio of the entire target area.
To this end, the adversary must solve the generalized max-
imum coverage problem, which is a well-known NP-hard
problem. Instead of finding an exact solution, the adver-
sary usually uses an efficient heuristic algorithm, such as a345

greedy algorithm in [6]. Because we cannot know details of
the greedy algorithm, we cannot accurately determine the
attacker’s chosen links only based on the network topology.

2) Attack cost minimization: A rational adversary
will seek to minimize the cost of the attack. In this paper,350

we assume that the cost of the attack is proportional to
the number of bots necessary for the attack. According to
the research on the Pay-Per-Install (PPI) botnet markets
[41], bots in the US or the UK are most expensive and cost
$100-$180 per thousand bots, whereas bots in the rest of355

the world cost less than $10 per thousand bots. The survey
of [6] presents that the total cost of the Crossfire attack is
roughly $46K. That means the adversary will make full
use of the bots.

3) Attack persistence: To circumvent detection, the360

adversary uses legitimate, low-rate flows with real IP ad-
dresses. That means the attack flows have the same legit-
imate traffic patterns as the legitimate flows, and cannot
be distinguished from legitimate ones via traffic analysis
of headers/payloads at the target links. The adversary365

4

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

accesses the public server and gets the available services.
Whether the traffic is TCP or UDP actually is determined
by the service of the public servers, although TCP traf-
fic constitutes the majority (90% ∼ 98%) of the Internet
backbone traffic. Thus, in this paper, we do not specify370

the type of attack flows, which is different from the as-
sumption in [16].

Based on this threat model, we develop and evaluate
Woodpecker in the following sections.

4. Woodpecker Design Overview375

In this section, we present the overall design of Wood-
pecker. We discuss the high-level idea behind our scheme
and a rough introduction to the system design on how to
detect and mitigate the LFA.

4.1. Design Decision380

Employing legitimate, low-density flows to flood selected
links is the hallmark of LFA. Essentially, the attack flows
of LFA have no difference from normal flows, no matter in
the packet header or the payload. Therefore, identifying
the attack flows of LFA is a costly task, and it is likely to385

result in a high false positive rate.
Min Suk Kang and Virgil D. Gligor’s research reveals

that ubiquitous routing bottleneck of Today’s Internet is
the root cause of LFA [12]. This work shows that the
routing bottleneck is a fundamental property of Internet390

design; i.e., it is a consequence of route-cost minimizations.
Our scheme avoids this dilemma ingeniously and expects

to eliminate the routing bottlenecks. According to the
threat model, the rational adversary will carefully select a
group of links that can appear as much as possible in the395

communication paths of the target area. Moreover, the
adversary hopes that this group contains the least number
of links. To achieve this, we balance all traffic regardless of
whether it is likely to be malicious traffic. That means the
chosen links will not be the bottlenecks if there are enough400

feasible paths in the network to balance the traffic.
Additionally, due to the shortest-path-first principle

of current network protocols (e.g., OSPF and IS-IS), a
source-destination pair generally has only one path, i.e.,
the shortest one. This rigid routing principle decreases the405

connectivity of the network tremendously, and the connec-
tivity affects the number of routing bottlenecks.

Our scheme addresses these challenges through the de-
ployment of software-defined networks. Flows between
a source-destination node pair in SDN have many feasi-410

ble paths since these flows can select different matching
fields for forwarding in the SDN-enabled nodes. These
added feasible paths are used to balance the traffic. In our
scheme, we use the average and the minimum number of
paths between the source-destination node pairs to evalu-415

ate the ability of the network to balance traffic after SDN
deployment.

Another challenge is to determine whether LFA incurs
link congestion or not. Slow convergence of diagnosing

congested links as a failure is a critical vulnerability in420

the current Internet. The default time interval of “Hello”
packet in OSPF is 40 seconds and the average time for an
IGP router diagnosing the congestion as a failure is 217
seconds [42]. The adversary can even take full advantage
of this feature to attack another disjoint group of links425

dynamically[6]. In order to detect this attack quickly and
precisely, we need to locate the congestion link first and
obtain global congestion information. Taking into account
the principle of LFA, we need to consider all the congestion
in the network as a whole to analyze. The fast locating of430

the congested links and the analysis of the whole network
of congestion information both require programmability of
the data plane and logically centralized control. These fea-
tures are hard to achieve in the traditional network, but
the advantages of SDN. Considering the scalability issue-435

sour scheme uses an logically overlay SDN. That means the
data plane can also enforce the traditional routing proto-
cols independently. The controller only installs the high-
priority rules in the SDN-enables nodes to steer the traffic.

Although OpenFlow [24, 25, 26] is the de facto stan-440

dard of SDN southbound protocol, our scheme does not
depend on this specified protocol. The features of SDN
including global network view, flexible flow manipulation
and rich match fields are the fundamental of our scheme.
That means replacing OpenFlow to other southbound pro-445

tocol, such as Netconf and BGP-LS, will affect little on
the effectiveness of our scheme. Additionally, it is risky
and undesirable to replace all the network infrastructures
with SDN devices on a flag day. Therefore, support for
incremental deployment is required. That means both the450

attack detection and defense measures must consider the
case of incremental SDN deployment.

4.2. Framework of Woodpecker
In this subsection, we present the framework of Wood-

pecker and describe the process with pseudo-code in Al-455

gorithm 1. To illustrate the scenario clearly, we also show
an example of a network applying Woodpecker in Figure
3.

Public
Servers

Bots

Target Link

Target Area

Public
Servers

Controller

1)Node Upgrade

2)Locate the Congestion
3)Judge Attack Type
4)Traffic Engineering

Probe Packets

Alarm Packets

Source
 Node

Figure 3: An Example of a Network Applying Woodpecker

The first step of Woodpecker is the SDN deployment,
which is the prerequisite for our program. Considering the460

5

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

incremental deployment scenario, Woodpecker chooses a
generalized upgrade plan, i.e., choosing M ordinary nodes
to upgrade into SDN-enabled nodes while M ≤ N and N
represents the total number of all switches. Thus, the con-
troller can obtain the global network view and implement465

centralized control of the SDN-enabled nodes.

Woodpecker installs the rules of the corresponding mea-
surement indicators in the SDN-enabled nodes in advance.
When the congestion incurred, the corresponding rules will
be triggered, which can coordinate with the controller to470

quickly locate the congestion link. The congested link will
be included in the set Ec, and #(Ec) denotes the num-
ber of links in the set Ec. With the help of Ec and the
topology information of the network, the detection module
of Woodpecker can determine whether an LFA causes the475

current congestion.

Once an LFA is ascertained, the defense mechanism
based on a centralized traffic engineering will be enforced
to balance the attack flows. The controller calculates the
ratio of flow distribution on each path and then imple-480

ments the path reallocation of part of the flows by in-
stalling high-priority forwarding rules on the SDN-enabled
nodes.

After this step, Woodpecker repeats step 2 to obtain cur-
rent global congestion information and records them in E′c.485

The number of new congested link set (#(E′c)) is expected
to be less than β, ideally zero. The parameter β indicates
the critical number of the congested links that the network
can tolerate. However, if the LFA still exists, Woodpecker
will compare Ec and E′c and the new flows over the links490

of E′c to generate a blacklist. Woodpecker will drop some
packets according to the blacklist as an emergency mea-
sure. As Woodpecker aims to defend against the LFA, the
network will return to the initial configuration when no
LFA attack has been detected for a period.495

Algorithm 1 Framework of Woodpecker

1: Calculate the most appropriate nodes to upgrade into
SDN-enabled nodes, and get the upgrade nodes set
Update[M];

2: Locate the congested link ei between two SDN-enabled
switches. Put ei into the congested links set Ec;

3: bool result = JudgeAttack (G(V,E),Ec,S,D);
4: if result == true then
5: Enforce the centralized traffic engineering;
6: else
7: Use backup path or local reroute;
8: end if
9: Repeat 2, Get the new congestion link set E′c;

10: if #(E′c) > β then
11: Drop some packets according to the blacklist as an

emergency measure;
12: end if
13: After a period T, restore the initial network configu-

ration;

An observation is that the congested links caused by
LFA are impossible to be the links between the controller
and SDN-enabled devices. Thus, the communication be-
tween the controller and the SDN-enabled devices cannot
be broken. The reasons are as follows: 1) The adversary500

detects the same path multiple times to ensure the per-
sistent links, and the flow entry will set up after the first
probe. i.e., next time the packet will never be forwarded
to the controller. 2) In our scheme, the links between the
controller and SDN switches are required to be out of the505

band. Thus the links that are between the controller and
the switches are transparent for probe tools.

To implement our scheme, we are required to tackle a
number of challenging issues, including: 1) How to develop
an optimized SDN deployment solution when upgrading a510

limited number of nodes; 2) How to quickly and accurately
detect the LFA; 3) How to design a fast and effective traffic
balancing mechanism under the incremental SDN deploy-
ment. We will discuss the details in the following sections.

5. Optimal Upgrade Nodes Selection Policy515

As discussed in previous, Woodpecker is required to be
enforced through SDN deployment. We look forward to
the full deployment of SDN. However, the one-step SDN
upgrade of entire networks is practically impossible since
it poses an enormous operational burden, and also raises520

performance and security risks. Therefore, incremental
deployment is required. In this section, we will discuss a
more general problem, i.e., how to choose the most appro-
priate M ordinary nodes to be upgraded into SDN-enabled
nodes. This problem can be formally described as follows.525

Upgrade nodes selection problem: Given a network
(G,V,E), where V is the set of nodes, and E is the set of
edges. We assume that all the flows come from source
nodes S, and flow into destination nodes D. The problem
is choosing M nodes to upgrade to maximize the connec-530

tivity and controllability of the network. We can think
of a whole network SDN deployment as a special case of
M = #V

In this scenario, maximizing the controllability can be
transformed into finding a minimum vertex covering set535

problem. Vertex covering set of a graph means that each
edge of the graph has at least one node in the set. As a
result, each link contains at least one SDN-enabled node,
and all paths are controllable. For example, a node set {s2,
s3, s5, s7, s8, s9, s10, s13, s17 } is a vertex covering set of540

the graph shown in Figure 2. Moreover, in the network, we
should consider the direction of the flow. That means, for
a directed edge i→ j, the path can be selected only if the
node i is an SDN-enabled node. Thus, we need to upgrade
more nodes. In practice, the number of minimum vertex545

covering set is usually larger than the actual number of
selected nodes.

From Whitney’s theorem 1, we know that increasing the

1Whitney’s theorem is a derivation of Menger’s Theorem, which

6

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

minimum number of disjoint paths from node pairs equals
to increase the connectivity of the graph. Recalling the550

motivation of our SDN deployment, we expect to increase
more paths between S and D and make these paths avail-
able to balance the traffic. Based on this consideration,
the problem can be illustrated in Equation (1-4).

max Nmin (1)

s.t.

n∑

i=0

di ≤M (2)

1 +
∑

si∈V
di∆Pi,p,q = Np,q (3)

Nmin ≤ Np,q (4)

∀p ∈ S, ∀q ∈ D, di ∈ {0, 1}

We use Nmin to denote the minimum number of feasible555

(loop-free) paths among all the node pairs which come
from the source node set S and the destination node set D
respectively. The objective of this optimization problem
is to choose M nodes to upgrade, which can make Nmin

reach the maximum value. In constraint conditions, di is a560

boolean value, which indicates whether the node si will be
upgraded or not. ∆Pi,p,q denotes the number of increased
paths between the node sp and sq, when the node si is
upgraded into a SDN-enabled node. Sequently, we discuss
the algorithm complexity of this problem.565

Lemma 1. The upgrade nodes selection problem is an NP-
Complete Problem.

Proof. We can prove the complexity of the upgrade nodes
selection problem with the following steps [43, 44]:

Step 1 (Problem Transformation): Since this is an op-570

timization problem, there must exist an equivalent deci-
sion problem. This decision problem is such that given
a path number (NPathc), is there a solution satisfies all
of the constraints above, and the increased paths for each
source-destination pair are less than or equal to NPathc.575

Step 2 (NP problem proof): We assume that the num-
ber of nodes of the network is NG, i.e., #G = NG.
The solution of the decision problem is a boolean vector
(D = [di]NG

). The target function is a polynomial function
of the solution. Thus, we can verify whether the increase580

paths under the selection vector D are less than or equal
to NPathc or not in polynomial time. According to this
condition, we can conclude that the problem of upgrade
nodes selection is an NP problem.

Step 3 (NP-hard proof): To prove this problem is NP-585

hard, we show that the integer linear programming (ILP)

can be illustrated as: Let X and Y be disjoint sets of vertices in
a k-connected graph G. Let u(x) for x ∈ X, and w(y) for y ∈ Y
be nonnegative integers such that

∑
x∈X u(x) =

∑
y∈Y w(y) = k.

Then G has k pairwise internally disjoint X, Y-paths so that u(x) of
them start at x and w(y) of them end at y.

[45] ≤p the upgrade nodes selection problem, i.e., we need
to show how to reduce any an instance of the ILP to an
instance of the upgrade nodes selection problem in polyno-
mial time. We rewrite the formal expression of the upgrade590

nodes selection problem and get as follows:

max Nmin (5)

s.t.

n∑

i=0

di −M ≤ 0 (6)

−
∑

si∈V
di∆Pi,p,q +Nmin − 1 ≤ 0 (7)

∀p ∈ S, ∀q ∈ D, di ∈ {0, 1}

We find that our problem is a typical ILP, since both
the objective function and constraints are linear, and the
value of all variables can only take 0 or 1. The only com-
plicated problem is how to obtain the value ∆Pi,p,q. How-595

ever, if the solution is given, we can get all the feasible
paths between any source-destination pair. In this way,
we can also consider the ∆Pi,p,q as a constant value in the
decision problem. Therefore, any a valid solution in the
ILP can satisfy the upgrade nodes selection problem. This600

means that ILP can reduce to the upgrade nodes selection
problem in polynomial time. As ILP is a well-known NP-
hard problem [44], we can infer that the upgrade nodes
selection problem is also NP-hard.

Considering all the three steps, we can conclude that605

the upgrade nodes selection problem is NP-Complete.

We propose Algorithm 2, which is a heuristic algorithm,
to solve this NP-Complete problem. Two parameters are
used to measure the benefits of upgrading a certain node.
The first one is an array Coun fre[N] that records the610

number of occurrences of the nodes in all the paths be-
tween S and D. A matrix N PATH is constructed to
record the shortest path between each node pair based on
Dijkstra [46] algorithm, and this matrix can be traversed
to calculate the value of Coun fre[N]. This index demon-615

strates the importance of the node in all the possible paths
of attack flows. In other words, the bigger the value is, the
more paths this node (if upgrade) can affect. The other
index degree[i] shows the potential of a node for balancing
the traffic. That means if a node with a higher degree is620

upgraded, it may generate more paths. Then, the algo-
rithm normalizes these two indexes, and use a weighted
sum (Ben[i]) to indicate benefits of the whole node up-
grade operation. The parameter α1 and α2 indicate the
weight of Coun fre[i] and degree[i] respectively, and we625

set α1 = α2 = 0.5 in our scheme. In fact, the two param-
eters can be tuned according to the network topology and
the selection of source-destination node pairs. Finally, the
first M nodes are chosen to upgrade according to Ben.
The complexity of this algorithm is dominated by the Di-630

jkstra algorithm. Therefore, the upper bound of the time
complexity is O(nm + n2logn) if the Dijkstra algorithm

7

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

is implemented with the Fibonacci-Heap data structure.
The parameter n is the number of the vertexes and m is
the number of the edges in the network.635

We also take the scenario of Figure 2 as an example,
and set M = 5. We traverse all paths between any nodes
in the network and counter the occurrences between the
source nodes and destination nodes. For example, node
S14 appears in 9 of the 15 paths, and the degree is 4.640

According to algorithm 2, this node is the top 5 nodes in
the weighted sum vector (Ben) and should be upgraded
to SDN-enabled nodes.

After we choose the M ordinary nodes, we will replace
them with an SDN-enabled switch. We do not need to645

modify anything for ordinary nodes. Therefore, they speak
traditional protocols (e.g., OSPF or IS-IS) as usual. In the
SDN-enabled node, the controller will add serval perma-
nent flow entries (i.e., hard timeout = 0) to match the
protocol type of traditional protocols and set the action650

as “Forward to Controller”. When a packet from ordinary
nodes comes, it will match the flow entry that is set in ad-
vance, and be forwarded to the controller. Then controller
will calculate the route and add a new flow entry for this
flow using a new match field, such as some bits of MPLS.655

The packet will be forwarded to the specified port accord-
ing to the new match field. In other words, the operations
in SDN-enabled nodes are transparent to ordinary nodes.

Algorithm 2 Upgrade Node Selection Algorithm

Require: G(V,E),S,D
Ensure: Update[M]

1: initialize: Coun fre[N] = {0, 0, ...0}
2: for each node si ∈ V do
3: for each node sj ∈ V do
4: N PATH(i, j) = Dijkstra(i, j)
5: end for
6: end for
7: for each node sp ∈ S do
8: for each node sp ∈ D do
9: if node si ∈ N PATH(p,q) then

10: Coun fre[i] + +;
11: end if
12: end for
13: end for
14: for i = 0 To n− 1 do
15: Ben[i] = α1 ∗ Coun fre[i]/maxRecord + α2 ∗

Degree(i)/maxDegree
16: end for
17: Choose the largest M element from Ben[N] and put

them to Update[M]

6. Congestion Location and Attack Detection

In this section, we design an LFA detection module to660

quickly locate the congested links and judge whether the
congestion is caused by LFA.

2)
in
st
al
l
ru
le
s 1) alarm

3)probe hop by hop

4)
no
ti
fy
 c
on
tr
ol
le
r

Figure 4: Locate the Congested Link

6.1. Locate the Congested Links

So far, SDN does not have a standard congestion detec-
tion mechanism. Since SDN has a centralized controller665

and the built-in statistic collection features, we develop
a congested link location mechanism that combines path
analysis with hop-by-hop probing.

To achieve this, we install the predefined flow rules as
measurement triggers on each SDN-enabled node. When670

a packet comes to an SDN-enabled node, the related
packet or bit counter will be updated. This operation is a
standard function in the implementation of existing SDN
switches. Each SDN-enabled node will calculate the rate
of some specified flows based on the statistical informa-675

tion, and check whether they meet the predefined trigger
condition or not. As congestion caused by LFA aims at
cutting off the selected links and leading to a congestion
collapse event, the predefined condition is usually set as
the lower bound of traffic rate which depends on the link680

capacity and the maximal number of allowed concurrent
flows. We can also set the change of traffic rate as the
trigger condition. Although the flow rate that is measured
by polling the counters may not be accurate, a significant
reduction of this rate can indicate congestion efficiently.685

In this paper, we use the latter triggers.
When the flow activates the trigger, the SDN-enabled

node (e.g., s2) will send an alarm message to the controller.
The alarm message contains the switch dpid, the port rate
and the abnormal flow information. Based on the alarm690

information, we can infer the abnormal path which con-
tains the congested link. An import observation is that,
for the congested link, although the rate of the specified
flow declines significantly, the port rate is still nearing the
maximum value. Additionally, as the centralized control695

of SDN, the controller knows all the forwarding paths of
existing flows. With the help of global information from
the controller, the detection module can infer one or more
SDN-enabled node pairs, between which the severe con-
gestion is possible to occur.700

Then the detection module will implement the hop-by-
hop probe to locate the congested links, and we show the
process in Figure 4. For instance, the detection module
infers that there is likely to be congestion between two
SDN-enabled nodes, i.e., s1 and s2. First, it notifies the705

8

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

controller to add two flow entries(rules) in node s1. The
flow entry consists of six domains: match fields, priority,
counters, instructions, timeouts and cookies. The match
fields of the two entries both contain IP protocol, and the
value is 1 (“1” denotes the ICMP protocol). Additionally,710

in the first flow entry, destination IP is also included in
the match field as a supplementary, and the value is the IP
address of s2. Meanwhile, it sets the instruction as forward
to the port which connects to node s2. In the second flow
entry, the instructions domain is set as ”forward to the715

controller”. Then, this module makes the controller to
construct an ICMP packet whose destination IP is s2 and
TTL is 1, and send it to node s1 as a PACKET OUT
message. Instruction for the PACKET OUT message is
TABLE, which indicates that the switch should treat the720

packet as though it had been received on the input port.
We set a higher priority for the two flow entries. As a
result, the ICMP packet will match the first flow entry,
and be forwarded to s2. The ordinary nodes in a path will
treat this packet as a common ICMP packet, and echo the725

packet.
When the ICMP echo arrives, it will match the second

flow entry and be forwarded to the controller. If the reply
is an ICMP unreachable message, the controller can get
the location of the congested link according to the global730

topology. Otherwise, the controller will send a new ICMP
packet to s1 with the TTL domain plus 1 automatically.
We only need to send a limited number of ICMP packets to
locate the congestion because SDN-enabled nodes narrow
the probe space tremendously. A special case is that if the735

alarm node is the first SDN-enabled nodes in the path, it
will probe the congested link reversely. Finally, it collects
the source IP addresses of all the flows which pass the
congested links and record them. These IP addresses over
the congested links will be used to generate the blacklist,740

which will be described in details in Section 7.2.

6.2. Judge the Attack Type

Link failure is a common phenomenon in the current
network. Thus, we cannot take all congestion as LFA. To
make our design lightweight, the detection module car-745

ries out an algorithm to determine whether the network is
attacked by LFA. Recalling the threat model in section 3,
LFA is not only a link congestion problem but also a group
behavior of the congested links. Although the congestion
of a single link has no difference from normal congestion,750

Woodpecker will get all congested links and analyze the
damage of these congested links from a global view.

Cutting off the connectivity of the target area is the
ultimate goal of LFA. That means if all paths between
source nodes and the target area suffer congestion, the de-755

tection module can infer that the network is under the
LFA. The prerequisite for this detection is that we already
know the possible target areas in advance. These target
areas are generally the most import areas in the networks,
such as internet exchange, bank and other financial insti-760

tutions, leading enterprises or universities. In our scenario,

Algorithm 3 Attack Judgement Algorithm

Require: G(V,E), S, D, Ec, Tarea = [{si, si +
1}, . . . , {sk, . . . , sk+t}]

Ensure: Boolean isLFA
1: for each node si ∈ S do
2: for each node sj ∈ D do
3: Get the current path(s) in edge Path[i,j]
4: end for
5: end for
6: for each edge ei ∈ E do
7: if edge ei ∈ edge PATH(p,q) then
8: Record edge[i] + +;
9: end if

10: end for
11: if Ec cut off the connections of a target area in Tarea[i]

then
12: isLFA = true;
13: Return isLFA;
14: end if
15: Score =

∑#Ec

i=0 Record edge[Ec[i]]
16: if Score ≥ κ then
17: isLFA = true;
18: end if
19: Return isLFA;

we take the core routers or switches to indicate the target
area (Tarea).

In practice, the adversary may choose a part of the crit-
ical links and make them congesting. As a result, the765

communication of the target area will also be significantly
degraded. To detect this behavior, Algorithm 3 evaluates
the importance of all links in the whole network over cur-
rent flow paths. Then the algorithm calculates a score of
each congested links to show the occurrence of this link in770

all forwarding paths. To get the score of a link, all current
paths from S to D are recorded. These paths are repre-
sented as an edge list. The algorithm uses a hash table to
record the score of the link. If a link appears in a current
forwarding path, the score of the link will be added by 1.775

The scores of current congested links are accumulated to
check if it exceeds the upper bound value κ. The sym-
bol κ is an empirical value, which denotes the threshold
to distinguish LFA from normal congestions and depends
on the topology and forwarding paths. Since the number780

of edges in the network is m, the upper bound of current
forwarding path and the length of the path is less than m.
That means the time complexity of Algorithm 3 is O(m2).
A tighter bound is O(MCP), where MCP refers to the sum
of the number of edges contained in all current paths.785

We take a simple example to illustrate our attack judge-
ment algorithm in Figure 5. Through the fast congestion
detection mechanism, the controller can obtain the global
view of network congestion information. In our example,
there are five congested links (i.e., s8 ↔ s10, s9 ↔ s14,790

s11 ↔ s14, s13 ↔ s15, s13 ↔ s16) in the network. We

9

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

17

1

2

16

6

4 155

12

3

10

9 14

7 11

13

8

Target
Area

Congestion

Figure 5: LFA Judgement

can find that the five congested links just cut off all the
links between the target area and the source nodes. Thus,
we can infer that the network is under the attack of LFA.
Actually, even though part of these links (e.g., s8 ↔ s10,795

s11 ↔ s14, s13 ↔ s16) are congested, we can also deter-
mine the LFA is launched by the adversary since these
congested links get a higher score (Score = 11) than the
empirical value κ (κ = 10).

7. LFA Defense Measures800

7.1. Centralized traffic engineering

The key module of Woodpecker is a centralized traffic
engineering component that is implemented as an appli-
cation upon the controller platform. This module receives
the messages from the detection module and is activated805

when LFA is detected (i.e.,isLFA = ture). Link occur-
rence following a Zipf-Mandelbrot distribution in current
Internet causes the routing bottlenecks that are utilized
by LFA[12]. Therefore, the goal of our scheme is to bal-
ance the traffic on all links to eliminate the difference in810

the link utilization of the bottleneck links and other links.
To this end, we take up the centralized traffic engineering
with the help of the SDN-enabled nodes. We formalize
this problem as follows.

min θ (8)

s.t.
∑

p∈Pathi,j

fi,j,p = 1 (9)

ge +
∑

i∈S

∑

j∈D
δi,jp,eTi,jfi,j,p ≤ θce (10)

0 ≤ θ ≤ 1 (11)

∀i ∈ S,∀j ∈ D,∀e ∈ E

θ denotes the maximum utilization of a link, which is815

the optimization objective of this problem. Equation (9)
shows the constraint of path split ratio for every node pair
between S and D. We use p to present a feasible path (loop-
free) between a node pair, and Pathi,j to denote all the
feasible paths between node si to node sj . fi,j,p denotes820

the split ratio in the path p for the node pair. Inequation
(10) is the link capacity constraint. In this inequality, Ti,j

denotes all the controllable traffic between the node pair si
and sj . The controllable traffic means this traffic passes at
least one SDN-enabled node. δi,jp,e is a link path indicator825

for the node pair (si, sj), set to 1 if path p includes the
edge e, and set 0 for otherwise. Therefore, the expression
δi,jp,e ∗ Ti,j ∗ fi,j,p means the controllable traffic distributed
in the path p.

In this condition, ge denotes other traffic which passes830

the link e. Generally, ge contains two kinds of traffic. One
is the internal traffic that is generated by other nodes (not
nodes in S) or flows into other nodes (not nodes in D).
This traffic is considered as steady in this scenario. We can
measure this traffic and get the value based on a statistical835

method. The other kind of traffic is the uncontrollable
traffic that does not pass any SDN-enabled node on its
path. We can infer the traffic by the total traffic and the
controlled traffic. In practice, due to the upgraded node
selection algorithm in Section IV, the traffic is expected to840

pass at least one SDN-enabled switch. We can omit the
second kind of traffic, and set ge a statistical value based
on the first kind of traffic.

This optimization problem is linear programming, our
module solves this problem by the lib PuLP 2 and gets845

the split ratio of each path. The complexity of this linear
programming is polynomial time order. We also take the
approach in [47] to speed up our algorithm.

The split ratio we get from the linear programming is
the proportion of the traffic distributed on the entire path.850

It is required to calculate the split ratio for every port in
each switch and discretize this ratio. It is straightforward
that the ratio distributed in the last SDN-enabled switch
is equal to the ratio of the path. This module can calculate
the ratio from the last switch to the first one, and get the855

flow distribution for each port in every switch. Finally, the
module will notify the controller to refresh the flow entries
in the SDN-enabled nodes according to the distribution.

7.2. Supplementary Measure

In this section, we propose a supplementary measure860

in our Woodpecker scheme to handle the severe LFA in
the network when it is beyond the capacity of the net-
work. That means packet dropping is inevitable. Flows
in LFA are legitimate, low-density and with real source IP
addresses. Therefore, the adversary is probably to reuse865

many bots to generate the attack flows. Based on this anal-
ysis, we will drop the packets whose source IP address si-
multaneously appears in numerous congested links. First,
we use a dictionary to record all the source IP addresses
of the flows which pass the congested links at the step of870

“Locate the Congested Links” in Section V. Then we fetch
k IP addresses which have the largest value (frequency of

2 PuLP is a python lib for linear programming, which can support
the python language controller like Pox or Ryu to easily solve this
traffic engineering problem.

10

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

occurrence) in the dictionary to generate a blacklist. Fi-
nally, we drop the packets according to the sequence in the
blacklist, when packet dropping is inevitable.875

8. Evaluation

In this section, we run several groups of experiments
to demonstrate the effectiveness of Woodpecker, using the
real network topologies in table 1. These topologies come
from Rocketfuel [10]. Without loss of generality, we ran-880

domly choose two groups of nodes as the source node set S
and the destination node set D. In our system, the number
of the source node set S and destination node set D are
5%−10% of the total number of nodes in these topologies.

Table 1: Experiment Topologies

AS Number Nodes Edges Average Degree
AS 1 42 55 1.31

AS 174 45 78 1.73
AS 209 58 108 1.86
AS 577 29 33 1.14

AS 16631 22 32 1.45

8.1. Connectivity Improvement885

The first step of Woodpecker is to choose and upgrade
the optimal M nodes that can maximize the network con-
nectivity. This step is not online and needs to be deployed
in advance. We can evaluate the connectivity improve-
ment by comparing the change in the number of paths890

after upgrading the selected nodes. For showing clearly,
we define a new parameter upgrade rate τ = M/N . M is
the number of upgrade nodes, and N is the number of all
nodes in the network.

We use two indexes (min ASxx and avg ASxx) to895

demonstrate the effectiveness of Algorithm 1 in Figure 6
and Figure 7. The index min ASxx (e.g., min AS1) in-
dicates the minimum number of paths among all the S-D
node pairs in the certain AS, and the index avg ASxx in-
dicates the average number of the paths, i.e., avg ASxx =900 ∑

i∈S,j∈D pathi,j

(
∑

i∈S i∗∑j∈D j) . In our experiments, we limit the path

within 7 hops, otherwise the situation of path stretch will
be serious. We randomly change the source node set and
destination node set serval times (20 times in our experi-
ments), and get the average values for the two indexes.905

In our experiment, the two value are both 1 before the
node upgrade step, since the adversary only chooses the
persistent links, and we omit the ECMP paths. Despite
the different growth rate of these two indexes, it is clear
that the minimum number of paths among all the node910

pairs is 2− 5 after the node upgrade step and the average
number of paths varies from 10 to 1500 in different AS at
different upgrade rate. These new paths are the foundation
of our scheme, and they increase the connectivity of the
network prominently. Moreover, the results show that if915

we upgrade about 40% of nodes, the routing bottlenecks
can almost be eliminated, i.e., the adversary of LFA cannot
find appropriate target links. In other words, the difficulty
and cost of launching LFA will be significantly increased.

8.2. Attack Simulation and Detection920

In our simulation experiments, we use Mininet[48] to
construct the topologies, and Pox[49] as the controller.
Our simulation platform runs at a server of Huawei
RH2288 with the CPU of E5-2600 v2, the memory of 16GB
DDR3. We calculate the forwarding table for ordinary925

nodes and write the forwarding rules in the flow tables in
advance. Then, we create serval hosts (5 hosts for each
source and destination switches in our experiments) and
connect them to related switches. The hosts connected
to the source nodes are used for generating the traffic to930

simulate the traffic from bots and legitimate users. The
hosts connected to the destination nodes are used to simu-
late to the public servers. We use iperf tools as the traffic
sources and sinks, and generate both the background traf-
fic and attack traffic since both types of traffic have the935

same pattern. As far as we know, LFA has no public data
set. Hence, we simulate this attack according to the pa-
per [6], and flood a group of selective links to simulate
LFA. In our experiments, we set all hosts (both bots and
legitimate senders) to send 30 long-lived flows to flood the940

selected links. We do not simulate other internal traffic
since Mininet can set the bandwidth of links to show con-
sumption of the background traffic.

Woodpecker detects LFA based on SDN-enabled nodes.
The trigger rules are installed in advance to detect severe945

congestion. Then they cooperate with the controller to lo-
cate the congested links and judge whether this congestion
is caused by LFA. To evaluate the effectiveness of our LFA
detection module, we use three indexes, i.e., precision(P),
recall(R), and F1-Measure(F1):950

P =
TP

TP + FP

R =
TP

TP + FN

F1 =
2TP

2TP + FP + FN

Here TP means an abnormal event we recognize as con-
gestion that really was, and TN means an abnormal event
we recognize as not congestion, and really was not. Simi-
larly, FN indicates an abnormal event we recognize as not
congestion, though it really is, and FP indicates an ab-955

normal event we recognize as congestion, though it were
not. We list our results in table 2. The results show that
Woodpecker can detect severe congestion precisely, and
the recall and F1-measure are also beyond 96.5%.

In our scheme, after the detection module collects the960

global link congestion information, we use algorithm 3 to
determine whether the congestion is caused by LFA. To
evaluate the detection rate of our algorithm, we congest

11

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

TFigure 6: AS 1,577,16631 Figure 7: AS 174,209

0

0.2

0.4

0.6

0.8

1

1.2

AS 1 AS 174 AS 209 AS 577 AS 16631

P
re
ci
si
o
n
 R
at
e

AS number

Woodpecker Linkscope Baseline

Figure 8: Precision Rate

0

0.2

0.4

0.6

0.8

1

1.2

AS 1 AS 174 AS 209 AS 577 AS 16631

R
ec
al
lR
at
e

AS number

Woodpecker Linkscope Baseline

Figure 9: Recall Rate

Table 2: LFA Detection

AS Number P R F1
AS 1 96.88% 98.61% 97.74%

AS 174 96.88% 100% 98.41%
AS 209 93.94% 100% 96.88%
AS 577 100% 98.61% 99.30%

AS 16631 96.88% 100% 98.42%

the target links and other non-critical links and show the
results in figure 8 and figure 9. We compare our scheme965

with LinkScope [13] and the baseline method.
The baseline method is a naive detector method, and

it counts the number of severely congested links at the
same time. If this number exceeds 20% of all links, the
baseline method considers that LFA happens. LinkScope970

takes topology analysis to select the critical links and em-
ploys both the end-to-end and the hop-by-hop network
measurement techniques to capture abnormal path perfor-
mance degradation for detecting LFA and then correlate
the performance data and traceroute data to infer the tar-975

get links or areas. LinkScope has a very high detection rate
and false positive of less than 10%. However, it requires
the additional deployment of probes and cannot easily ad-
just the location of these probes. The results show that
our scheme has a similar precision rate and recall rate to980

LinkScope, and higher than the baseline method.

8.3. Evaluation of LFA Mitigation

The previous experiments show that when the upgrad-
ing rate reaches 40%, it can generate enough paths to bal-
ance the traffic. Therefore, we enforce our simulations at985

this upgrading rate and get the results in Figure 12. In our
simulation experiments, we simulate the LFA, and flood
the target links. The maximum link utilization in the tar-
get links is nearly 100% under LFA. After the controller
detects LFA, Woodpecker will enforce the global traffic en-990

gineering. The max utilization in the x-axis in Figure 12
indicates the maximum value of link utilization among all
the active links in the networks under different scenarios
(i.e., select different target links and different attack area)
and the y-axis show the related cumulative distribution995

function. The result shows that Woodpecker makes the
maximum link utilization at about 50% in most cases and
under 80% in all cases.

To verify the effectiveness of Woodpecker, we monitor
the communication quality of the target area. We use iperf1000

tools to send UDP packets from the hosts connected to
source nodes to the certain servers in the target area. We
compare the measurement results of the communication
under the condition of launching Woodpecker or not in
Figure 10—16. In our experiments, we use average loss1005

packet rate (LPR) and average jitter to indicate the quality
of the communication. The two indexes are defined as
follows:

12

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

0

0.2

0.4

0.6

0.8

1

1.2

AS 1 AS 174 AS 209 AS 577 AS 16631

A
ve
ra
ge
 L
o
ss
 P
ac
ke
t
R
at
e

AS number

no_Woodpecker Woodpecker_no_blacklist
Woodpecker_with_blacklist

Figure 10: Average Loss Packet Rate, upgrade rate = 30%

0

200

400

600

800

1000

1200

1400

1600

1800

2000

AS 1 AS 174 AS 209 AS 577 AS 16631

A
ve
ra
ge
 ji
tt
er
 (m

s)

AS number

no_Woodpecker Woodpecker_no_blacklist
Woodpecker_with_blacklist

Figure 11: Average Jitter, upgrade rate = 30%

Figure 12: CDF of Max Link Utilization

LPR =
send packets− receive packets

send packets

jitter =
(rt(j)− st(j))− (rt(i)− st(i))

j − i

In the definition of jitter, rt(i) means the receive time
of packet i, and st(i) means the send time. The index jit-1010

ter describes the variation of the end to end delay. The
results show that when the networks are under LFA, the
loss packet rate and the jitter are both in high values and
they reach normal values after Woodpecker takes effect.
We show the average value of the two indexes with the up-1015

grade rate between 30% and 50% in Figure 10—16. In our
simulation experiments, Woodpecker (without blacklist) is
good enough for mitigating LFA. Besides, we also evaluate
the emergency measure (Woodpecker with blacklist). The
results show that the blacklist only slightly degrades the1020

two indexes, that means this step is just suitable to be a
backup method as we expected.

Since the upgrade nodes selection operation is offline,
the evaluation of the react time of Woodpecker does not
include this operation. We infer the system execution time1025

by observing changes in link metrics (loss of packets and
jitter). While the detection time is obtained from the

timestamp of delivering the traffic engineering related rules
minus the timestamp of the packet of the first alarm. The
results are shown in Table 3. The second column (ADT)1030

indicates the average detection time, and the last column
(AET) means the average system execution time. The re-
sults mean Woodpecker can significantly mitigate LFA in
5 seconds in most cases, and traffic engineering measure
consumes most of the time in the whole defense process.1035

Table 3: Enforce Time of Woodpecker

AS Number ADT (ms) AET (ms)
AS 1 321 1669

AS 174 1773 4428
AS 209 2341 5086
AS 577 775 2509

AS 16631 924 2776

9. Conclusion and Future Work

In this paper, we propose Woodpecker to mitigate a new
kind of DDoS attack—LFA. This scheme uses a heuristic
algorithm to select a group of switches to upgrade into
SDN-enabled switches. With the help of global view and1040

data plane triggers, Woodpecker can fast locate the con-
gestion and determine whether LFA causes the congestion
through the global congestion information. To mitigate
the LFA, Woodpecker enforces global traffic engineering
to eliminate the bottleneck links. We evaluate the effec-1045

tiveness of our scheme with the real topologies and get
inspiring results.

In our future work, we will migrate Woodpecker to a
hardware testbed with an industrial-level controller, and
evaluate the suitability of our system in real life. Moreover,1050

we will increase the versatility of the system to handle
more types of DDoS attacks.

Acknowledgment

The research is supported by the National Natural
Science Foundation of China under Grant 61625203,1055

13

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

0

0.2

0.4

0.6

0.8

1

1.2

AS 1 AS 174 AS 209 AS 577 AS 16631

A
ve
ra
ge
 L
o
ss
 P
ac
ke
t
R
at
e

AS number

no_Woodpecker Woodpecker_no_blacklist
Woodpecker_with_blacklist

Figure 13: Average Loss Packet Rate, upgrade rate = 40%

0

200

400

600

800

1000

1200

1400

1600

1800

2000

AS 1 AS 174 AS 209 AS 577 AS 16631

A
ve
ra
ge
 ji
tt
er
 (
m
s)

AS number

no_Woodpecker Woodpecker_no_blacklist
Woodpecker_with_blacklist

Figure 14: Average Jitter, upgrade rate = 40%

0

0.2

0.4

0.6

0.8

1

1.2

AS 1 AS 174 AS 209 AS 577 AS 16631

A
ve
ra
ge
 L
o
ss
 P
ac
ke
t
R
at
e

AS number

no_Woodpecker Woodpecker_no_blacklist
Woodpecker_with_blacklist

Figure 15: Average Loss Packet Rate, upgrade rate = 50%

0

200

400

600

800

1000

1200

1400

1600

1800

2000

AS 1 AS 174 AS 209 AS 577 AS 16631

A
ve
ra
ge
 ji
tt
er
 (m

s)

AS number

no_Woodpecker Woodpecker_no_blacklist
Woodpecker_with_blacklist

Figure 16: Average Jitter, upgrade rate = 50%

the National Key R&D Program of China un-
der Grant 2016YFC0901605, the R&D Program of
Shenzhen under Grant JCYJ20170307153157440 and
JCYJ20160531174259309.

References1060

[1] C. L. Schuba, I. V. Krsul, M. G. Kuhn, E. H. Spafford, A. Sun-
daram, D. Zamboni, Analysis of a denial of service attack on
tcp, in: Proceedings of IEEE Security&Privacy, Oakland, USA,
1997.

[2] M. Kührer, T. Hupperich, C. Rossow, T. Holz, Exit from hell?1065

reducing the impact of amplification ddos attacks, in: Proceed-
ings of USENIX Security, SAN DIEGO, USA, 2014.

[3] J. Ioannidis, S. M. Bellovin, Implementing pushback: Router-
based defense against ddos attacks, in: Proceedings of USENIX
NDSS, San Diego, USA, 2002.1070

[4] F. Baker, P. Savola, Ingress filtering for multihomed networks,
IETF RFC (2004).

[5] Y. Kim, W. C. Lau, M. C. Chuah, H. J. Chao, Packetscore:
Statistics-based overload control against distributed denial-of-
service attacks, in: Proceedings of IEEE INFOCOM, Hong1075

Kong, China, 2004.
[6] M. S. Kang, S. B. Lee, V. D. Gligor, The crossfire attack, in:

Proceedings of IEEE Security&Privacy, Oakland, USA, 2013.
[7] A. P. Ahren Studer, The coremelt attack, in: Proceedings of

Springer-Verlag ESORICS, Berlin, Heidelberg, 2009.1080

[8] D. GOODIN, How extorted e-mail provider got back online after
crippling ddos attack, Technica, Ars (2015).

[9] P. Bright, Can a ddos break the internet? sure just not all of
it, Technica, Ars (2013).

[10] R. Teixeira, K. Marzullo, S. Savage, G. M. Voelker, Character-1085

izing and measuring path diversity of internet topologies, in:
Proceedings of ACM SIGMETRICS, San Diego, USA, 2003.

[11] L. Wang, Q. Li, Y. Jiang, J. Wu, Towards mitigating link flood-
ing attack via incremental sdn deployment, in: Proceedings of
IEEE ISCC, Messina, Italy, 2016.1090

[12] M. S. Kang, V. D. Gligor, Routing bottlenecks in the internet:
Causes, exploits, and countermeasures, in: Proceedings of the
2014 ACM SIGSAC CCS, Scottsdale, USA, 2014.

[13] L. Xue, X. Luo, E. W. Chan, X. Zhan, Towards detecting target
link flooding attack, in: Proceedings of USENIX LISA, Seattle,1095

USA, 2014.
[14] S. B. Lee, M. S. Kang, V. D. Gligor, Codef: collaborative de-

fense against large-scale link-flooding attacks, in: Proceedings
of ACM CoNext, Santa Barbara, USA, 2013.

[15] G. Dimitrios, Cross-domain dos link-flooding attack detec-1100

tion and mitigation using sdn principles, Master’s thesis, ETH
Zurich (2014).

[16] M. S. Kang, V. D. Gligor, V. Sekar, Spiffy: Inducing cost-
detectability tradeoffs for persistent link-flooding attacks, in:
Proceedings of USENIX NDSS, San Diego, USA, 2016.1105

[17] J. Kim, S. Shin, Software-defined honeynet: Towards mitigat-
ing link flooding attacks, in: Proceedings of IEEE/IFIP DSN
Workshop, Denver,CO,USA, 2017.

[18] J. Wang, R. Wen, J. Li, F. Yan, B. Zhao, F. Yu, Detecting and
mitigating target link-flooding attacks using sdn, IEEE Trans-1110

actions on Dependable and Secure Computing (1) (2018) 1–1.
[19] W. Xia, Y. Wen, C. Foh, D. Niyato, H. Xie, A survey on

software-defined networking, IEEE Communications Surveys
Tutorials 17 (1) (2015) 27–51.

[20] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rex-1115

ford, G. Xie, H. Yan, J. Zhan, H. Zhang, A clean slate 4d ap-

14

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

proach to network control and management, in: Proceedings of
ACM SIGCOMM, Philadelphia, USA, 2005.

[21] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown,
S. Shenker, Ethane: taking control of the enterprise, in: Pro-1120

ceedings of ACM SIGCOMM, Kyoto, Japan, 2007.
[22] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,

L. Peterson, J. Rexford, S. Shenker, J. Turner, Openflow: en-
abling innovation in campus networks, ACM SIGCOMM Com-
puter Comm. Rev. 38 (2) (2008) 69–74.1125

[23] N. Feamster, H. Balakrishnan, J. Rexford, A. Shaikh, J. Van
Der Merwe, The case for separating routing from routers, in:
Proceedings of ACM SIGCOMM FDNA, Portland, USA, 2004.

[24] O. S. Specification, Version 1.0. 0 (wire protocol 0x01), Open
Networking Foundation 1.1130

[25] O. S. Specification, Version 1.3. 0 (wire protocol 0x04)[electronic
resource], Open Networking Foundation 1.

[26] O. S. Specification, Version 1.5. 1 (wire protocol 0x04)[electronic
resource], Open Networking Foundation 1.

[27] Z. Guo, S. Hui, Y. Xu, H. J. Chao, Dynamic flow schedul-1135

ing for power-efficient data center networks, in: Proceedings of
IEEE/ACM IWQoS, Beijing, China, 2016.

[28] M. Bredel, Z. Bozakov, A. Barczyk, H. Newman, Flow-based
load balancing in multipathed layer-2 networks using Open-
Flow and multipath-TCP, in: Proceeding of ACM SIGCOMM1140

HotSDN, Chicago, USA, 2014.
[29] Q. Li, Y. Jiang, P. Duan, M. Xu, X. Xiao, Quokka: Latency-

aware middlebox scheduling with dynamic resource allocation,
Journal of Network and Computer Applications 78 (2017) 253–
266.1145

[30] R. Braga, E. Mota, A. Passito, Lightweight ddos flooding attack
detection using nox/openflow, in: Proceedings of IEEE LCN,
Colorado, USA, 2010.

[31] S. K. Fayaz, Y. Tobioka, V. Sekar, M. Bailey, Bohatei: Flexible
and elastic ddos defense., in: Proceedings of Usenix Security,1150

Washington, D.C., USA, 2015.
[32] L. Dridi, M. F. Zhani, A holistic approach to mitigating dos

attacks in sdn networks, International Journal of Network Man-
agement 28 (1) (2018) e1996.

[33] L. Zhou, H. Guo, Applying nfv/sdn in mitigating ddos attacks,1155

in: Proceedings of IEEE TENCON, Penang, Malaysia, 2017.
[34] D. Levin, M. Canini, S. Schmid, F. Schaffert, A. Feldmann,

et al., Panopticon: Reaping the benefits of incremental sdn de-
ployment in enterprise networks, in: Proceedings of USENIX
ATC, Philadelphia, USA, 2014.1160

[35] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, et al., B4: Expe-
rience with a globally-deployed software defined wan, in: Pro-
ceedings of ACM SIGCOMM, Hong Kong, China, 2013.

[36] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill,1165

M. Nanduri, R. Wattenhofer, Achieving high utilization with
software-driven wan, in: Proceedings of ACM SIGCOMM,
Hong Kong, China, 2013.

[37] S. Agarwal, M. Kodialam, T. Lakshman, Traffic engineering in
software defined networks, in: Proceedings IEEE INFOCOM,1170

San Francisco, USA, 2013.
[38] M. Caria, T. Das, A. Jukan, M. Hoffmann, Divide and

conquer: Partitioning ospf networks with sdn, Tech. Rep.
arXiv:1410.5626, TU Braunschweig (2014).
URL http://arxiv.org/abs/1410.56261175

[39] Y. Guo, Z. Wang, X. Yin, X. Shi, J. Wu, Traffic engineering in
hybrid sdn networks with multiple traffic matrices, Computer
Networks 126 (2017) 187–199.

[40] R. Krishnan, M. Durrani, P. Phaal, Real-time sdn analytics for
ddos mitigation, Open Networking Summit.1180

[41] J. Caballero, C. Grier, C. Kreibich, V. Paxson, Measuring pay-
per-install: The commoditization of malware distribution, in:
Proceedings of USENIX Security, San Francisco, CA, 2011.

[42] A. Shaikh, A. Varma, L. Kalampoukas, R. Dube, Routing sta-
bility in congested networks: Experimentation and analysis, in:1185

Proceedings of ACM SIGCOMM, Stockholm, Sweden, 2000.
[43] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Intro-

duction to algorithms, MIT press, 2009.
[44] C. H. Papadimitriou, K. Steiglitz, Combinatorial optimization:

algorithms and complexity, Courier Corporation, 1998.1190

[45] B. Korte, J. Vygen, Combinatorial optimization: Theory and
algorithms, algorithms and combinatorics 2 (2000) (2006).

[46] E. W. Dijkstra, A note on two problems in connexion with
graphs, Numerische mathematik 1 (1) (1959) 269–271.

[47] E. Danna, S. Mandal, A. Singh, A practical algorithm for bal-1195

ancing the max-min fairness and throughput objectives in traf-
fic engineering, in: Proceedings of IEEE INFOCOM, Orlando,
USA, 2012.

[48] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, N. McKeown,
Reproducible network experiments using container-based emu-1200

lation, in: Proceedings of ACM CoNEXT, Nice, France, 2012,
pp. 253–264.

[49] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McK-
eown, S. Shenker, Nox: towards an operating system for net-
works, ACM SIGCOMM Comput. Commun. Rev. 38 (3) (2008)1205

105–110.

15

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Lei Wang received the B.S. degree(2009) from
Huazhong University of Science and Technology, Wuhan,
China, M.S. degree(2013) from Beijing University of Tech-1210

nology, Beijing, China. He is now a Ph.D. candidate in
Graduate at Shenzhen, Tsinghua University, Shenzhen,
China. His research interests include Software Defined
Networking, Network Function Virtualization and network
security.1215

Qing Li received the B.S. degree (2008) from Dalian
University of Technology, Dalian, China, the Ph.D. de-
gree (2013) from Tsinghua University, Beijing, China; all
in computer science and technology. He was an assistant1220

researcher in the Graduate School at Shenzhen, Tsinghua
University between 2013 2018. He is now an associate pro-
fessor at the Southern University of Science and Technol-
ogy, China His research interests include reliable and scal-
able routing of the Internet, Software Defined Networks1225

and Information Centric Networks.

Yong Jiang received his M.S. and Ph.D. degrees in
computer science from Tsinghua University, Beijing, P.R.
China, in 1998 and 2002, respectively. Since 2002, he has1230

been with the Graduate School of Shenzhen of Tsinghua
University, Guangdong, China, where he is currently a pro-
fessor. His research interests include Internet architecture
and its protocols, IP routing technology, etc.

1235

Xuya Jia received his B.S. degree(2014) in Software en-
gineering from Northeast Normal University, Changchun,
P.R. China. He is currently working toward his Ph.D. de-
gree with the Department of Computer Science and Tech-
nology, Tsinghua University, P.R. China. His current re-1240

search focuses on Software Defined Networking, fault pro-
tection and traffic engineering.

Jianping Wu (Academician of Chinese Academy of En-
gineering, IEEE fellow): Jianping Wu received the M.S.1245

degree (1982) and Ph.D. degree(1997) in computer sci-
ence from Tsinghua University, Beijing, China. He is now
a Full Professor with the Computer Science Department,
Tsinghua University. In the research areas of the network
architecture, high performance routing and switching, pro-1250

tocol testing, and formal methods, he has published more
than 200 technical papers in academic journals and pro-
ceedings of international conferences.

16

