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Abstract

This research proposes a new ranking system for extreme efficient DMUs (Decision Making Units) based upon the
omission of these efficient DMUs from reference set of the inefficient DMUs. We state and prove some facts related to
our model. A numerical example where the proposed method is compared with traditional ranking approaches is shown.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

One of the main objectives of DEA (Data Envel-
opment Analysis) is to measure the efficiency of a
DMU (Decision Making Unit, e.g. school, public
agencies and banks). One of the ways for determining
efficiency score of DMUs is to apply the Charnes,
Cooper, Rhodes (CCR) model [1] that deals with a
ratio of multiple outputs and inputs. One of the inter-
esting research subjects is to discriminate between effi-
cient DMUs. Several authors have proposed methods
for ranking the best performers ([2–7] among others).
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For a review of ranking methods, readers are refereed
to Adler et al. [8]. In some cases, the models purposed
by [3,6] can be infeasible. In addition to this difficulty,
the Andersen and Petersen [3] model may be unstable
because of extreme sensitivity to small variations in
the data when some DMUs have relatively small val-
ues for some of their inputs.

The objective of this work is to propose a new
ranking system for extreme efficient DMUs based
on the work of Hibiki and Sueyoshi [2]. Our approach
does not have the difficulties arising from Andersen
and Petersen [3] and Mehrabian et al. [6] models.
The main methodological difference of our model in
relation to the one of Hibiki and Sueyoshi [2] is that
while their approach suggests a measure of efficiency
for extreme efficient DMU named DSS (DEA self-
sensitivity) which is not dependent of the inefficient
DMUs, our methodology proposes a measure that
is totally dependent of the inefficient DMUs.
.
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This paper is organized as follows. Section 2
briefly introduces the background of DEA. Section
3 introduces our proposal and states and proves
some facts related to properties and characteristics
of it. A numerical example is given in Section 4
and Section 5 comprehends our conclusions.

2. DEA background

The most basic DEA model is the CCR, which
was proposed by Charnes et al. [1] in 1978. The
basic idea of the CCR model is the following: the
efficiency of an observed DMU, which is the organi-
zation to be evaluated, can be measured by the ratio
output per input, i.e., how well a DMU can convert
its inputs into its outputs. As we usually work in sit-
uations where we face multiples inputs and outputs,
we are going to form a unique virtual output and a
unique virtual input, for the observed DMUp, by
the yet unknown weights vi and ur. By using linear
programming (LP), we can find the weights that
maximize the ratio output per input through the
model:

max
Xs

r¼1

uryrp

s:t:
Xs

r¼1

uryrj �
Xm

i¼1

vixij 6 0; j ¼ 1; . . . ; n;

Xm

i¼1

vixip ¼ 1;

ur P e; r ¼ 1; . . . ; s;

vi P e; i ¼ 1; . . . ;m;

ð1Þ

where xij is the data of the input i on the DMUj, yrj is
the data of the output r on the DMUj, vi is the weight
of the input i and ur is the weight of the output r.

The dual form of Eq. (1) is:

min l ¼ h� e
Xm

i¼1

s�i þ
Xs

r¼1

sþr

 !

s:t:
Xn

j¼1

kjxij þ s�i ¼ hxip; i ¼ 1; . . . ; m;

Xn

j¼1

kjyrj � sþr ¼ yrp; r ¼ 1; . . . ; s;

kj P 0; j ¼ 1; . . . ; n;

s�i P 0; i ¼ 1; . . . ;m;

sþr P 0; r ¼ 1; . . . ; s;

h free;

ð2Þ
where l is the efficiency measure and e is a non-
Archimedean small and positive number so that
the Eq. (1) is feasible and, consequently, objective
function of (2) is bounded.

We know that DMUp is CCR-efficient if in Eq.
(2) h* = 1, s�* = 0 and s+* = 0, otherwise DMUp

is CCR-inefficient. In order to determine the CCR-
efficient DMUs, the DEA computer code can use
a two-phase LP problem, which may be formalized
as follows:

• Phase 1 solves h* = min h subject to (2).
• Phase 2 incorporates this value h* instead of h in

(2) with a new objective function: max
Pm

i¼1s�i þ
�Ps

r¼1sþr g.

For further details in DEA solving procedures
readers are referred to [9].

It is important to note that DMUp is extreme
efficient if and only if Eq. (2) has unique optimal
solution:

ðk�p ¼ 1; k�j ¼ 0; j ¼ 1; . . . ; p � 1; p þ 1; . . . ; n;

sþ ¼ 0; s� ¼ 0Þ:
The proposal of Hibiki and Sueyoshi [2] known

as DEA cross-reference (DCR) is the following:

min h�
Xm

i¼1

t�i
R�i

! ,
m�

Xk

r¼1

tþi
Rþr

! ,
s

s:t: �
X

j2J�fbg
xijkj þ hxia � t�i ¼ 0; i ¼ 1; . . . ;m;

X
j2J�fbg

yrjkj � tþr ¼ yra; r ¼ 1; . . . ; s;

X
j2J�fbg

kj ¼ 1;

kj P 0; j 2 J � fbg;
tþr P 0; r ¼ 1; . . . ; s;

t�i P 0; i ¼ 1; . . . ;m;

h P 0; ð3Þ

where R�i ¼ max16j6nfxijg, i = 1, . . . ,m, Rþr ¼
max16j6nfyrjg, r = 1, . . . , s and J = {1,2, . . . ,n}.

In fact, the above model measures the efficiency
score of DMUa under the condition that j 2 J � {b}
(i.e., the DMUb is excluded from the reference set of

DMUa). Here q�a;b ¼ h� � 1
m

Pm
i¼1

t��i
R�i
� 1

s

Ps
r¼1

tþ�i
Rþr

at
optimality indicates the objective function value.

If in (3) {a} = {b} then q�a;b equals to the
extended DEA measure (EDM) proposed by
Andersen and Petersen [3].
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The DSS model ranks the BCC extreme efficient’s
DMUs through:

D�a;a ¼ q�a;a � g�a; ð4Þ

where g�a is the BCC efficiency of DMUa.

3. Our proposal

A DMU that is strong efficient by CCR or BBC
models will be denoted by SE (Strong Efficient).

We noted that by applying the formulation (3),
the original efficient frontier will change iif DMUb

is SE and this new efficient frontier (without DMUb)
gets closer to the inefficient DMUs (even changing
some of these inefficient DMUs to efficient).

The main idea of our proposal is the following:
the SE DMU that when excluded from the reference
set of all the other DMUs allows the efficient fron-
tier to be closest in relation to the inefficient DMUs
should be the most efficient SE DMU. This idea is
exemplified in Fig. 1, where the efficient frontier of
the data presented by page 53 of [9] is plotted.

It seems to us that the original idea that moti-
vated Charnes, Cooper and Rhodes in creating the
DEA (an envelop that surrounds the data) is pre-
served in our approach. As in the classical DEA
models the DMUs that belongs to this ‘‘envelop’’
are the best performers, it looks like that among
Fig. 1. Main idea of the
them, the one that influences the efficient frontier
to get farther in relation to the remaining data
should be classified as the best one.

Analyzing the Fig. 1, it is evident that among the
SE DMUs (DMU5, DMU4 and DMU3), the one
that makes the original efficient frontier to get far-
ther from the inefficient DMUs is the DMU5. Con-
sequently, the DMU5 is classified as the most
efficient SE DMU.

In order to perform our approach, the non-SE

DMUs should be re-evaluated through:

min oa;b ¼ h� e
Xm

i¼1

s�i þ
Xs

r¼1

sþr

 !

s:t: �
X

j2J�fbg
kjxij þ hxia � s�i ¼ 0; i ¼ 1; . . . ;m;

X
j2J�fbg

kjyrj � sþr ¼ yra; r ¼ 1; . . . ; s;

kj P 0; j 2 J � fbg;
sþr P 0; r ¼ 1; . . . ; s;

s�i P 0; i ¼ 1; . . . ;m;

h free;

ð5Þ

where J = {1,2, . . . ,n}, a 2 Jn, b 2 Je, Jn is the set of
non-SE DMUs and Je is the set of SE DMUs.
proposed method.
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After calculating the efficiency measure o for all
the non-SE DMUs, the efficiency of SE DMUs will
be denoted by X and will be given by

Xb ¼
P

a2Jn
oa;b

~n
; ð6Þ

where b is the evaluated SE DMU and ~n is the num-
ber of non-SE DMUs.

The dual form of Eq. (5) is as follows:

max
Xs

r¼1

uryra

s:t: �
Xm

i¼1

vixij þ
Xs

r¼1

uryrj 6 0; j 2 J � fbg;

Xm

i¼1

vixia ¼ 1;

ur P e; r ¼ 1; . . . ; s;

vi P e; i ¼ 1; . . . ;m:

ð7Þ

3.1. Theorems

We state and prove some facts related to proper-
ties and characteristics of model (5).

Theorem 1. For each DMUb: o�a;b P l�a.

Proof. The feasible space of (2) is a subset of the
feasible space of (5), therefore the optimal objective
function value of (5) is greater or equals the optimal
function value of (2) and by utilizing the fundamen-
tal theorem of duality implies:

o�a;b P l�a: �

Theorem 2. If a 5 b then (5) is feasible.

Proof. The following solution is feasible for (5):

ka ¼ 1; kj ¼ 0; j 6¼ a; h ¼ 0; sþr ¼ 0;

r ¼ 1; . . . ; s; s�i ¼ xia; i ¼ 1; . . . ;m: �

Theorem 3. o�a;b ¼ l�a if and only if there is an optimal

solution for Eq. (2) so that k�b ¼ 0.

Proof. Let (h*,K*,S+*,S�*) be the optimal solution
for Eq. (2) in which K� ¼ ðk�1; . . . ; k�b�1; k

�
b;

k�bþ1; . . . ; k�nÞ and k�b ¼ 0. Since k�b ¼ 0, K* is a feasi-
ble solution for Eq. (5) therefore o�a;b 6 l�a and by
Theorem 1 o�a;b P l�a, consequently, we have that
o�a;b ¼ l�a. Conversely, suppose that o�a;b ¼ l�a. We
will show that there is an optimal solution for Eq.
(2) with k�b ¼ 0. Let ð�h; �k1; . . . ; �kb�1; �kbþ1; . . . ; �kn;
t��1 ; . . . ; t��m ; tþ�1 ; . . . ; tþ�s Þ be an optimal solution for
Eq. (5), obvious that ð�h; �k1; . . . ; �kb�1; �kbð¼ 0Þ;
�kbþ1; . . . ; �kn; t��1 ; . . . ; t��m ; tþ�1 ; . . . ; tþ�s Þ is feasible solu-
tion for Eq. (2) and o�a;b ¼ �la, where �la is objective
function value of Eq. (2) in the last solution. From
hypothesis of theorem we have that �la ¼ l�a there-
fore the latter solution is optimal for Eq. (2). This
completes the proof. h
Theorem 4. If a 5 b then 0 < o
�
a;b 6 1.

Proof. In Eq. (7) we have �
Pm

i¼1vixia þ
Ps

r¼1uryra 6

0,
Pm

i¼1vixia ¼ 1 and ur P 0 therefore 0 <Ps
r¼1u�r yra 6 1 at optimality. The fundamental theo-

rem of duality implies that 0 < o�a;b 6 1. h

Theorem 5. If a = b and DMUa is CCR-efficient

then o
�
a;b P 1.

Proof. Since DMUa is CCR-efficient ðl�a ¼ 1Þ then
by Theorem 1: o�a;a P l�a ¼ 1. h

Theorem 6. If DMUa is CCR-inefficient and DMUb

does not belong to the reference set of DMUa then

o
�
a;b ¼ l�a.
Proof. Since DMUb does not belong to the refer-
ence set of DMUa thus k�b ¼ 0 (for each optimal
solutions of (2)). Therefore each optimal solution
of (2) is corresponding to feasible solution of (5).
By omitting k�b from feasible solutions of (2) results
o
�
a;b 6 l�a. Now by Theorem 1: o

�
a;b ¼ l�a. h

Theorem 7. If DMUb is inefficient in model (2) then

o�a;b ¼ l�a for each DMUa.

Proof. We consider two cases:
Case 1: DMUb is at the interior PPS (Production
Possibility Set). In this case k�b ¼ 0 in every
optimal solutions of (2). Therefore by
removing kb in all optimal feasible solutions
of (2) we have a feasible solution for (5)
consequently o

�
a;b 6 l�a. From Theorem 1

the result is obvious.
Case 2: DMUb is on the weak frontier. In this case

the constraint corresponding to DMUb is
redundant and elimination of DMUb does
not change the optimal solution of Eq. (5)
then o

�
a;b ¼ l�a.



Table 2

l of Operational Research 181 (2007) 331–337 335
Theorem 8. If DMUa is efficient in (2) and a 5 b

New efficiency evaluation

DMU CCR DMUa DMUb DMUc DMUd

e 0.978 0.988 0.994 0.978 1.000
f 0.868 0.894 1.000 0.867 0.875

X – 0.941 0.997 0.923 0.938
then o�a;b ¼ 1 for each DMUb.

Proof. Since DMUa is efficient in (2) then l�a ¼ 1.
By Theorem 4 o�a;b ¼ l�a ¼ 1 and the proof is com-
plete. h

Theorem 9. If o
�
a;b < 1 then DMUa is CCR-

inefficient.

Proof. By Theorem 1 l�a < 1, then DMUa is CCR-
inefficient. h
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4. Numerical example

In this section we are going to ranking the data
listed in Table 1 in order to compare the proposed
methodology with other traditional ranking ones.
We are also going to evaluate a real word banking
data.

4.1. Fictional data

Results are given in Table 2, where in the lines we
have the non-SE DMUs and in the columns we
have the efficiency of original CCR model and the
efficiency of (5) without SE DMUs (DMUs a, b, c,
Table 1
DMUs’ data (extracted from [8, p. 260])

DMU Input 1 Input 2 Output 1 Output 2

a 150.000 0.200 14000.000 3500.000
b 400.000 0.700 14000.000 21000.000
c 320.000 1.200 42000.000 10500.000
d 520.000 2.000 28000.000 42000.000
e 350.000 1.200 19000.000 25000.000
f 320.000 0.700 14000.000 15000.000

Table 3
DMU scores for several ranking methods

Our results Other ranking methods [8]

CCR BCC CE

b 0.997 a 1.000 a 1.000 a

a 0.941 b 1.000 b 1.000 b

d 0.938 c 1.000 c 1.000 d

c 0.923 d 1.000 d 1.000 e

e 0.978 e 0.978 e 1.000 c

f 0.868 f 0.868 f 0.896 f

CEA is the cross-efficiency-aggressive method, CEB is the cross-efficien
method [3].
and d). By removing DMUb from the reference
set, the inefficient DMUf becomes efficient, but, by
removing DMUa, none of the inefficient DMUs
becomes efficient, for example. In other words, the
SE DMUb has more influence on other DMUs than
the SE DMUa has. The new efficiency of each SE
DMU is calculated through (6) and it is listed as
the last row of Table 2. By considering average of
the magnitude influence of SE DMUs on non-SE

DMUs, this article presents a new ranking system
for efficient DMUs based upon the magnitude aver-
age in Table 2. Results of ranking using the new
method are compared with several other methods
in Table 3.

The majority ranking methods analyzed in this
section points DMUa as the most efficient DMU.
Our approach showed that DMUa has very good
predicates (it was classified as the 2nd best one)
but the DMU that had the major influence in the
definition of the original CCR efficient frontier
was the DMUb.

4.2. Real word data

We evaluated with our proposal the data of 20
branch banks of Iran. This data was previously ana-
lyzed by Amirteimoori and Kordrostami [10] and is
listed in Table 4.

The use of our proposal generated the analysis
shown in Table 5.
A CEB EDM

0.764 a 1.000 a 200.000
0.700 d 1.000 b 140.625
0.700 e 0.974 c 140.000
0.696 b 0.955 d 113.077
0.643 c 0.886 e 97.750
0.608 f 0.847 f 86.745

cy-benevolent method and EDM is the extended DEA measure



Table 4
DMUs’ data (extracted from [10, p. 689])

Branch Inputs Outputs CCR efficiency

Staff Computer terminals Space (m2) Deposits Loans Charge

1 0.950 0.700 0.155 0.190 0.521 0.293 1.000
2 0.796 0.600 1.000 0.227 0.627 0.462 0.833
3 0.798 0.750 0.513 0.228 0.970 0.261 0.991
4 0.865 0.550 0.210 0.193 0.632 1.000 1.000
5 0.815 0.850 0.268 0.233 0.722 0.246 0.899
6 0.842 0.650 0.500 0.207 0.603 0.569 0.748
7 0.719 0.600 0.350 0.182 0.900 0.716 1.000
8 0.785 0.750 0.120 0.125 0.234 0.298 0.798
9 0.476 0.600 0.135 0.080 0.364 0.244 0.789
10 0.678 0.550 0.510 0.082 0.184 0.049 0.289
11 0.711 1.000 0.305 0.212 0.318 0.403 0.604
12 0.811 0.650 0.255 0.123 0.923 0.628 1.000
13 0.659 0.850 0.340 0.176 0.645 0.261 0.817
14 0.976 0.800 0.540 0.144 0.514 0.243 0.470
15 0.685 0.950 0.450 1.000 0.262 0.098 1.000
16 0.613 0.900 0.525 0.115 0.402 0.464 0.639
17 1.000 0.600 0.205 0.090 1.000 0.161 1.000
18 0.634 0.650 0.235 0.059 0.349 0.068 0.473
19 0.372 0.700 0.238 0.039 0.190 0.111 0.408
20 0.583 0.550 0.500 0.110 0.615 0.764 1.000

Table 5
New branch banks efficiency evaluation

DMU CCR DMU 15 DMU 4 DMU 7 DMU 20 DMU 17 DMU 12 DMU 1

2 0.833 1.000 0.833 0.909 0.833 0.833 0.833 0.833
3 0.991 1.000 0.991 1.000 0.991 0.991 0.991 0.991
5 0.899 1.000 0.899 0.899 0.899 0.929 0.913 0.899
6 0.748 0.950 0.810 0.812 0.748 0.748 0.748 0.748
8 0.798 0.916 1.000 0.798 0.798 0.798 0.798 0.811
9 0.789 0.824 0.816 0.789 0.789 0.808 0.814 0.789
10 0.289 0.444 0.289 0.301 0.289 0.289 0.289 0.289
11 0.604 1.000 0.754 0.612 0.614 0.604 0.604 0.604
13 0.817 0.939 0.817 0.865 0.817 0.817 0.817 0.817
14 0.470 0.560 0.470 0.514 0.470 0.470 0.470 0.470
16 0.639 0.749 0.639 0.648 0.709 0.639 0.639 0.639
18 0.473 0.478 0.473 0.484 0.473 0.473 0.483 0.473
19 0.408 0.408 0.408 0.442 0.408 0.408 0.408 0.408

X – 0.790 0.708 0.698 0.680 0.677 0.677 0.675
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As one can see, the use of our methodology full
ranked the 7 CCR efficient DMUs, being the branch
15 the most efficient one.

5. Conclusion

This article presented a new ranking system in
which all DMUs were evaluated simultaneously.
Therefore, this method was able to rank all extreme
efficient DMUs.

In Section 2 a brief introduction of DEA where
the CCR and all the other models used in this work
was presented. Our proposal was introduced in Sec-
tion 3. Section 4 supplied two numerical examples:
one comparing our approach with several other
ranking methods and other analyzing a real word
banking data.

It seems that our approach is more robust than
other methods [3,6] and also more intuitive and
coherent with the original idea of Charnes, Cooper
and Rhodes.

Initial studies had shown that our approach also
can be applied with BCC model. We suggest as
future works a deeper analysis in this subject.
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