
IEEE Communications Magazine • September 201778 0163-6804/17/$25.00 © 2017 IEEE

Abstract

The rapid increase in the number and diversity
of smart devices connected to the Internet has
raised the issues of flexibility, efficiency, availabil-
ity, security, and scalability within the current IoT
network. These issues are caused by key mecha-
nisms being distributed to the IoT network on a
large scale, which is why a distributed secure SDN
architecture for IoT using the blockchain tech-
nique (DistBlockNet) is proposed in this research.
It follows the principles required for designing a
secure, scalable, and efficient network architec-
ture. The DistBlockNet model of IoT architecture
combines the advantages of two emerging tech-
nologies: SDN and blockchains technology. In a
verifiable manner, blockchains allow us to have a
distributed peer-to-peer network where non-con-
fident members can interact with each other
without a trusted intermediary. A new scheme
for updating a flow rule table using a blockchains
technique is proposed to securely verify a ver-
sion of the flow rule table, validate the flow rule
table, and download the latest flow rules table
for the IoT forwarding devices. In our proposed
architecture, security must automatically adapt to
the threat landscape, without administrator needs
to review and apply thousands of recommenda-
tions and opinions manually. We have evaluated
the performance of our proposed model archi-
tecture and compared it to the existing model
with respect to various metrics. The results of our
evaluation show that DistBlockNet is capable of
detecting attacks in the IoT network in real time
with low performance overheads and satisfying
the design principles required for the future IoT
network.

Introduction
According to the recent Gartner’s report [1], 1
million new Internet of Things (IoT) devices will
be sold every hour, and $2.5 million will be spent
per minute on IoT by 2021. We believe that the
idea of a distributed IoT network is promising.
Meanwhile, software defined networking (SDN)
empowers easy management and network pro-
grammability [2]. Initially, it brings up some issues
of security, performance, reliability, and scalabil-
ity due to the centralized control architecture.
Recently, numerous distributed SDN controllers

have been introduced to address these issues
[3-5]. Most of the existing work emphasizes the
issue of state consistency among multiple control-
lers. The mapping between the controllers and
the forwarding devices is statically configured,
which can result in uneven distribution of loads
between the controllers and bursting packets
breaking down the controller. In addition to these
issues, we need a low response time and distrib-
uted SDN network with high availability. Some
methods try to offer a reliable and scalable solu-
tion to the distributed network for management
[6–10], but none of them have completely solved
this problem. On the other hand, blockchains
have recently drawn much attention from interest-
ed stakeholders in a wide range of industries [11,
12]. The reason behind this explosion of interest
is that with the blockchains technique, we can
operate the applications in a distributed manner
that could previously run through a trusted inter-
mediary. We can accomplish the same function-
ality with the same assurance without the need
for a central authority. The blockchains technique
offers a distributed peer-to-peer network where,
without a trusted intermediary, untrusted individ-
uals can interact in a verifiable manner with each
other [13, 14].

Require Design Principles for
Securely Distributed Architecture

In order to design high-performance architecture
for the IoT network that is securely distributed in
order to deal with current and future challenges
and satisfy new service requirements, we need to
consider the following design principles based on
previous work on designing distributed network
architecture, research new network technologies,
and investigate new service requirements.

Adaptability: Trends are evolving, and the
needs of clients are changing. These changing
trends require that the network architecture
is improved and is able to adapt to the chang-
ing environment. Adaptability is vital to ensure
its growth and survival. The network architec-
ture should be able to adapt and have its usage
broadened with the increase in clients’ needs and
demands.

High Availability and Fault Tolerance: The
high availability of a network control system is
important in the actual operation of the network.

DistBlockNet:
A Distributed Blockchains-Based

Secure SDN Architecture for IoT Networks
Pradip Kumar Sharma, Saurabh Singh, Young-Sik Jeong, and Jong Hyuk Park

Advances in Network Services Chain

The rapid increase in the
number and diversity of
smart devices connected
to the Internet has raised
the issues of flexibility,
efficiency, availability,
security, and scalability
within the current IoT
network. These issues
are caused by key mech-
anisms being distributed
to the IoT network on
a large scale, which has
motivated the authors to
propose DistBlockNet.

Pradip Kumar Sharma, Saurabh Singh, and Jong Hyuk Park are with Seoul National University of Science and Technology (SeoulTech);
Young-Sik Jeong is with Dongguk University.

Digital Object Identifier:
10.1109/MCOM.2017.1700041

IEEE Communications Magazine • September 2017 79

Thus, the provisioning of a priori redundancies,
the detection of failures, and the invocation of
mitigation mechanisms are necessary steps for
action.

Performance: Ability to adapt performance lin-
early. In current IoT environments, it is a common
challenge to try and achieve linear performance
over a large-scale distributed network architec-
ture.

Reliability: When designing the distributed
architecture, reliability is ranked as the highest
priority. It measures the correlation between the
corresponding performance required and the
total performance achieved by the system in all
environmental conditions of time and space.

Scalability: Scalability is an essential principle
in designing a future-proof distributed network
architecture, which not only reduces costs, pro-
vides the flexibility to extend the network, and
supports unexpected services, but also involves
the deployment of new services and meets new
market requirements.

Security: Security must be everywhere in a
distributed network to build a secure distributed
architecture that is provided as a service to pro-
tect the confidentiality, integrity, and availabili-
ty of all connected information and resources.
Therefore, securing the network must be one of
the objectives of designing new distributed archi-
tectures.

Research Contributions: On the basis of the
discussion above, the main contributions to the
research of this work can be summarized as laid
out below:
•	 We are proposing a distributed secure SDN

architecture for IoT using the blockchain
technique. When using the proposed archi-
tecture, security must automatically adapt to
the threat landscape without administrators
needing to manually review and apply thou-
sands of recommendations and opinions.

•	 We are proposing a technique for updating
the high-performance availability flow rule
tables in the distributed blockchain SDN.

•	 We have evaluated the performance of our
proposed technique and compared it to the
existing model with respect to various metrics.
The rest of the article is structured as follows.

We discuss the proposed distributed secure archi-
tecture used for the IoT using the blockchain
technique. We also present the architecture work-
flow and flow rule tables update technique in the
distributed blockchain network. Next, we evaluate
the proposed model based on different perfor-
mance metrics. Finally, we conclude the research.

DistBlockNet
Distributed Secure Architecture

According to the analysis in the previous sec-
tion for rapidly growing IoT networks created
by the new communication paradigms, we have
observed that the currently distributed network
architecture, protocols, and techniques are not
designed to meet the required design principles
for future challenges and satisfy new service
requirements. The speed and complexity of this
development exponentially creates new catego-
ries of attacks; gathering known and mysterious
threats; taking advantage of “zero-day” vulnera-

bilities; and using malware concealed in websites,
documents, networks, and guests. At present,
organizations need a single distributed secure
architecture that includes powerful network secu-
rity devices with proactive, real-time protection
with high performance to meet the analyzed
design principles. In this section, we propose a
novel distributed secure SDN architecture called
DistBlockNet, its workflow, and a technique for
updating high-performance availability flow rule
tables in a distributed blockchain network.

DistBlockNet Design Overview

DistBlockNet adopts distributed secure network
control in the IoT network by using the block-
chain technology concept to improve security,
scalability, and flexibility, without the need for a
central controller. Figure 1 shows the global and
local views of the proposed architecture. In the
proposed architecture, all controllers in the IoT
network are interconnected in a distributed block-
chain network manner so that each IoT forward-
ing device in the network can easily and efficiently
communicate. Each local network view comprises
OrchApp, Controller, and Shelter modules. The
Shelter and OrchApp modules in each local net-
work handle the security attacks at a different
level. OrchApp mainly functions at the manage-
ment or application layers, the controller-appli-
cation interface, and the control layer. Shelter
operates at the data layer, the controller-data
interface, and the control layer. The DistBlock-
Net architecture provides not only operational
flexibility, but also proactive and reactive incident
prevention based on the recurring threat land-
scape by inserting the rapidly changing, dynam-
ic, and high-performance OrchApp and Shelter
modules. It offers a network infrastructure that
is agile, modular, and secure. Protections must
dynamically adapt to the threat landscape without
having to include security administrators to man-
ually process a huge number of advisories and
approvals. These insurances must coordinate well
into the more extensive IoT environment, and the
architecture must take on a protective stance that
cooperatively leverages both savvy inside and out-
side sources.

OrchApp: Its prime purpose is to offer pro-
gramming characterized fortifications and to set
out them for execution at the appropriate appli-
cation layer enforcement points, whether imple-
mented using high-performance as host-based
software on mobile devices, in the IoT network
or the cloud. Security classifications incorporate
access control, data protection, and threat intel-
ligence. Based on the underlying domain knowl-
edge from which security strategy plans are
drawn, these methods vary.

Access control implements a security con-
vention model of approved associations among
resources and clients in the IoT network, as set
up by the management layer. On the other hand,
data protection focuses on the classification of
data rather than on behavior and interaction.
The management layer concludes the standards
or strategies for data flows in the organization.
Threat intelligence provides the understanding of
threats and their behavior. It is powered by apply-
ing collaborative intelligence to real-time threats
obtained from different communities.

Protections must

dynamically adapt to the

threat landscape with-

out having to include

security administrators

to manually process a

huge number of advi-

sories and approvals.

These assurances must

coordinate well into

the more extensive IoT

environment, and the

architecture must take

on a protective stance

that cooperatively lever-

ages both savvy inside

and outside sources.

IEEE Communications Magazine • September 201780

OrchApp provides the level of adaptability
sought to adapt to the new and dynamic threats
and modifies the enterprise network config-
urations. The application layer provides a solid
platform that can execute assurances at the
application points all throughout the enterprise.
Because the protections are software-controlled,
critical hardware deployed at these points of the
application does not need to be exchanged when
a new threat or attack technique is exposed or
when new technologies are introduced in the
industry. Protections should automatically take
place in the threat landscape without requiring
manual monitoring of the analysis of a large
number of opinions and endorsements. This is
accomplished by using an automated threat coun-
teractive action control that works together with
the management layer that is only essential for
human decision-making for when the threat indi-
cators offer less assurance about recognizing an
attack or threat.

Shelter: Attackers often rank in the network to
take advantage of the insider’s advantage points,
and then launch attacks on the internal network.
Given that our objective is to assert the appear-
ance of attacks on the network topology and the
data plane and the aggression of identity of the
flow rules or the strategies within the SDN, our
threat system perfectly identifies the scenarios
where the antagonist initiates attacks within the
SDN. Thus, we designed the SDNs as a non-open
system. Removing restrictions on unidentified
external communications helps focus our analysis
only on OpenFlow control packets or messages
within the SDN because the OrchApp handles all
of these issues in the DistBlockNet model.

Shelter is composed of a flow control analyzer
and packet migration components. The analyzer

component takes care of the main functionality
of the network infrastructure as soon as the satu-
ration attack has occurred. Whereas, the packet
migration component sends a benign network
stream to the OpenFlow controller without over-
loading. As shown in Fig. 1, the module units
define the flow analyzer as a control applica-
tion on the controller platform. Furthermore, the
migration agent of the migration component is
applied to a controller application between the
control plane, the data plane, and an element of
the cache data plane.

Parser: The attackers use the subset of Open-
Flow messages, such as Packetin, Flow_Mod, Fea-
tures_Reply, and Stats_Reply, in order to change
the network’s view of the controller. Thus, to iden-
tify abnormal behavior, we extracted the import-
ant metadata by monitoring and parsing incoming
packets.

Graph Builder: To identify the attacks in the
security policies resulting from the actual changes
made to the system data plan, which is linked to
each flowchart and to the topological exchange
metadata, the graph builder analyzes the parsed
dataset to construct and alter the flow diagrams
that are connected to the network traffic. Our
model retains the flows of logical and physical
topologies and Flow_Mod transmission status
messages to identify malicious update metadata.

Verifier: We generated path conditions offline
and reactive rules online. In order to reduce the
overhead at runtime, we processed the path con-
dition generator to navigate the possible paths
and to collect all path conditions offline. Online
reactive rule generation monitors and assigns the
current value of the global variables to the sta-
tus path. The input variables are symbolized in
the path conditions, and the reactive flow rule

Figure 1. Overview architecture of DistBlockNet.

OrchApp
Controller

Shelter

Controller 6

Controller 5Controller 4Controller 3Controller 2
Controller 1

Metadata feature set

Data plane cache Data storage Verifier
Admin

Threat
prevention

Data protectionAccess control

Migration agent

Network topology

Parser

Graph builder

Shelter

Controller

Local network view

OrchApp
Controller

Shelter

Local network view

OrchApp
Controller

Shelter

Local network view

OrchApp
Controller

Shelter

Local network view

OrchApp
Controller

Shelter

Local network view

OrchApp
Controller

Shelter

Local network view

Threat intelligence

Security policy

OrchApp

Local network view

Global network view

IoT forwarding devices

Distributed blockchain network

PACKET_IN

Communicating to shelter

Communicating to orchestrator

Relay to the
controller

Relay to the
controller

Analysis

Internal sources

External sources

Sources

STATS_REPLY FEATURES_REPLYFLOW_MOD

To identify the attacks

in the security policies

resulting from the

actual changes made to

the system data plan,

which is linked to each

flowchart and to the

topological exchange

metadata, the graph

builder analyzes the

parsed dataset to con-

struct and alter the flow

diagrams that are con-

nected to the network

traffic.

IEEE Communications Magazine • September 2017 81

dispatcher components are used to parse each
status path. It is only with the paths that the final
decision is taken into account in processing a
small set of modifications to generate a status
message. Finally, the reactive flow rules we need
are established.

Migration Agent: The migration agent detects
attacks and makes the appropriate decisions
based on the type of alarms received. In order to
generate new rules and migrate the missing table
packet in the data cache, it triggers the flow rules
of the parser during saturation attacks. It migrates
all missing packets to the data plan cache during
the generation of flow rules and the update stage.
As a result, the controller does not overload itself
with the flooding packets. Finally, it processes all
the missed packets stored in the cache after the
flow rules are updated.

Data Plan Cache: During a saturation attack,
it temporarily caches the missing packets. During
flooding attacks, most flood packages are redi-
rected to the data plan cache to avoid flooding
the controller. By using the classifier, Packetin
generator, and buffer queue, it parses the header
of the migrated packets and stores them in the
appropriate queue.

Shelter Workflow

As shown in Fig. 1, the Shelter module has three
different stages. In the first stage, in order to build
a complete network view, Shelter monitors and
parses all of the packets communicating with the
controller and identifies the appropriate Open-
Flow packets. In the second stage, to build an
incremental graph network with traffic flow, Shel-
ter analyzes all of these parsed OpenFlow pack-
ets to obtain the topological metadata and status
of the transmission. Shelter mainly maintains the
metadata feature set, the network topological
state that is obtained from the OpenFlow pack-
et headers, actual measurements of traffic flow
within network connections, and outbound flow
path configuration directives, respectively. In the
third stage, Shelter allows this metadata to flow
against a set of acceptable metadata values col-
lected during the flow period, administrative rules,
and strategies. Shelter identifies known attacks
through policies specified by the administrator,
although it uses precise flow activities obtained
over time to detect unplanned and possibly mali-
cious activity.

Shelter does not issue an alarm signal when it
detects a new flow behavior. Alternatively, Shelter
prompts an alarm signal when it detects untrusted
entities that invoke modifiers to the existing flow
behavior or where the flow resists any rules or
security rules specified by the administrator. Also,
Shelter will not raise any alerts on flow reroutes
because they are generated by FLOW_MOD
messages from the trusted controller. This dras-
tically reduces the alerts that can occur if the
recognition of each new behavior is signaled,
which is possible in growing networks. However,
malicious activity will be noticed by looking back
when Shelter later reports authentic activities as
being dubious, only to be deemed illegal by the
administrator. Shelter can identify such false links
by allowing the flow metadata data plan transfer,
which collects the flow charts of valid network
traffic along a path in the flow graph. Specifical-

ly, Shelter applies a custom algorithm to monitor
and perceive the bytes of stream statistics by col-
lecting STATS_REPLY messages at each switch in
the flow path and determines whether the switch-
es are diverging values of the transmitted byte
account.

The Updating of Flow Rules Table in the
Distributed Blockchain Network

Figure 2a shows the overall DistBlockNet distrib-
uted blockchain network. The distributed block-
chain network includes the controller/verification
and request/response nodes. The verification
node denotes the controller in the blockchain
network, which maintains the updated flow rules
table information in its own database. Request/
response nodes are the IoT forwarding devices,
which update its flow rules table in a blockchain
network. IoT forwarding devices can be a request
node or a response node. If a node requests its
flow rules table, the node becomes a request
node. At the point when a node sends a request
message to update its flow rules table, the rest
of the other normal nodes are considered to
be response nodes from the viewpoint of the
requesting node.

Figure 2b shows the DistBlockNet architec-
ture model flow rules update in the distributed
blockchain network. When an IoT forwarding
device starts its flow rules table update by broad-
casting a request packet with a version check,
it views it as a request node. Once the version
verification request packet is broadcasted in the

Figure 2. Updating scheme of flow rules table: a) distributed blockchain net-
work; b) flowchart of flow rules table update.

YesYes

Yes No

No No

Respond
node (Nj)

Verification
node (Ci)Depending

on the node receives
the request

F=FNew?
(Ni’s flow rules

up-to-date?)

Ni’s flow rules
version higher
than Ni’s flow
rules version

F=F’?
(Ni’s flow rules

up-to-date?)

Flow rules version check
request from Ni

Confirmation
of Ni’s verifier

by proof-of-work

Verify Ni’s
flow rules

Verify Ni’s
flow rules

Update the
latest flow
rules for Ni

Update the
latest flow
rules for Ni

Update the
latest flow
rules for Nj

(a)

(b)

Controller/
verification node

Request/
response node

C5

Ni

Nj

Nl

Nn

Nm

NkN13N12

N11

N14

N10

N9

N8

N7

N6

N4

N5

N16
N15

N17

N19

N18
N20

N26

N25 Nr Np No

Nq

N24
N23

N21
N22

N1

N2

N3

C1

C2

C4

C6

C3

IEEE Communications Magazine • September 201782

distributed blockchain IoT network, the rest of
the IoT forwarding devices (i.e., response node
and all controller/verification nodes) will respond
to the request packet of the version verification.
The response process varies depending on the
node type. In the case of the controller/verifica-
tion node, it checks whether the request packet
node has the up-to-date flow rules table or not.
The controller/verification node also checks the
integrity of the flow rules table if the requesting
node has the up-to-date flow rules table. Oth-
erwise, the controller/verification node sends a
response packet with the latest version of the flow
rules table to the requested node.

In another case, when the response node
receives the request, it checks the request’s
node version of the flow rules table with its own
flow rules table version. If both the request and
response nodes have the same version of the
flow rules table, the response node requests the
other nodes in the distributed blockchain net-
work to verify the hash value of the flow rules
table of the requested node. If the response
node gets the confirmation of the hash value
from the other nodes in the network (i.e., proof-
of-work), the response node believes that the
flow rules table is correct and sends the respond-
ing packet to the requested node. In another
case, when the request and response nodes
have a different version of flow rules tables, the
response node checks whose flow rules table is
the latest version. If the response node has the
latest version, it will send the response packet to
the requesting node with the latest version of the
flow rules table. Otherwise, when the response
node has a lower version of the flow rules table,
it updates its own flow rules table from the
request node packet.

Performance Evaluation
In this section, we present the details of the imple-
mentation, experimental environment, and eval-
uation of DistBlockNet. We carried out different
experiments to evaluate the scalability, defense
effects, accuracy, and efficiency of our proposed
DistBlockNet architecture model.

Scalability

To assess the scalability of the DistBlockNet
model, large-scale experiments are presented in
this subsection with a cluster of 6 Intel i7 3.40
GHz with 16 GB RAM servers. We built a dis-
tributed blockchain network with 6 controllers/
verifications and 6000 request/response nodes,
as shown in Fig. 3a. We used the OpenFlow soft-
ware switch instead of the OpenVSwitch because
when a large number of switches are emulated,
OpenVSwitch does not scale well. To compare
the performance of the flow rules table update
scheme of our proposed DistBlockNet model in
a large-scale network, we also built a normally dis-
tributed SDN network. Figure 3b shows the result
of the flow rules table update time with respect to
the packet-in arrival rate in both the DistBlockNet
model distributed blockchain network and distrib-
uted SDN network. In this experimental result, we
observed that our proposed DistBlockNet model
constantly performed superior to the distributed
SDN network as the rate of the packet-in arrival
increased.

Defense Effects

To assess the defense effects of our DistBlockNet
model, we evaluated and compared it with an
existing OpenFlow network by considering both
software and hardware test environments [15].
We used the MININET SDN emulation tool for
the software environment. We used the POX con-
troller, OpenFLow switch, and server machines to
implement clients and data plane caches in the
hardware environment. We used some clients to
dispatch a UDP floating attack to the switches.
We measured the bandwidth of clients without
and with flooding attacks generated by some cli-
ents at different speeds to the switch. We evaluat-
ed the impact on the bandwidth with and without
the DistBlockNet model in both software and
hardware environments separately because both
environments have different capabilities.

In the software test environment, as shown in
Fig.4a, we noticed that the bandwidth starts at 1.9
Gb/s without the presence of any attacks. When
we started dispatching flooding attacks, the band-

Figure 3. DistBlockNet performance on a large-scale network: a) distributed blockchain network with 6 controllers and 6000 nodes;
b) flow table update time vs. packet-in arrival rate.

Time (ms)

(b)(a)

200

1000

Pa
ck

et
-in

 a
rri

va
l r

at
e

(p
ac

ke
ts/

s)

40 60 80 100 120 140 160

OpenFlow DistBlockNet Linear (DistBlockNet)

2000

3000

4000

5000

6000

Controller/
verification node

Request/
response node

IEEE Communications Magazine • September 2017 83

width decreased rapidly with an increase in the
attack rate. The bandwidth went down to almost
half when the packet-in arrival rate reached 800
packets/s. The entire network started malfunc-
tioning when the packet-in arrival rate reached
3000 packets/s. On the other hand, using the
DistBlockNet model, the bandwidth started at 1.9
Gb/s without the presence of an attack, and after
the packet-in arrival rate reached 3000 packets
per second, the bandwidth remained practically
unchanged.

Figure 4b shows the results in the hardware
test environment. In the hardware test environ-
ment, the bandwidth started at 9.5 Mb/s both
with and without using the DistBlockNet model
with any attack. In this experiment, we noticed
that the bandwidth without using the DistBlock-
Net model went up to half when the attack rate of
the packet-in arrival rate reached 1000 packets/s
and started malfunctioning when the attack rate
reached 5000 packets/s. While using the Dist-
BlockNet model, the bandwidth was maintained
above 9 Mb/s until the packet-in arrival reached
1600 packets/s. After that, the bandwidth started
to go down because the ternary content address-
able memory was not available in our switch. We
used the OpenWRT software tool in place of the
ternary content addressable memory to execute
a flow rule table. Although a software-based flow
rule table is not able to achieve a similar level of
performance, we still noticed that DistBlockNet
conserves resources and provides significant pro-
tection.

Accuracy

We evaluated the accuracy rate of the detection
of DistBlockNet under two different parameters
with one in the real-time identification of attacks
and another in the presence various traffic and
many distinctive defects in the system. The Dist-
BlockNet model has the ability to identify every
attack quickly. In the case of real-time identifica-
tion, synthetic faults were used in parallel with
the suitable traffic with 6K for the Mininet emul-
sified hosts on our physical testbed. Here we
viewed the detection time as the time required
for issuing of an alert from the moment when the
DistBlockNet model received the offending pack-

et. We used the custom traffic generator, which
generates 1500 FLOW_MOD/sec. ARP attacks
and fake topology are easily identified when the
PACKETiN messages are processed. The detection
times may fluctuate because in order to recognize
DDoS/DoS attacks, DistBlockNet occasionally
runs the flowchart validator and, as a result, the
flow diagram size increases. In another case, we
used Mininet to increase the number of hosts to
30K. Then we propelled DDoS, ARP poising, and
fake topology attacks throughout the distributed
blockchain network. We reiterated each examina-
tion more than 15 times and noticed that under
the distinctive topologies, DistBlockNet effectively
recognized each of the issues.

We ran a pessimistic scenario on the false
alerts raised for a given d using conflicting TCP
iperf streams. The fair nature of the TCP will
create fluctuations in flow to cause changes in
the switches along the flow path, which would
raise some precautions. As shown in Fig. 5a, we
observed that with the increase of d, the probabil-
ity of false alarms occurring decreases.

The recall and precision are zero due to the
absence of a true positive. In these experiment
results, we observed that at the default value of d
= 1.06, there were 7 alarms out of 10 competing
flows over 6 min. We also performed this experi-
ment on our physical testbed and obtained com-
parable results.

To assess the absence of real alerts for a given
d, we defined the ratio between the number of
checks that did not raise alerts to the total num-
ber of checks that raised alerts during verifica-
tion. We evaluated the above metric among the
Mininet hosts for controlled flows, which are eight
hops apart. As shown in Fig. 5b, we observed
that the absence of real alerts during verification
increases as d increases. For a given d, the recall
and precision are identical, which is equal to one
minus the probability of the absence of real alerts
at every data point.

Overhead Analysis

To evaluate the performance overhead of our
DistBlockNet model, we used l2 learning and l3
learning applications and recorded CPU utiliza-
tion during a flooding attack. We simultaneously

Figure 4. Effects on bandwidth during different attack rate in: a) software environment; b) hardware environment.

Packet-in arrival rate (attack rate)
(a)

0

0.2

Ba
nd

wi
dt

h
(M

b/
s)

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

30
0

60
0

90
0

12
00

15
00

18
00

21
00

24
00

27
00

30
00

OpenFlow DistSoft

Packet-in arrival rate (attack rate)
(b)

0

Ba
nd

wi
dt

h
(M

b/
s)

10

9

8

7

6

5

4

3

2

1

42
0

84
0

12
60

16
80

21
00

25
20

29
40

33
60

37
80

42
00

46
20

50
40

OpenFlow DistSoft

IEEE Communications Magazine • September 201784

executed these two applications and used some
clients to act as attackers and propelled the satu-
ration attack with a rate of 500 packets/s with a
DistBlockNet model in the hardware environment.
For each application, we monitored the consump-
tion of the resources. Figure 6 shows the average
CPU utilization for all the controllers for different
applications with the DistBlockNet model during
flooding attacks. The flooding attacks began at
about 0.5 s, and we noticed that CPU utilization
quickly increased for each application. Then CPU
usage started to slowly decrease after we installed
the migration rules of flow. Based on the results,
we observed that DistBlockNet provides effective
protection and creates a more secure distribut-
ed network without consuming many resources
during a saturation attack.

Conclusion
In this article, based on an analysis of the challeng-
es that large-scale IoT networks face due to new
communication paradigms, DistBlockNet, a new
distributed secure IoT network architecture consist-
ing of an SDN base network using the blockchains
technique, has been proposed to address the
current and future challenges and to satisfy new
service requirements. DistBlockNet improves a sys-
tem’s performance and capacity. The core role of
the DistBlockNet model is to generate and deploy

protections, including threat prevention, data
protection, and access control, and mitigate net-
work attacks such as cache poising/ARP spoofing,
DDoS/DoS attacks, and detect security threats.
The DistBlockNet model also focuses on reducing
the attack window time by allowing IoT forwarding
devices to quickly check and download the latest
table of flow rules if necessary. The performance
evaluation is based on scalability, defense effects,
accuracy rates, and the performance overheads of
the proposed model. The evaluation results show
the efficiency and effectiveness of the DistBlock-
Net model and have met the required design prin-
ciples with minimal overhead.

In the future, we will extend our research work
to build a distributed cloud computing architec-
ture with secure fog nodes at the edge of the IoT
network.

Acknowledgments

This work was supported by the National
Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIP) (No
2016R1A2B4011069)

References
[1] “Top Strategic Predictions for 2017 and Beyond: Surviving

the Storm Winds of Digital Disruption,” https://www.gart-
ner.com/doc/3471568? ref=unauthreader, accessed May
5, 2017

Figure 5. DistBlockNet accuracy rate: a) probability of false alerts with variation in flows and d; b) probability of absence of real alerts
vs. loss rate and d.

3% loss
6% loss
9% loss
12% loss
15% loss
18% loss

3 flows
6 flows
9 flows
12 flows
15 flows
18 flows
21 flows
24 flows
27 flows
30 flows

Similarity margin (δ)

(a)

1.0
0

0.075

Pr
ob

ab
ilit

y
of

 fa
lse

 a
le

rts

0.15
0.224
0.299

0.374
0.449

0.524
0.598
0.673
0.748

1.0
2

1.0
4

1.0
6

1.0
8

1.1
0

1.1
2

1.1
4

1.1
6

1.1
8

Similarity margin (δ)

(b)

1.0
0

0.1

Pr
ob

ab
ilit

y
of

 a
bs

en
ce

 o
f r

ea
l a

le
rts

0.2
0.3
0.4

0.5
0.6
0.7
0.8
0.9

1

1.0
2

1.0
4

1.0
6

1.0
8

1.1
0

1.1
2

1.1
4

1.1
6

1.1
8

Figure 6. CPU utilization during flooding attack: a) running l2 learning application; b) running l3 learning application.

Time (s)
(a)

0.2

2

CP
U

ut
iliz

at
io

n
(%

)

4

6

8

10

12

14

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Time (s)

(b)

0.2

2

CP
U

ut
iliz

at
io

n
(%

)

4

6

8

10

12

14

16

18

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

IEEE Communications Magazine • September 2017 85

[2] J. M. Batalla et al., “On Cohabitating Networking Technolo-
gies with Common Wireless Access for Home Automation
System Purposes,” IEEE Wireless Commun., vol. 23, no. 5,
Oct. 2016, pp. 76–83.

[3] D. Levin et al., “Logically Centralized?: State Distribution
Trade-offs in Software Defined Networks,” Proc. 1st ACM
SIGCOMM Wksp . Hot Topics in Software Defined Net-
works, Aug. 2012, pp. 1–6.

[4] S. Stefan and J. Suomela, “Exploiting Locality in Distributed
SDN Control,” Proc. 2nd ACM SIGCOMM Wksp. Hot Topics
in Software Defined Networking, Aug. 2013, pp. 121–26.

[5] X. Wu et al., “A Multipath Resource Updating Approach for Dis-
tributed Controllers in the Software-Defined Network.,” Science
China Info. Sciences, vol. 59, no. 9, Sept. 2016, pp. 92,301–10.

[6] H. Lu et al., “Hybnet: Network Manager for A Hybrid Net-
work Infrastructure,” Proc. Industrial Track, 13th ACM/IFIP/
USENIX Int’l. Middleware Conf., Dec. 2013, pp. 1–6

[7] D. Drutskoy, K. Eric, and J. Rexford, “Scalable Network Vir-
tualization in Software-Defined Networks,” IEEE Internet
Computing, vol. 17, no. 2, Mar. 2013, pp. 20–27.

[8] Z. Qingyun et al., “On Generally of the Data Plane and Scal-
ability of the Control Plane in Software-Defined Network-
ing,” China Commun., vol. 11, no. 2, Feb. 2014, pp. 55–64

[9] Y. Sung et al., “FS-OpenSecurity: A Taxonomic Modeling of
Security Threats in SDN for Future Sustainable Computing,”
Sustainability, vol. 8, no 9, Sept. 2016, pp. 919–44.

[10] Q. Vuong, H. M. Tran, and S. T. Le, “Distributed Event
Monitoring for Software Defined Networks.” Proc. 2015
Int’l. Conf. Advanced Computing and Applications, IEEE,
Nov. 2015, pp. 90–97.

[11] K. Christidis and M. Devetsikiotis, “Blockchains and Smart
Contracts for the Internet of Things,” IEEE Access, vol. 4,
May 2016, pp. 2292–303.

[12] F. Tschorsch and B. Scheuermann, “Bitcoin and Beyond: A Tech-
nical Survey on Decentralized Digital Currencies,” IEEE Commun.
Surveys & Tutorials, vol. 18, Mar. 2016, pp. 2084–2123.

[13] X. Xu et al., “The Blockchain as a Software Connector,”
Proc. 13th Working IEEE/IFIP Conf. Software Architecture,
Apr. 2016, pp. 1–10.

[14] K. Ahmed et al., “Hawk: The Blockchain Model of Cryptog-
raphy and Privacy-Preserving Smart Contracts.” Univ. MD
and Cornell Univ., May. 2015, pp. 1–32.

[15] J. M. Batalla et al., “A Novel Methodology for Efficient
Throughput Evaluation in Virtualized Routers,” 2015 IEEE
ICC, June 2015, pp. 6899–905.

Biographies
Pradip Kumar Sharma (pradip@seoultech.ac.kr) is a Ph.D. schol-
ar at Seoul National University of Science and Technology. He
works in the Ubiquitous Computing & Security Research Group.
Prior to beginning the Ph.D. program, he worked as a software
engineer at MAQ Software, India. He received his dual Master’s
degree in computer science from Thapar University (2014) and
Tezpur Univerity (2012), India. His current research interests are
focused on security, SDN, SNS, and IoT.

Saurabh Singh (singh1989@seoultech.ac.kr) is a Ph.D. scholar
at Seoul National University of Science and Technology carrying
out his research in the field of ubiquitous security. He holds
a strong academic record. He received his Bachelor’s degree
from Utter Pradesh Technical University and holds a Master’s
degree in Information Security from Thapar University. His
research interests include cloud security, IoT, and cryptography.
Finally, he has the experience of being a lab leader of the UCS
lab, SeoulTech Korea.

Young-Sik Jeong (ysjeong@dongguk.edu) is a professor in the
Department of Multimedia Engineering at Dongguk University,
Korea. His research interests include cloud computing, mobile
computing, IoT, and wireless sensor network applications. He
received his B.S. degree in mathematics and his M.S. and Ph.D.
degrees in computer science and engineering from Korea Uni-
versity, Seoul, in 1987, 1989, and 1993, respectively.

James J. (Jong Hyuk) Park (jhpark1@seoultech.ac.kr)
received his Ph.D. degrees from the Graduate School of
Information Security, Korea University, and the Graduate
School of Human Sciences, Waseda University, Japan. He is
now a professor at the Department of Computer Science and
Engineering, Seoul National University of Science and Tech-
nology, Korea. He has published about 200 research papers
in international journals/conferences. He has served as Chair
and Program Committee member for many international con-
ferences and workshops.

The performance eval-

uation is based on scal-

ability, defense effects,

accuracy rates and the

performance overheads

of proposed model.

The evaluation results

show the efficiency and

effectiveness of the

DistBlockNet model and

have met the required

design principles with

minimal overhead.

