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Abstract

The rapid increase in the number and diversity 
of smart devices connected to the Internet has 
raised the issues of flexibility, efficiency, availabil-
ity, security, and scalability within the current IoT 
network. These issues are caused by key mecha-
nisms being distributed to the IoT network on a 
large scale, which is why a distributed secure SDN 
architecture for IoT using the blockchain tech-
nique (DistBlockNet) is proposed in this research. 
It follows the principles required for designing a 
secure, scalable, and efficient network architec-
ture. The DistBlockNet model of IoT architecture 
combines the advantages of two emerging tech-
nologies: SDN and blockchains technology. In a 
verifiable manner, blockchains allow us to have a 
distributed peer-to-peer network where non-con-
fident members can interact with each other 
without a trusted intermediary. A new scheme 
for updating a flow rule table using a blockchains 
technique is proposed to securely verify a ver-
sion of the flow rule table, validate the flow rule 
table, and download the latest flow rules table 
for the IoT forwarding devices. In our proposed 
architecture, security must automatically adapt to 
the threat landscape, without administrator needs 
to review and apply thousands of recommenda-
tions and opinions manually. We have evaluated 
the performance of our proposed model archi-
tecture and compared it to the existing model 
with respect to various metrics. The results of our 
evaluation show that DistBlockNet is capable of 
detecting attacks in the IoT network in real time 
with low performance overheads and satisfying 
the design principles required for the future IoT 
network.

Introduction
According to the recent Gartner’s report [1], 1 
million new Internet of Things (IoT) devices will 
be sold every hour, and $2.5 million will be spent 
per minute on IoT by 2021. We believe that the 
idea of a distributed IoT network is promising. 
Meanwhile, software defined networking (SDN) 
empowers easy management and network pro-
grammability [2]. Initially, it brings up some issues 
of security, performance, reliability, and scalabil-
ity due to the centralized control architecture. 
Recently, numerous distributed SDN controllers 

have been introduced to address these issues 
[3-5]. Most of the existing work emphasizes the 
issue of state consistency among multiple control-
lers. The mapping between the controllers and 
the forwarding devices is statically configured, 
which can result in uneven distribution of loads 
between the controllers and bursting packets 
breaking down the controller. In addition to these 
issues, we need a low response time and distrib-
uted SDN network with high availability. Some 
methods try to offer a reliable and scalable solu-
tion to the distributed network for management 
[6–10], but none of them have completely solved 
this problem. On the other hand, blockchains 
have recently drawn much attention from interest-
ed stakeholders in a wide range of industries [11, 
12]. The reason behind this explosion of interest 
is that with the blockchains technique, we can 
operate the applications in a distributed manner 
that could previously run through a trusted inter-
mediary. We can accomplish the same function-
ality with the same assurance without the need 
for a central authority. The blockchains technique 
offers a distributed peer-to-peer network where, 
without a trusted intermediary, untrusted individ-
uals can interact in a verifiable manner with each 
other [13, 14].

Require Design Principles for 
Securely Distributed Architecture

In order to design high-performance architecture 
for the IoT network that is securely distributed in 
order to deal with current and future challenges 
and satisfy new service requirements, we need to 
consider the following design principles based on 
previous work on designing distributed network 
architecture, research new network technologies, 
and investigate new service requirements.

Adaptability: Trends are evolving, and the 
needs of clients are changing. These changing 
trends require that the network architecture 
is improved and is able to adapt to the chang-
ing environment. Adaptability is vital to ensure 
its growth and survival. The network architec-
ture should be able to adapt and have its usage 
broadened with the increase in clients’ needs and 
demands.

High Availability and Fault Tolerance: The 
high availability of a network control system is 
important in the actual operation of the network. 
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Thus, the provisioning of a priori redundancies, 
the detection of failures, and the invocation of 
mitigation mechanisms are necessary steps for 
action.

Performance: Ability to adapt performance lin-
early. In current IoT environments, it is a common 
challenge to try and achieve linear performance 
over a large-scale distributed network architec-
ture.

Reliability: When designing the distributed 
architecture, reliability is ranked as the highest 
priority. It measures the correlation between the 
corresponding performance required and the 
total performance achieved by the system in all 
environmental conditions of time and space.

Scalability: Scalability is an essential principle 
in designing a future-proof distributed network 
architecture, which not only reduces costs, pro-
vides the flexibility to extend the network, and 
supports unexpected services, but also involves 
the deployment of new services and meets new 
market requirements.

Security: Security must be everywhere in a 
distributed network to build a secure distributed 
architecture that is provided as a service to pro-
tect the confidentiality, integrity, and availabili-
ty of all connected information and resources. 
Therefore, securing the network must be one of 
the objectives of designing new distributed archi-
tectures.

Research Contributions: On the basis of the 
discussion above, the main contributions to the 
research of this work can be summarized as laid 
out below:
•	 We are proposing a distributed secure SDN 

architecture for IoT using the blockchain 
technique. When using the proposed archi-
tecture, security must automatically adapt to 
the threat landscape without administrators 
needing to manually review and apply thou-
sands of recommendations and opinions. 

•	 We are proposing a technique for updating 
the high-performance availability flow rule 
tables in the distributed blockchain SDN. 

•	  We have evaluated the performance of our 
proposed technique and compared it to the 
existing model with respect to various metrics.
The rest of the article is structured as follows. 

We discuss the proposed distributed secure archi-
tecture used for the IoT using the blockchain 
technique. We also present the architecture work-
flow and flow rule tables update technique in the 
distributed blockchain network. Next, we evaluate 
the proposed model based on different perfor-
mance metrics. Finally, we conclude the research.

DistBlockNet 
Distributed Secure Architecture 

According to the analysis in the previous sec-
tion for rapidly growing IoT networks created 
by the new communication paradigms, we have 
observed that the currently distributed network 
architecture, protocols, and techniques are not 
designed to meet the required design principles 
for future challenges and satisfy new service 
requirements. The speed and complexity of this 
development exponentially creates new catego-
ries of attacks; gathering known and mysterious 
threats; taking advantage of “zero-day” vulnera-

bilities; and using malware concealed in websites, 
documents, networks, and guests. At present, 
organizations need a single distributed secure 
architecture that includes powerful network secu-
rity devices with proactive, real-time protection 
with high performance to meet the analyzed 
design principles. In this section, we propose a 
novel distributed secure SDN architecture called 
DistBlockNet, its workflow, and a technique for 
updating high-performance availability flow rule 
tables in a distributed blockchain network. 

DistBlockNet Design Overview

DistBlockNet adopts distributed secure network 
control in the IoT network by using the block-
chain technology concept to improve security, 
scalability, and flexibility, without the need for a 
central controller. Figure 1 shows the global and 
local views of the proposed architecture. In the 
proposed architecture, all controllers in the IoT 
network are interconnected in a distributed block-
chain network manner so that each IoT forward-
ing device in the network can easily and efficiently 
communicate. Each local network view comprises 
OrchApp, Controller, and Shelter modules. The 
Shelter and OrchApp modules in each local net-
work handle the security attacks at a different 
level. OrchApp mainly functions at the manage-
ment or application layers, the controller-appli-
cation interface, and the control layer. Shelter 
operates at the data layer, the controller-data 
interface, and the control layer. The DistBlock-
Net architecture provides not only operational 
flexibility, but also proactive and reactive incident 
prevention based on the recurring threat land-
scape by inserting the rapidly changing, dynam-
ic, and high-performance OrchApp and Shelter 
modules. It offers a network infrastructure that 
is agile, modular, and secure. Protections must 
dynamically adapt to the threat landscape without 
having to include security administrators to man-
ually process a huge number of advisories and 
approvals. These insurances must coordinate well 
into the more extensive IoT environment, and the 
architecture must take on a protective stance that 
cooperatively leverages both savvy inside and out-
side sources. 

OrchApp: Its prime purpose is to offer pro-
gramming characterized fortifications and to set 
out them for execution at the appropriate appli-
cation layer enforcement points, whether imple-
mented using high-performance as host-based 
software on mobile devices, in the IoT network 
or the cloud. Security classifications incorporate 
access control, data protection, and threat intel-
ligence. Based on the underlying domain knowl-
edge from which security strategy plans are 
drawn, these methods vary. 

Access control implements a security con-
vention model of approved associations among 
resources and clients in the IoT network, as set 
up by the management layer. On the other hand, 
data protection focuses on the classification of 
data rather than on behavior and interaction. 
The management layer concludes the standards 
or strategies for data flows in the organization. 
Threat intelligence provides the understanding of 
threats and their behavior. It is powered by apply-
ing collaborative intelligence to real-time threats 
obtained from different communities.
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OrchApp provides the level of adaptability 
sought to adapt to the new and dynamic threats 
and modifies the enterprise network config-
urations. The application layer provides a solid 
platform that can execute assurances at the 
application points all throughout the enterprise. 
Because the protections are software-controlled, 
critical hardware deployed at these points of the 
application does not need to be exchanged when 
a new threat or attack technique is exposed or 
when new technologies are introduced in the 
industry. Protections should automatically take 
place in the threat landscape without requiring 
manual monitoring of the analysis of a large 
number of opinions and endorsements. This is 
accomplished by using an automated threat coun-
teractive action control that works together with 
the management layer that is only essential for 
human decision-making for when the threat indi-
cators offer less assurance about recognizing an 
attack or threat.

Shelter: Attackers often rank in the network to 
take advantage of the insider’s advantage points, 
and then launch attacks on the internal network. 
Given that our objective is to assert the appear-
ance of attacks on the network topology and the 
data plane and the aggression of identity of the 
flow rules or the strategies within the SDN, our 
threat system perfectly identifies the scenarios 
where the antagonist initiates attacks within the 
SDN. Thus, we designed the SDNs as a non-open 
system. Removing restrictions on unidentified 
external communications helps focus our analysis 
only on OpenFlow control packets or messages 
within the SDN because the OrchApp handles all 
of these issues in the DistBlockNet model.

Shelter is composed of a flow control analyzer 
and packet migration components. The analyzer 

component takes care of the main functionality 
of the network infrastructure as soon as the satu-
ration attack has occurred. Whereas, the packet 
migration component sends a benign network 
stream to the OpenFlow controller without over-
loading. As shown in Fig. 1, the module units 
define the flow analyzer as a control applica-
tion on the controller platform. Furthermore, the 
migration agent of the migration component is 
applied to a controller application between the 
control plane, the data plane, and an element of 
the cache data plane.

Parser: The attackers use the subset of Open-
Flow messages, such as Packetin, Flow_Mod, Fea-
tures_Reply, and Stats_Reply, in order to change 
the network’s view of the controller. Thus, to iden-
tify abnormal behavior, we extracted the import-
ant metadata by monitoring and parsing incoming 
packets. 

Graph Builder: To identify the attacks in the 
security policies resulting from the actual changes 
made to the system data plan, which is linked to 
each flowchart and to the topological exchange 
metadata, the graph builder analyzes the parsed 
dataset to construct and alter the flow diagrams 
that are connected to the network traffic. Our 
model retains the flows of logical and physical 
topologies and Flow_Mod transmission status 
messages to identify malicious update metadata. 

Verifier: We generated path conditions offline 
and reactive rules online. In order to reduce the 
overhead at runtime, we processed the path con-
dition generator to navigate the possible paths 
and to collect all path conditions offline. Online 
reactive rule generation monitors and assigns the 
current value of the global variables to the sta-
tus path. The input variables are symbolized in 
the path conditions, and the reactive flow rule 

Figure 1. Overview architecture of DistBlockNet.

OrchApp
Controller

Shelter

Controller 6

Controller 5Controller 4Controller 3Controller 2
Controller 1

Metadata feature set

Data plane cache Data storage Verifier
Admin

Threat
prevention

Data protectionAccess control

Migration agent

Network topology

Parser

Graph builder

Shelter

Controller

Local network view

OrchApp
Controller

Shelter

Local network view

OrchApp
Controller

Shelter

Local network view

OrchApp
Controller

Shelter

Local network view

OrchApp
Controller

Shelter

Local network view

OrchApp
Controller

Shelter

Local network view

Threat intelligence

Security policy

OrchApp

Local network view

Global network view

IoT forwarding devices

Distributed blockchain network

PACKET_IN

Communicating to shelter

Communicating to orchestrator

Relay to the
controller

Relay to the
controller

Analysis

Internal sources

External sources

Sources

STATS_REPLY FEATURES_REPLYFLOW_MOD

To identify the attacks 

in the security policies 

resulting from the 

actual changes made to 

the system data plan, 

which is linked to each 

flowchart and to the 

topological exchange 

metadata, the graph 

builder analyzes the 

parsed dataset to con-

struct and alter the flow 

diagrams that are con-

nected to the network 

traffic.



IEEE Communications Magazine • September 2017 81

dispatcher components are used to parse each 
status path. It is only with the paths that the final 
decision is taken into account in processing a 
small set of modifications to generate a status 
message. Finally, the reactive flow rules we need 
are established.

Migration Agent: The migration agent detects 
attacks and makes the appropriate decisions 
based on the type of alarms received. In order to 
generate new rules and migrate the missing table 
packet in the data cache, it triggers the flow rules 
of the parser during saturation attacks. It migrates 
all missing packets to the data plan cache during 
the generation of flow rules and the update stage. 
As a result, the controller does not overload itself 
with the flooding packets. Finally, it processes all 
the missed packets stored in the cache after the 
flow rules are updated. 

Data Plan Cache: During a saturation attack, 
it temporarily caches the missing packets. During 
flooding attacks, most flood packages are redi-
rected to the data plan cache to avoid flooding 
the controller. By using the classifier, Packetin 
generator, and buffer queue, it parses the header 
of the migrated packets and stores them in the 
appropriate queue.

Shelter Workflow

As shown in Fig. 1, the Shelter module has three 
different stages. In the first stage, in order to build 
a complete network view, Shelter monitors and 
parses all of the packets communicating with the 
controller and identifies the appropriate Open-
Flow packets. In the second stage, to build an 
incremental graph network with traffic flow, Shel-
ter analyzes all of these parsed OpenFlow pack-
ets to obtain the topological metadata and status 
of the transmission. Shelter mainly maintains the 
metadata feature set, the network topological 
state that is obtained from the OpenFlow pack-
et headers, actual measurements of traffic flow 
within network connections, and outbound flow 
path configuration directives, respectively. In the 
third stage, Shelter allows this metadata to flow 
against a set of acceptable metadata values col-
lected during the flow period, administrative rules, 
and strategies. Shelter identifies known attacks 
through policies specified by the administrator, 
although it uses precise flow activities obtained 
over time to detect unplanned and possibly mali-
cious activity. 

Shelter does not issue an alarm signal when it 
detects a new flow behavior. Alternatively, Shelter 
prompts an alarm signal when it detects untrusted 
entities that invoke modifiers to the existing flow 
behavior or where the flow resists any rules or 
security rules specified by the administrator. Also, 
Shelter will not raise any alerts on flow reroutes 
because they are generated by FLOW_MOD 
messages from the trusted controller. This dras-
tically reduces the alerts that can occur if the 
recognition of each new behavior is signaled, 
which is possible in growing networks. However, 
malicious activity will be noticed by looking back 
when Shelter later reports authentic activities as 
being dubious, only to be deemed illegal by the 
administrator. Shelter can identify such false links 
by allowing the flow metadata data plan transfer, 
which collects the flow charts of valid network 
traffic along a path in the flow graph. Specifical-

ly, Shelter applies a custom algorithm to monitor 
and perceive the bytes of stream statistics by col-
lecting STATS_REPLY messages at each switch in 
the flow path and determines whether the switch-
es are diverging values of the transmitted byte 
account.

The Updating of Flow Rules Table in the 
Distributed Blockchain Network

Figure 2a shows the overall DistBlockNet distrib-
uted blockchain network. The distributed block-
chain network includes the controller/verification 
and request/response nodes. The verification 
node denotes the controller in the blockchain 
network, which maintains the updated flow rules 
table information in its own database. Request/
response nodes are the IoT forwarding devices, 
which update its flow rules table in a blockchain 
network. IoT forwarding devices can be a request 
node or a response node. If a node requests its 
flow rules table, the node becomes a request 
node. At the point when a node sends a request 
message to update its flow rules table, the rest 
of the other normal nodes are considered to 
be response nodes from the viewpoint of the 
requesting node. 

Figure 2b shows the DistBlockNet architec-
ture model flow rules update in the distributed 
blockchain network. When an IoT forwarding 
device starts its flow rules table update by broad-
casting a request packet with a version check, 
it views it as a request node. Once the version 
verification request packet is broadcasted in the 

Figure 2. Updating scheme of flow rules table: a) distributed blockchain net-
work; b) flowchart of flow rules table update.
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distributed blockchain IoT network, the rest of 
the IoT forwarding devices (i.e., response node 
and all controller/verification nodes) will respond 
to the request packet of the version verification. 
The response process varies depending on the 
node type. In the case of the controller/verifica-
tion node, it checks whether the request packet 
node has the up-to-date flow rules table or not. 
The controller/verification node also checks the 
integrity of the flow rules table if the requesting 
node has the up-to-date flow rules table. Oth-
erwise, the controller/verification node sends a 
response packet with the latest version of the flow 
rules table to the requested node. 

In another case, when the response node 
receives the request, it checks the request’s 
node version of the flow rules table with its own 
flow rules table version. If both the request and 
response nodes have the same version of the 
flow rules table, the response node requests the 
other nodes in the distributed blockchain net-
work to verify the hash value of the flow rules 
table of the requested node. If the response 
node gets the confirmation of the hash value 
from the other nodes in the network (i.e., proof-
of-work), the response node believes that the 
flow rules table is correct and sends the respond-
ing packet to the requested node. In another 
case, when the request and response nodes 
have a different version of flow rules tables, the 
response node checks whose flow rules table is 
the latest version. If the response node has the 
latest version, it will send the response packet to 
the requesting node with the latest version of the 
flow rules table. Otherwise, when the response 
node has a lower version of the flow rules table, 
it updates its own flow rules table from the 
request node packet.

Performance Evaluation
In this section, we present the details of the imple-
mentation, experimental environment, and eval-
uation of DistBlockNet. We carried out different 
experiments to evaluate the scalability, defense 
effects, accuracy, and efficiency of our proposed 
DistBlockNet architecture model.

Scalability

To assess the scalability of the DistBlockNet 
model, large-scale experiments are presented in 
this subsection with a cluster of 6 Intel i7 3.40 
GHz with 16 GB RAM servers. We built a dis-
tributed blockchain network with 6 controllers/
verifications and 6000 request/response nodes, 
as shown in Fig. 3a. We used the OpenFlow soft-
ware switch instead of the OpenVSwitch because 
when a large number of switches are emulated, 
OpenVSwitch does not scale well. To compare 
the performance of the flow rules table update 
scheme of our proposed DistBlockNet model in 
a large-scale network, we also built a normally dis-
tributed SDN network. Figure 3b shows the result 
of the flow rules table update time with respect to 
the packet-in arrival rate in both the DistBlockNet 
model distributed blockchain network and distrib-
uted SDN network. In this experimental result, we 
observed that our proposed DistBlockNet model 
constantly performed superior to the distributed 
SDN network as the rate of the packet-in arrival 
increased. 

Defense Effects

To assess the defense effects of our DistBlockNet 
model, we evaluated and compared it with an 
existing OpenFlow network by considering both 
software and hardware test environments [15]. 
We used the MININET SDN emulation tool for 
the software environment. We used the POX con-
troller, OpenFLow switch, and server machines to 
implement clients and data plane caches in the 
hardware environment. We used some clients to 
dispatch a UDP floating attack to the switches. 
We measured the bandwidth of clients without 
and with flooding attacks generated by some cli-
ents at different speeds to the switch. We evaluat-
ed the impact on the bandwidth with and without 
the DistBlockNet model in both software and 
hardware environments separately because both 
environments have different capabilities. 

In the software test environment, as shown in 
Fig.4a, we noticed that the bandwidth starts at 1.9 
Gb/s without the presence of any attacks. When 
we started dispatching flooding attacks, the band-

Figure 3. DistBlockNet performance on a large-scale network: a) distributed blockchain network with 6 controllers and 6000 nodes;  
b) flow table update time vs. packet-in arrival rate.
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width decreased rapidly with an increase in the 
attack rate. The bandwidth went down to almost 
half when the packet-in arrival rate reached 800 
packets/s. The entire network started malfunc-
tioning when the packet-in arrival rate reached 
3000 packets/s. On the other hand, using the 
DistBlockNet model, the bandwidth started at 1.9 
Gb/s without the presence of an attack, and after 
the packet-in arrival rate reached 3000 packets 
per second, the bandwidth remained practically 
unchanged. 

Figure 4b shows the results in the hardware 
test environment. In the hardware test environ-
ment, the bandwidth started at 9.5 Mb/s both 
with and without using the DistBlockNet model 
with any attack. In this experiment, we noticed 
that the bandwidth without using the DistBlock-
Net model went up to half when the attack rate of 
the packet-in arrival rate reached 1000 packets/s 
and started malfunctioning when the attack rate 
reached 5000 packets/s. While using the Dist-
BlockNet model, the bandwidth was maintained 
above 9 Mb/s until the packet-in arrival reached 
1600 packets/s. After that, the bandwidth started 
to go down because the ternary content address-
able memory was not available in our switch. We 
used the OpenWRT software tool in place of the 
ternary content addressable memory to execute 
a flow rule table. Although a software-based flow 
rule table is not able to achieve a similar level of 
performance, we still noticed that DistBlockNet 
conserves resources and provides significant pro-
tection.

Accuracy

We evaluated the accuracy rate of the detection 
of DistBlockNet under two different parameters 
with one in the real-time identification of attacks 
and another in the presence various traffic and 
many distinctive defects in the system. The Dist-
BlockNet model has the ability to identify every 
attack quickly. In the case of real-time identifica-
tion, synthetic faults were used in parallel with 
the suitable traffic with 6K for the Mininet emul-
sified hosts on our physical testbed. Here we 
viewed the detection time as the time required 
for issuing of an alert from the moment when the 
DistBlockNet model received the offending pack-

et. We used the custom traffic generator, which 
generates 1500 FLOW_MOD/sec. ARP attacks 
and fake topology are easily identified when the 
PACKETiN messages are processed. The detection 
times may fluctuate because in order to recognize 
DDoS/DoS attacks, DistBlockNet occasionally 
runs the flowchart validator and, as a result, the 
flow diagram size increases. In another case, we 
used Mininet to increase the number of hosts to 
30K. Then we propelled DDoS, ARP poising, and 
fake topology attacks throughout the distributed 
blockchain network. We reiterated each examina-
tion more than 15 times and noticed that under 
the distinctive topologies, DistBlockNet effectively 
recognized each of the issues.

We ran a pessimistic scenario on the false 
alerts raised for a given d using conflicting TCP 
iperf streams. The fair nature of the TCP will 
create fluctuations in flow to cause changes in 
the switches along the flow path, which would 
raise some precautions. As shown in Fig. 5a, we 
observed that with the increase of d, the probabil-
ity of false alarms occurring decreases.

The recall and precision are zero due to the 
absence of a true positive. In these experiment 
results, we observed that at the default value of d 
= 1.06, there were 7 alarms out of 10 competing 
flows over 6 min. We also performed this experi-
ment on our physical testbed and obtained com-
parable results. 

To assess the absence of real alerts for a given 
d, we defined the ratio between the number of 
checks that did not raise alerts to the total num-
ber of checks that raised alerts during verifica-
tion. We evaluated the above metric among the 
Mininet hosts for controlled flows, which are eight 
hops apart. As shown in Fig. 5b, we observed 
that the absence of real alerts during verification 
increases as d increases. For a given d, the recall 
and precision are identical, which is equal to one 
minus the probability of the absence of real alerts 
at every data point.

Overhead Analysis

To evaluate the performance overhead of our 
DistBlockNet model, we used l2 learning and l3 
learning applications and recorded CPU utiliza-
tion during a flooding attack. We simultaneously 

Figure 4. Effects on bandwidth during different attack rate in: a) software environment; b) hardware environment.
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executed these two applications and used some 
clients to act as attackers and propelled the satu-
ration attack with a rate of 500 packets/s with a 
DistBlockNet model in the hardware environment. 
For each application, we monitored the consump-
tion of the resources. Figure 6 shows the average 
CPU utilization for all the controllers for different 
applications with the DistBlockNet model during 
flooding attacks. The flooding attacks began at 
about 0.5 s, and we noticed that CPU utilization 
quickly increased for each application. Then CPU 
usage started to slowly decrease after we installed 
the migration rules of flow. Based on the results, 
we observed that DistBlockNet provides effective 
protection and creates a more secure distribut-
ed network without consuming many resources 
during a saturation attack.

Conclusion
In this article, based on an analysis of the challeng-
es that large-scale IoT networks face due to new 
communication paradigms, DistBlockNet, a new 
distributed secure IoT network architecture consist-
ing of an SDN base network using the blockchains 
technique, has been proposed to address the 
current and future challenges and to satisfy new 
service requirements. DistBlockNet improves a sys-
tem’s performance and capacity. The core role of 
the DistBlockNet model is to generate and deploy 

protections, including threat prevention, data 
protection, and access control, and mitigate net-
work attacks such as cache poising/ARP spoofing, 
DDoS/DoS attacks, and detect security threats. 
The DistBlockNet model also focuses on reducing 
the attack window time by allowing IoT forwarding 
devices to quickly check and download the latest 
table of flow rules if necessary. The performance 
evaluation is based on scalability, defense effects, 
accuracy rates, and the performance overheads of 
the proposed model. The evaluation results show 
the efficiency and effectiveness of the DistBlock-
Net model and have met the required design prin-
ciples with minimal overhead.

In the future, we will extend our research work 
to build a distributed cloud computing architec-
ture with secure fog nodes at the edge of the IoT 
network.
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