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Abstract—Deploying applications to a centralized cloud for 
service delivery is infeasible because of the excessive latency and 
bandwidth limitation of the Internet, such as transporting all 
IoVs data to big data processing service in a centralized cloud. 
Therefore, multi-clouds, especially multiple edge clouds is a 
rising trend for cloud service provision. However, heterogeneity 
of the cloud service, complex deployment requirements, and large 
problem space of multi-clouds deployment make how to deploy 
applications in the multi-clouds environment be a difficult and 
error-prone decision-making process. Due to these difficulties, 
current SLA-based solution lacks a unified model to represent 
functional and non-functional requirements of users. In this 
background, we propose a QoS-driven IoVs application 
optimizing deployment scheme in multimedia edge clouds 
(QaMeC). Our scheme builds a unified QoS model to shield off 
the inconsistency of QoS calculation. Moreover, we use NSGA-II 
algorithm as the solution to the multi-clouds application 
deployment problem. The implementation and experiments show 
that our QaMeC scheme can provide optimal and efficient 
service deployment solutions for a variety of applications with 
different QoS requirements in CDN multimedia edge clouds 
environment. 

Keywords—IoVs (Internet of Vehicles); IoT(Internet of Things);  
Optimizing Deployment; Cloud Computing; Edge Computing; 
Multi-clouds; QoS; CDN 

I.  INTRODUCTION 

The new era of the Internet of Things is driving the 
evolution of conventional Vehicle Ad-hoc Networks into the 
Internet of Vehicles (IoVs). With the rapid development of 
computation and communication technologies, IoV promises 
huge commercial interest and research value, thereby attracting 
a large number of companies and researchers [1]. IoVs is 
expected to analyze and utilize the various information, 
especially multimedia inside and outside vehicles itself through 
wireless communication techniques. Currently, deploying 
applications to a centralized cloud for service delivery is 
infeasible because of the excessive latency and bandwidth 
limitation of the Internet, especially it is difficult to move all 
IoVs data to the centralized cloud for IoVs application. A 
promising approach to addressing the challenges for 
application deployment is “edge cloud” that pushes various 
computing and storage capabilities to multiple edge clouds. 
The edge cloud refers to building open cloud infrastructure in 
the network edge close to the clients or data source side. It 
offers network, computing and storage resources. It provides 
intelligent edge services to meet the critical needs of the digital 
industry, including IoT data localized analysis, agile 
connection, real-time traffic, data optimization, nearest 
calculation etc. 

If customers use edge clouds, they usually use distributed 
multi-clouds architecture. Multi-clouds has become a hot topic 
in the past several years. In most cases, multiple types and 
brands of cloud deployment are not only reasonable but also 
able to offer better value than single cloud deployment. In the 
industry, more and more companies are implementing multiple 
cloud computing platform development strategies to avoid 
being limited to a single supplier, to enhance available service 
deliverability, to avoid arbitrage or maintain specific control 
over sensitive information. In one scenario, a user may choose 
Amazon Web services (AWS), simple storage service (S3) as 
storage, Rackspace OnMetal for cloud database, Google for 
data systems, and a private cloud based on OpenStack to 
manage sensitive data and applications. All these resources 
work together to establish one or more systems, allowing 
companies to meet specific needs. 

The cloud market is complicated due to complex 
deployment requirements, as well as a variety of resource 
specifications. It is a tricky decision process and error-prone 
for the users to choose the optimal deployment with their own 
requirements, especially for multi-clouds deployment. There is 
no such a corresponding service mechanism in the cloud 
service system which helps users to decide how to select the 
fittest services for their own applications. It is hard for the 
users to evaluate SLA, which is a collection of contents and 
provisions. If there is a broker mechanism between users and 
cloud service providers, it will solve the problem. The 
mechanism can not only provide the most economical, suitable 
cloud services for users but also reduce resource fragments of 
cloud service providers, increasing resource utilization. This 
can lead to reaching more SLAs. Meanwhile, the introduction 
of such a mechanism further improves the service system, 
increasing the level of cloud services. The main reason why the 
broker mechanism doesn’t exist is that the current multi-clouds 
systems lack a unified description of the QoS level - both 
functional and non-functional requirements for the users.  

  Edge computing allows data computing, storage, and 
service supply to be moved from central cloud to the local edge 
devices such as smartphones, smart gateways or routers and 
local PCs or micro-datacenter. Thus, edge computing supports 
IoT big data localized processing regarding high scalability, 
low delay, location awareness, and allowing of using local 
computing capabilities in real time. CDN (content delivery 
network or content distribution network) is a typical 
representative of edge computing, and CDN serves people 
mainly through accelerating distribution of pictures, video, and 
dynamic content to the edge end user. Now, with the 



development of the Internet of things, a large number of things 
are deployed on the more edge of the network, and their uplink 
and downlink data need to be speeded up, such as sensors and 
IoVs. Akamai, the largest provider of CDN, has begun to 
propose a CDN solution for IoT. CDN’s network needs to sink 
further to speed up the acceleration of IoT and IoVs[34]. In this 
paper, we present QaMeC: a QoS-driven IoVs application 
deployment scheme in multimedia edge clouds based on CDN. 
The broker system, proposed in this paper, builds a unified 
QoS model to shield off the inconsistency of QoS calculation 
process. Since QoS specification contains various functional 
and non-functional complex metrics, users have various 
requirements. The broker system can integrate multiple cloud 
providers’ solutions for users to make optimal decisions to 
satisfy their requirements. Moreover, this can solve the 
deployment problem greatly for non-expert users who are not 
familiar with cloud computing. 

Our main contributions in this paper are listed below: 
 We propose a novel QoS-driven IoVs application 

service optimizing deployment scheme in CDN 
multimedia edge clouds environment (QaMeC). 

 The proposed service demand model and QoS model 
can provide a complete description of user requirements. 
It gives a quantitative description of the service request 
and delivery. The QoS data is retrieved from the PoPs 
log data of the real CDN operator network, which 
ensures the objectivity for the users, overcoming the 
drawbacks of the SLA-based solution. 

 The designed NSGA-II algorithm is applied to search 
for the best deployment plan for the users, to reduce the 
vast problem space of the combinatorial optimizing 
decision-making problem. 

We organized the remainder of this paper is as follows:  
In Section I, we introduce the background of our work and 

explain why our work is valuable. In Section II, we review the 
related works. In Section III, we present QaMeC architecture: 
QoS-driven IoVs application deployment Scheme in 
multimedia edge clouds environment. In Section IV, we design 
the QoS models to help users to deploy service in multiple 
edge clouds environment. In section V, we define the problems 
and design the related algorithms. In section VI, we evaluate 
our QaMeC application deployment scheme on in a real 
multiple edge clouds environment, including OpenStack and 
CDN. Finally, in Section VII we conclude our works and 
discuss possible future work. 

II. RELATED WORK 

The consumption of resources and services from multiple 
clouds or edge-clouds for reasons like high availability, cost 
reductions or special features is a natural evolution from in-silo 
clouds. Several middlewares are already available for multiple 
Clouds. However, due to the complexity of the technical 
solutions, their approaches are quite different and a 
classification is needed to guide the potential users. The paper 
[1] looks to the reports on multiple cloud topics and proposes a 
specific taxonomy. It identifies the ready-to-use software and 
services and classifies them according the taxonomy. The 
famous network industry's top conference Infocom2014 first 
set up a CrossCloud Workshop, which gathered some of the 

experts and scholars to discuss the rise of cross-cloud 
technology, specifically pointed out some new challenges and 
problems in this field. Dana Petcu [3] et al. summarizes the 
present requirements and main technical challenges of multi-
clouds architecture, and the current multi-clouds architecture 
development tools, such as JCloud, LibCloud, Delta -Cloud, 
and the paper describes that the cloud service quality guarantee 
is currently the controversial topics in multi-clouds scenarios, 
and suggests a model-driven method as a feasible solution for 
complicated tasks under the multi-clouds architecture. Our 
paper also proposes a QoS-driven application optimizing 
deployment scheme in multi-clouds environments. Felix 
Cuadrado et al. [4] illustrate the major challenges of fully 
implementing the multi-clouds architecture application. Now 
most cloud providers offer heterogeneous API. A cross-cloud 
infrastructure is designed as the federation of multiple cloud 
datacenters, offered by potentially multiple providers, with 
homogeneous APIs for acquiring virtual resources on demand. 
This model benefits application providers, which expect to 
reduce cost and avoid vendor lock-in. In [5], Wagle devised a 
broker layer to consider both SLA commitment and service 
delivery for cloud services recommendation. There is a survey 
by Bandar [6] which compares the existing brokers and 
highlights the key features that must be available regarding 
optimizing QoS and SLA. Our paper uses the Broker approach 
to provide a unified QoS representation to connect multiple 
heterogeneous clouds. Hitoshi Yabusaki [7] points out 
federating various clouds enables to utilize datacenters in 
various geographical regions regardless of their services. The 
response time can be reduced by replicating the applications 
and related data at datacenters near the terminals by 
considering the factors of delay (e.g., data synchronization, 
distribution of multi-tier applications, and influence of other 
applications). They design the mechanism of wide area 
tentative scaling (WATS) to improve the response time in a 
phased manner by repetitively replicate a part of the application 
and related data at other datacenters and selecting a better 
organization. Evaluation results showed that WATS 
successfully decreased the response time in a phased manner. 
Indeed, reducing the response time of multi-clouds applications 
is a common concern for developers and users. In ACM 
Computing Surveys (CSUR) 2014, Adel and Buyya published 
papers [8] "Interconnected Cloud Computing Environments: 
Challenges Taxonomy", made a comprehensive summary and 
survey on the interconnected cloud technology. This survey 
initially discusses all the relevant aspects motivating cloud 
interoperability. Furthermore, it classifies possible cloud 
interoperability scenarios and architectures. The spectrum of 
challenges and obstacles that the inter-cloud realization is faced 
with are covered, including resource supply provisioning, 
mobile portability, SLA, security, monitoring, economy, 
network, and autonomics. In our paper, we mainly focus on the 
SLA issue between cloud providers and application service 
providers. This paper [9] presents the MUSA deployer models, 
which help developers to express their security requirements, 
and a deployer tool that automatically provides cloud security 
services to offer Security SLAs. Duplyakin et al. [10] present 
an environment that is in charge of multi-clouds deployment 
rebalancing by terminating instances, in lower-preferred clouds 
and launching replacement instances in higher-preferred clouds 



to satisfy user preferences. They consider three rebalancing 
policies: 1) only idle excess instances are terminated, 2) excess 
instances are terminated gracefully, and 3) worker instances are 
aggressively terminated, even if they are running user jobs. To 
verify the effectiveness of their rebalancing strategy, they 
evaluate these policies in a master worker environment 
deployed across multiple NSF FutureGrid clouds and test the 
ability of the policies to rebalance multi-clouds deployments 
appropriately, and analyze trade-offs. Castillo et al. [11] carries 
out the integration of OpenStack-based platforms into larger, 
heterogeneous multi-clouds infrastructures, taking the EU FP7 
BonFIRE project as an integration use case. Ultimately, they 
aim to contribute to the state of the art and provide guidelines 
to integrators trying to federate Open Stack testbeds into more 
complex architectures. Wu, Zhe et al.[12] try to recognize the 
opportunity for aggressively minimizing user-perceived 
latencies by deploying web services across multiple cloud 
services. With the aid of measurements over 5 weeks from 265 
PlanetLab sites to three popular cloud services, they 
demonstrated that web services that span multiple cloud 
services can reduce latencies by over 20% for users in up to 
50% of prefixes. Furthermore, they showed that users in 
several regions will experience high latencies even if web 
services take advantage of multiple cloud services, and that 
multi-clouds deployments will necessarily have to replicate 
data to optimize user-perceived latencies. Our paper also 
focuses on optimizing the selection of cloud providers to 
reduce the latency for users to visit application in a multi-
clouds environment. Although service allocation based on SLA 
has been well investigated in cloud computing so far, the new 
upcoming issues regarding to utilize multiple clouds has led to 
new challenges. Therefore, the paper [13] deploys and manages 
distributed cloud applications through the combination of 
TOSCA and CAMP.  In  [14], Alshammari et al. point out the 
advantages of data recovery in cost and reliability in the multi-
clouds environment. Farokhi et al.[15] looks at the service 
selection and allocation in a multi-clouds, as a delivery model 
of multiple clouds, from the perspective of SaaS provider. The 
designed framework assists SaaS providers to find suitable 
multi-clouds infrastructure services which best satisfy their 
requirements while handling SLA issues. They present an 
overview of the complete system and describe how the services 
are selected and the corresponding SLAs are monitored to 
detect the SLA violations. The orchestration of application 
components across heterogeneous cloud providers is a 
complicated process. In [16], Jie Yang et al. propose a resource 
allocation policy that maintains the highest level of security 
using the genetic algorithm. The hybrid cloud(private cloud 
plus public clouds) is a major form of multi-cloud. In the 
paper[17], to cost-effectively withstand flash crowds with soft 
guarantee, Niu Yipei. et al. propose a solution that makes 
intelligent and efficient decisions on scheduling requests in the 
hybrid cloud and adjusting the capacity of the public cloud. In 
the paper[18], Niu Yipei. et al. utilize the queueing theory to 
evaluate the average response time and explore the tradeoff 
between performance and cost in the hybrid cloud. By taking 
advantage of Lyapunov optimization techniques, they design 
an online decision algorithm for request distribution which 
achieves the average response time arbitrarily close to the 
theoretically optimum and controls the outsourcing cost based 

on a given budge. The simulation results demonstrate in a 
hybrid cloud, their method can reduce cost of e-commerce 
services as well as guarantee performance when encountering 
flash crowds. In [19], liu fangming et al. propose a cost-
effective service for hybrid cloud applications, which selects 
the best public cloud for out-sourcing and adapts cloud price 
changes dynamically, along with provisioning global load 
balancing. The system uses a two-tier load balancing 
mechanism, provisioning virtual machine (VM) and cloud level 
load balancing. Existing multi-cloud solutions cannot well 
address the performance issue, their networking performance is 
degraded by the slower clouds, tang haowen et al.[20] provide 
affirmative answers through the design and implementation of 
UniDrive, a CCS app that synergizes multiple CCSs into a 
multi-cloud with better sync performance, reliability, and 
security. 

At the same time, the centralized cloud architecture needs 
to be marginalized and decentralized. Therefore, multiple edge 
clouds architectures are emerging. In Error! Reference source 
not found., the authors presented Nebula: a distributed cloud 
infrastructure that uses voluntary edge resources for both 
computing and data storage. They described the lightweight 
Nebula architecture that enables distributed data-intensive 
computing through some optimizations, including location-
aware data and computation placement, replication, and 
recovery. The authors verified Nebula's performance on an 
emulated volunteer platform that spanned over 50 PlanetLab 
nodes distributed across Europe and showed how MapReduce 
can be deployed and run on Nebula, as the standard data-
intensive framework. They verified that Nebula MapReduce is 
robust for a wide array of failures and substantially 
outperforms other wide-area versions based on a BOINC-like 
model. 

Currently, the centralized cloud is facing increasing 
difficulty to handle the IoT (including IoVs) big data while 
moving all IoT data to the cloud. Edge computing allows data 
computing, storage, and service supply to be moved from 
central cloud to the local edge devices such as smartphones, 
smart gateways or routers and local PCs or micro-datacenter. 
Thus, edge computing supports IoT big data localized 
processing regarding high scalability, low delay, location 
awareness, and allowing of using local computing capabilities 
in real time. Ola Salman et al. [22] proposed that the primary 
objective of Mobile Edge Computing (MEC) solution was 
export of central cloud capabilities to user's proximity for 
decreasing latency, augmenting available bandwidth and 
decreasing traffic load on the core network.  

Weisong et al.[23] described that the success of IoT and 
rich cloud services have helped to create the need for edge 
computing, in which data processing occurs in part at the 
network edge, rather than completely in the centralized cloud. 
Edge computing could address concerns such as latency, 
mobile devices' limited battery life, bandwidth costs, security, 
and privacy. Stream Processing Frameworks (SPF, e.g., 
Apache Storm) often failed in addressing certain requirements 
of IoT systems. Apostolos et al.[24] described topology-aware 
SPF extensions, which can eliminate latency requirement 
violations and reduce cloud-to-edge bandwidth consumption to 
1/3 comparing to Apache Storm. 



Service deployment in multiple edge clouds must contain 
service composition. Composite services typically involve the 
assembly and invocation of many pre-existing services 
possibly found in diverse enterprises to complete a multi-step 
business interaction. Compared to single cloud service, 
composite cloud service, which integrates multiple cloud 
services, can offer more value.  While researching composite 
cloud service is in its early stage, there is related research in 
Service Level Agreement (SLA) based web service selection in 
cloud environment [5] [25] . These research propose many 
methods of selecting the appropriate composition of services, 
many of which use AI planning algorithm. However, these 
existing methods only consider the functional requirement, 
neglecting non-functional requirements. There are also some 
preliminary results concerning QoS based service selection. 
The paper [26] is the review of related research in selection 
methods. In the paper [27], we propose a CDN multi-clouds 
resource allocation scheme based on real CDN log data 
analysis on Spark. We firstly design a QoS model and run 
long-term deployment algorithm to deploy resources at the 
minimum cost while keeping good QoS. Secondly, we make 
predictions on requests and allocate resource by prediction 
result in short term. Thirdly, we run the extended algorithm to 
handle inaccurate prediction when the number of requests is 
high and use pre-copying algorithm to decide which content to 
deploy in the new VMs. From the evaluation result, long-term 
deployment algorithm can reduce the cost with the same QoS, 
compared with the actual situation and the prediction is 
accurate in most time and the extension algorithm can make up 
for the inaccuracy and responds timely. In paper [28], we 
propose and evaluate IoTDeM, which is an extended IoT big 
data-oriented model for predicting MapReduce performance in 
multiple edge clouds. IoTDeM can predict MapReduce jobs’ 
total execution time in a general implementation scenario with 
varying reduce amounts and cluster scales in Hadoop 2.0. 
Through choosing more representative features to represent a 
job, the IoTDeM model selects a cluster scale as a crucial 
parameter to further extend LWLR model. The experiments 
show IoTDeM can effectively predict the total execution time 
of MapReduce applications with the average relative error of 
less than 10% in Hadoop 2, rather than Hadoop1. In paper[29], 
chen min et al. propose an innovative paradigm called 
Cognitive Internet of Vehicles (CIoV) to enhance 
transportation safety and network security by mining effective 
information from both physical and network data space. They 
focus on crucial cognitive design issues from three perspectives, 
namely, intra-vehicle network, inter-vehicle network and 
beyond-vehicle network. Simulations are then conducted to 
prove the effect of CIoV.  In paper[30], chen min et al. propose 
a new concept of computing task caching and design the 
optimal computing task caching policy. Furthermore, joint 
optimization of computation, caching, and communication on 
the edge cloud, dubbed Edge-CoCaCo, is proposed based on an 
alternating iterative algorithm. In paper[31], chen min et al. 
design an innovative framework of task offloading for mobile 
edge computing in Software Defined Ultra-Dense Network. By 
deploying controller at macro cell BS, the global information 
about mobile devices, base stations, edge cloud and tasks can 
be obtained, and thus enabling the optimal task offloading of 
mobile devices. 

III. QAMEC ARCHITECTURE 
There are many kinds of software that supports application 

and service automation deployment over multiple cloud 
services. However, most of them only provide a management 
interface, without giving optimizing deployment plans. 

In smart city IoVs application, vehicles connected in the 
IoT have many challenges in data collection, transmission and 
processing. Here, we propose QaMeC-the QoS-driven IoVs 
application deployment scheme in multimedia edge clouds 
environment to help users make optimized deployment 
decisions. In this paper, we mainly focus on the IoVs 
application deployed on CDN multiple multimedia edge clouds. 
CDN is a typical edge cloud. A CDN is a geographically 
distributed network of proxy servers and their data centers. The 
nodes of the CDN include the upper layer backbone and the 
lower layer edge nodes. The edge nodes of CDN are called PoP 
(point of presence). Therefore, the target scenario is that one 
IoVs service provider will deploy their service on CDN 
multiple PoP edge clouds. 

Figure1 describes the total QaMeC architecture, including 
three layers in the system.  

The first layer is the Client Layer. User interface makes it 
convenient for the users to propose their service deployment 
requirements for hardware, software, QoS etc. 

The second layer is Broker layer. This layer has several 
components. This part is the key to carry out multi-clouds IoVs 
application deployment driven by QoS. 

In the Broker layer, service demand model represents user’s 
service deployment requests. We map user’s service 
deployment requirement to two-dimensional vector matrix, one 
vector is the identified serial number of PoP, the other vector is 
time T. Each element of the matrix represents the amount of 
visiting a PoP point at a certain time T. 
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Figure 1. QoS-driven IoVs Application deployment Architecture in multimedia 

edge clouds environment 

QoS Model is responsible for quantifying QoS, whose 
evaluation data is from the monitors located in every PoP edge 
cloud. Deployment target model defines specific service 
configuration goals for users, such as the deployment target for 
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 For every deployment plan, the system will maximize the 
QoS of deployed service. The QoS performance is denoted as 
ܳ ൌ	 ሺܳଵ, ܳଶ,… , ܳ௣ሻ, where ܳ௨ can be any QoS metrics that 
can characterize some aspects of the service’s QoS. 

In economics, utility function can be used to represent 
preference. It measures consumer satisfaction. In this paper, we 
use utility function to measure user satisfaction towards cloud 
services. We use exponential function to emulate user 
preference towards a particular QoS standard. Every sub-goal 
is represented by ௜ሺܳ௜ሻݑ . The function value is the 
corresponding utility coefficient. ( )iq x  is the value of QoS 

metrics model of corresponding service item. The utility 

coefficient is between 0 and 1. When ( )iq x implies satisfaction， 

1iu  . When ( )iq x implies non-satisfaction， 0iu  . Users 

may have different psychological preference towards different 
service objects. ߙ௡ is the psychological preference that is set by 
the users. By linearly map the QoS vector to a utility, we can 
model the satisfiability for the QoS. 

U ൌ ∑ ௜ሺܳ௜ሻݑ௡ߙ	
௣
௡ୀଵ 		ሺ1ሻ	

At the same time, users should input their acceptable range 
of each metric, which can be denoted by ܳ௜

∗. 

B. Model of Deployment Target 

We use a weighted directed graph G(V, E) to represents 
the infrastructure we want to deploy on, where V is the set of 
vertices denoting the PoPs. |V| ൌ k.  E is the set of edges 
denoting links between PoPs. The weight is a QoS vector 
between two PoPs. We define these concepts as following: 

ܩ ൌ ሼV, Eሽ	
ܸ ൌ ሼݒ௜	|0 ൑ ݅ ൑ ݇ሽ 

E ൌ ሼሺݒ௜, ௝ሻ|0ݒ ൑ i, j ൑ kሽ (2) 
For every ሺݒ௣, ௤ሻݒ ∈ E, we assign a QoS vector that 

characterize the service quality that the users of ݒ௣ can expect 
of the service that ݒ௤ can get provide. The measurement is 
done between every pair of PoPs, so G is a fully connected 
graph. 

C. Model of Service Demand 

When deploying an application, we should consider how 
much amount the service is demanded  

Consider a time period of  T = {1, 2, · · · ,n}. We denote 
the traffic demands of PoP i at time t using the following set: 

ܦ ൌ ሼ݀௜ሺݐሻ|	0 ൑ ݅ ൑ ݇, ݐ∀ ∈ ܶሽ			ሺ3ሻ	
 
D. Model of Service Supply 

When the users request service, the demand will send to 
the PoPs according to a service plan. For instance, 80% of the 
service demand of the users of Shanghai will served by the 
PoP located in Shanghai. The rest of the service demand will 
be scheduled to other area like Jiangsu. While a specific user’s 
request can be schedule dynamically based on real-time 
infrastructure status, there is a long-term plan how it can be 
served in general. 

Next, we define a three-dimensional variable named traffic 
supply fraction as: 

ܵ ൌ ሼݏ௜,௝ሺݐሻ, 0 ൑ ݅, ݆ ൑ ݇, ݐ∀ ∈ ܶሽ  (4) 

Where ݏ௜,௝ሺݐሻ  denotes the fraction of service demands at 
PoP  i supplied by PoP j at time t. Each PoP can supply service 
to itself. 

From the definition of s, we can derive a constraint: 

∑ ሻݐ௜,௞ሺݏ ൌ 1௞
௡ୀଵ   (5) 

E. Model of Service Capacity 

When deploying applications, we should consider the 
maximum capacity that a specific PoP can provide. The 
amount of resources we allocate for an application should not 
exceed its maximum capacity. 

We use a capacity vector to represent the of service 
capacity of Service Providers as: 

C	 ൌ 	 ሾܿଵ, ܿଶ,൉	൉	൉	, ܿ௞ሿ   (6) 
in which ܿ௜ denotes the limit capacity of a given PoP. c is an 
abstraction determined by the servers and network equipment 
that the service providers can provide. 

At any time, the service deployed at a PoP cannot exceed its 
maximum capacity: 
 ∀i, t, k, ݀௜ሺݐሻ	ݏ௜,௞ሺݐሻ ൑ ܿ௞   (7) 

F. Model of  Unit Service Price 

When allocating the resource, we should consider unit 
service price of a cloud provider that can have. The unit 
service price comprised of leasing of cpu, memory and 
bandwidth. The cost model can vary depending on the 
application type. There are many factors that will influence the 
cost of a PoP in different places. We abstract these details by 
assigning a unit service price ௜ܷ	to every PoP ௜ܸ. We estimate 
the cost of a service provided by a PoP by: 

௜ݐݏ݋ܥ ൌ ∑ 	݀௜	ሻݐ௜,௞ሺݏ ௜ܷ
்
௧ୀଵ 				 (8)	

 
From the definition above, we can calculate the overall 

cost: ݐݏ݋ܥ௢௩௘௥௔௟௟ ൌ ∑ ∑ ௜௞ܥ
ଵ

்
௧ୀଵ     (9) 

which should be controlled under budget B.  

V. QAMEC PROBLEM FORMULATION AND ALGORITHM 

DESIGN 

 Given the model defined in the previous section, we can 
formulate our problem as a multi-objective optimization 
problem. A multi-objective optimization problem can be 
formalized as following: 

ሻݔ݂ሺ	ሻݔܽܯ	ሺ݊݅ܯ								 ൌ 	 ሺ ଵ݂ሺݔሻ, ଶ݂ሺݔሻ, … , ௞݂ሺݔሻሻ	்  (10) 
.ݏ										 ݔ		ݐ ∈  ߗ	
     	Ω	is the feasible solutions set that is nonempty,	݂ሺݔሻ is a 
vector-valued function, k is the number of objectives. 
      Our goal is to select and allocate resources on the set of 
PoPs to optimize the QoS, which can be formulized as 
following:  
								Max	U 
								Min	Cost 



.ݏ										 ෍		ݐ ሻݐ௜,௞ሺݏ ൌ 1

௞

௡ୀଵ

	

	 ௢௩௘௥௔௟௟ܥ ൑ 	ܤ
	 ∀i, t, k, ݀௜ሺݐሻ	ݏ௜,௞ሺݐሻ ൑ ܿ௞	
	 ܳ௜

	݄݊ܽݐ	ݎ݁ݐݐܾ݁	∗ ௜ܳ	ሺܳ௜
∗ represents the user specified 

QoS)       (11)	
Our optimization process is to find the best service supply 

plan which is characterized by the service supply model of S. 
The size of S is determined by the number of PoPs. The PoPs 
number is over 300, so we have a large problem space, which 
means that using exhaustive search to find the Pareto solution 
isn’t practical. Here we use evolution algorithm to find the 
approximate Pareto solution in a reasonable time. Evolution 
algorithms can give near optimal solution in a reduced 
processing time. The Evolutionary Algorithms (EA) are one of 
the most known bio-inspired algorithms which can deal with 
NP-hard problems. The EA are based on the natural evolution 
theory. The main idea is that the adapted species apparition is 
a consequence of two principal phenomena: (1) The natural 
selection (the most adapted individuals will survive and 
reproduce), (2) numerous variation can happen on the genetic 
material of species [32]. 

The NSGA-II [33] is a Pareto based multi-objective EA. 
This genetic algorithm is a fast elitist approach, without 
parameters, which manipulates a population of solutions, 
using an explicit mechanism to preserve diversity. At the 
beginning, we generate N individuals by assigning the service 
supply to the nearest PoPs, which forms the initial population 
଴ܲ. We sort population according to Pareto dominance. In a 

naive approach, in order to identify solutions of the first 
nondominated front in a population of size N௜ . The non-
dominated individuals are assigned to the first front (ܨଵ) and 
have a rank 1. Then, others fronts are assigned recursively 
with ignoring individuals which have been assigned 
previously. By fast-Non-Dominated-Sorting (Algorithm 1 
[33] ), the time complexity has reduced to OሺMܰଶሻ. 

Along with convergence to the Pareto-optimal set, a good 
spread of solutions in the obtained set of solutions is required. 
The basic idea of crowding distance assignment is to address 
the drawback of assigning the parameters of sharing function 
manually. The crowding-distance computation procedure of 
all solutions in a nondominated set I is listed in Algorithm 2 
[33]. 

We define an individual as a real value that concatenated 
together in the model of supply S that represents a service 
supply plan which is constrained by Formula (5) and (7). A 
population is a set of individuals that represent a solution. 
Every iteration of the algorithm is called generation. At the 
beginning. Individuals of the Nth iteration are called parents 
and those of the (N+1) th generation are called children. The 
mainloop of NSGA-II  is explained in Algorithm 3 [33]. 
QaMec-invoked Algorithm 1. fast-Non-Dominated-Sorting 

 Input:	P,		candidate	solutions	
ܘ	ܐ܋܉܍	ܚܗ܎  ∈  :۾
࢖ࡿ				 ← ∅ 
࢖࢔				 ← ૙ 

for each  ܙ ∈  :ۿ
if p dominates q then  

࢖ࡿ											   ൌ ࢖ࡿ ∪ ሼࢗሽ 
else: 

࢖࢔													  ← ࢖࢔ ൅ ૚  
if  ࢖࢔ ൌ ૙	࢚࢔ࢇࢎ: 

࢑࢔ࢇ࢘࢖  ൌ ૚ 
૚ࡲ															 ൌ ૚ࡲ ∪ ሼ࢖ሽ 
i=1 
while ࢏ࡲ ് ∅: 
ࡽ					 ← ∅ 
    for each ܘ ∈  :࢏ࡲ
       for each ܙ ∈  :࢖ࡿ
ࢗ࢔             ← ࢗ࢔ െ ૚ 
            if ࢗ࢔ ൌ ૙	࢚࢔ࢋࢎ  
࢑࢔ࢇ࢘ࢗ                  ← ࢏ ൅ ૚ 
ۿ                   ← ۿ ∪ ሼܙሽ 
ܑ ← ࢏ ൅ ૚ 
௜ܨ ← ܳ 
 

QaMec-invoked Algorithm 2. Crowding-distance-
assignment 

Input: I , candidate solutions 
 ۷ ൌ |۷| 
 :ܑ	ܐ܋܉܍	ܚܗ܎ 

I[i]distance← ૙ 
For each objective m: 

I = sort(I,m) 
				۷ሾ૚ሿࢋࢉ࢔ࢇ࢚࢙࢏ࢊ ൌ ࢋࢉ࢔ࢇ࢚࢙࢏ࢊሿ࢒ሾࡵ ൌ  ࢋ࢚࢏࢔࢏ࢌ࢔࢏

For ܑ ൌ ૛	ܗܜ	ሺܔ െ ૚ሻ: 
ࢋࢉ࢔ࢇ࢚࢙࢏ࢊሿ࢒ሾࡵ     ൌ ࢋࢉ࢔ࢇ࢚࢙࢏ࢊሿ࢒ሾࡵ ൅ ሺࡵሾ࢏ ൅ ૚ሿ ∙ ࢓ െ ࢏ሾࡵ െ ૚ሿ ∙

࢞ࢇ࢓࢓ࢌሻ/ሺ࢓ െ  ሻ࢔࢏࢓࢓ࢌ
 

QaMec-invoked Algorithm 3.  NSGA-II 

ܜ  ←0 
૙ࡼ  ←	InitialPopulation	
while	t൏	MaxGen	do	
	 ࢚ࡾ ← ࢚ࡼ ∪ 	࢚ࡽ
	 F		←	fast‐Non‐Dominated‐Sortingሺ࢚ࡾሻ	
	 Creation	of		an	empty	population	࢚ࡼା૚	
	 ܑ ← ૙	
	 while	|࢚ࡼା૚| ൅ |࢏ࡲ| ൑ 	doࡺ
	 	 |ା૚࢚ࡼ| ← |ା૚࢚ࡼ| ∪ 	࢏ࡲ
	 	 Crowding	–	Distance‐Assignmentሺ࢏ࡲሻ	
	 	 i	← ܑ ൅ ૚	
	 end	while	
	 sortሺ࢏ࡲሻ	
	 ା૚࢚ࡼ	 ← ା૚࢚ࡼ	 ∪ ࡺ:ሾ૚࢏ࡲ െ 	ା૚|ሿ࢚ࡼ|
	 ା૚࢚ࡽ ← 		࢔࢕࢏࢚ࢇ࢒࢛࢖࢕࢖	࢝ࢋ࢔	ࢋ࢚ࢇ࢘ࢋ࢔ࢋࡳ
	ା૚࢚ࡼ		࢓࢕࢘ࢌ	࢙࢘࢕࢚ࢇ࢘ࢋ࢖࢕	ࢉ࢏࢚ࢋ࢔ࢋࢍ	ࢎ࢚࢏࢝																	
	 ࢚ ← ࢚ ൅ ૚	
	܍ܔܑܐܟ	܌ܖ܍
 



 

VI. QAMEC  EXPERIMENTS AND ANALYSIS 

In order to verify our proposed QaMeC: QoS-driven IoVs 
application optimizing deployment scheme in multimedia 
CDN edge clouds, we implement the main architecture, model 
and related algorithms, and carry out corresponding 
verification experiments. Our experimental environment is 
composed of two parts. One is a small scale OpenStack multi-
cloud environment built by our lab. One is a larger scale CDN 
multi-cloud environment and data provided by the largest 
CDN operator in China. 
A. Multi-cloud deployment of Web Servers 

To simulate the diversity of real cloud service market, we 
build three sets of OpenStack edge cloud environment with 
different service prices and configurations, according to the 
current market situation, as Figure 6 shown. These three 
OpenStack edge clouds are located three campuses of our 
university, with 1Gbps connection. We captured the 
monitoring data from OpenStack ceilometer. The Ceilometer 
project is a data collection service that provides the ability to 
normalize and transform data across all current OpenStack 
core components with work underway to support future 
OpenStack components. 
Ceilometer is a component of the Telemetry project. Its data 
can be used to provide customer billing, resource tracking, and 
alarming capabilities across all OpenStack core components 
[46]. 

For the three clouds’ web and application server, the 
detailed measured QoS metrics are showed in Table II. 
Availability refers to the usable level of services. Http latency 
refers to the response time of HTTP services. Throughput is 
the downloading speed provided by the server. SLA is the 
service level agreement that users need the service provider to 
guarantee. Latency refers to TCP response time. The QoS 
model can be obtained and constructed from these parameters 
and the corresponding weighting calculation. In comparison, 
the OpenStack Cloud1 is more economical, the OpenStack 
Cloud2 has better performance, and the OpenStack Cloud3 is 
more stable. The web and application server node 
configuration requirement of the experiments is listed in Table 
III. In Table III, server layer means different servers need 
different layers' server components combination. For example, 
web servers only need layer1-Apache server, application 
server need layer1-Tomcat server plus layer2-JVM plus 
layer3-SSH2 Framework, and database server only need 
layer1-MySQL server. 

 
Figure 3. Multiple Edge OpenStack Clouds Experiment Topology 

TABLE II.  MULTI-OPENSTACK-CLOUDS EXPERIMENT ENVIRONMENT 
PARAMETER. 

 

Name Availability
Http 

Latency 
Throughput SLA Latency

OpenStack 
Cloud1 

99.95% 90ms 62.17mb/s 0.9 213ms 

OpenStack 
Cloud 2 

98.95% 50ms 75.56mb/s 0.9 189ms 

OpenStack 
Cloud 3 

99.98% 70.33ms 67.34mb/s 0.9 209ms 

 

TABLE III.  WEB AND APPLICATION SERVER NODE CONFIGURATION 
REQUIREMENTS 

 vCpu Memory Disk 
Server 
Layer 1 

Server 
Layer 2 

Server 
Layer 3 

Server0 2 4GB 
500
GB 

Apache   

Server1 2 4GB 
500
GB 

Apache   

Server2 4 8GB 
500
GB 

Tomcat JVM 
SSH2 
Framework

Server3 4 8GB 
500
GB 

Tomcat JVM 
SSH2 
Framework

Server4 4 8GB 
500
GB 

Tomcat JVM 
SSH2 
Framework

Server5 4 8GB 1TB MySql   
Server6 4 8GB 1TB MySql   

In this experiment, we focus on single-cloud deployment of 
web servers through multi-cloud selection. Given the QoS 
requirement, we can find that the user is more concerned about 
the availability of the service. We input this data into the 
Broker system, and the broker returned the optimal service 
provider, which is OpenStack Cloud3. It gives the comparison 
of system parameters and user requirement (Table IV) and the 
comparison of three deployment plans (Fig. 4). The detailed 
comparison and result is showed in TableV. Through a series 
of experiment, we can verify that the Broker System is able to 
provide an efficient solution which is more suitable for user’s 
demand. 

TABLE IV.  QOS REQUIREMENT 
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Highlight 

 

In  this  paper,  we  propose  QaMeC:  a  novel  QoS‐driven  IoVs  application  service 

optimizing deployment scheme in CDN multimedia edge clouds environment. 

The proposed  service demand model  and QoS model  can provide  a  complete 

description of user  requirements.  It  gives  a quantitative description of  the  service 

request and delivery. The QoS data  is  retrieved  from  the PoPs  log data of  the  real 

CDN operator network, which ensures the objectivity for the users, overcoming the 

drawbacks of the SLA‐based solution. 

The  designed NSGA‐II  algorithm  is  applied  to  search  for  the  best  deployment 

plan for the users, to reduce the vast problem space of the combinatorial optimizing 

decision‐making problem. 

The  implementation and experiments show that our QaMeC scheme can provide 

optimal and efficient service deployment solutions for a variety of applications with 

different QoS requirements in CDN multimedia edge clouds environment. 

 

 


