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Abstract—Recently, smart grid and Energy Internet (EI) are
proposed to solve energy crisis and global warming, where im-
proved communication mechanisms are important. Software-
defined networking (SDN) has been used in smart grid for real-
time monitoring and communicating, which requires steady
web-environment with no packet loss and less time delay. With
the explosion of network scales, the idea of multiple controllers
has been proposed, where the problem of load scheduling
needs to be solved. However, some traditional load scheduling
algorithms have inferior robustness under the complicated
environments in smart grid, and inferior time efficiency without
pre-strategy, which are hard to meet the requirement of
smart grid. Therefore, we present a novel controller mind
(CM) framework to implement automatic management among
multiple controllers. Specially, in order to solve the problem of
complexity and pre-strategy in the system, we propose a novel
Quality of Service (QoS) enabled load scheduling algorithm
based on reinforcement learning in this paper. Simulation
results show the effectiveness of our proposed scheme in the
aspects of load variation and time efficiency.

Index Terms—Reinforcement learning, software-defined net-
working, load scheduling, Quality of Service (QoS), energy
Internet, smart grid.

I. INTRODUCTION

ENERGE resources crisis and global warming have
become two global concerns [1]. As reasonable so-

lutions, smart grid [2] and Energy Internet (EI) [3] are
seen as the new generation of energy provision paradigm,
where improved communication mechanisms are important
to enable end-to-end communication. Software-defined net-
working (SDN) [4] is seen as a promising paradigm shift
to reshape future network architecture, as well as smart
grid and EI, called software-defined EI (SDEI). Using SDN
enables to improve smart grid and EI by providing an
abstraction of underlying network resources, forming global

view for applications from upper layers, and decoupling
infrastructures and control plane to enhance the flexibility
and reliability of the system [5]. Noteworthy, the control
plane is considered as the brain of SDN [6]. With the
explosion of network scales and network traffic, overload in
a single controller is one of the most intractable issues [7].
There is a growing consensus that the control plane should
be designed as a multiple controllers plane to constitute a
logically centralized but physically distributed model [8]–
[10]. So far, the issues of multiple controllers have been
studied in literature. Except for addressing the consistency
problem of global view among distributed control plane,
another key issue is how to schedule loads among multiple
controllers so as to mitigate the risk of overloads and failures
in one single controller.

On the other hand, the most important application of
SDN in smart grid is real-time monitoring and communi-
cating. It follows that these applications require steady web-
environment with no packet loss and less time delay to keep
high accuracy and real time capability [11].

Traditionally, load scheduling algorithms make load
scheduling decisions after the overload problems have hap-
pened [12]. In general, the traditional algorithms have
three steps, including collecting load information, making
load scheduling decisions, and sending load scheduling
commands to the corresponding controllers. For example,
the work in [13], load scheduling decision is made after
the problem of overload. In addition, current CPU usage,
current memory usage, current hard disk usage, and weight
coefficient need to be exchanged among controllers when
new load scheduling decision is made, which occupies lots
of extra time so as to decrease time efficiency.

Recently, Machine learning (ML) has emerged as a novel
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technique, which can be used to tackle the above challenges.
Reinforcement Learning (RL) is regarded as an important
branch of ML to solve complex control problems. RL is quite
different from the traditional management and operation
methods. It develops computer models by training datasets,
which resolves the problems without being explicitly pro-
grammed to, but learning from environments.

In this paper, we present a novel controller mind (CM)
framework in distributed SDEI to implement automatic man-
agement among multiple controllers. Specifically, in order
to solve the problem of complexity and pre-strategy in
the system, we propose a novel Quality of Service (QoS)
enabled load scheduling algorithm based on RL. The distinct
features of this paper are as follows.

• It is the first time to bring reinforcement learning
approach in the cooperation among controllers.

• We propose a CM framework to solve the problems of
cooperation among multiple controllers automatically
and intelligently.

• We formulate QoS-enabled load scheduling problem as
an optimization problem.

• In order to solve the optimization problem, we propose
a RL approach in this paper. We describe this problem
as a Markov decision process, defining state space,
action space, and reward function. We train historical
data to learn load scheduling strategy in advance and
offline.

• Simulation results with different system parameters are
presented to show the effectiveness of our proposed
scheme. It is illustrated that the performance of SDEI
can be significantly improved with the proposed RL-
based controller mind in the aspects of load variation
and time efficiency.

The rest of this paper is organized as follows. Section II
presents some related works, some motivations and enablers
about this issue. In Section III, we give system description,
followed by system model in Section IV. Section V presents
the overview of reinforcement learning and formulates the
problem. Simulation results are given and discussed in Sec-
tion VI. Finally, conclusions and future works are presented
in Section VII.

II. RELATED WORK

Recently, the idea of logically centralized but physically
distributed control plane is more and more popular. On
the one hand, the problem of consistency among multiple
controllers is addressed in some works, such as HyperFlow
[14], Onix [15], ONOS [16], DISCO [17], Kandoo [18] and
Balanceflow [19].

On the other hand, the issue of distributed controllers is
how to allocate loads among controllers, as so to mitigate the
risk of overload and failure. This problem has been studied
in many works. It can be divided into three categories,

namely centralized decision, distributed decision and hybrid
decision.

1) Centralized Decision: ElastiCon in [20] treated mul-
tiple controllers as a controller resource pool and had a
load balancer to expand or shrink the controller pool as
needed, so as to address the problem of load imbalance.
Sherwood et al. proposed FlowVisor in [21]. It was a
network visualization layer between the control plane and
the data plane to centrally manage controller resource pool.
Following this research, Hai et al. in [13] used the similar
architecture to implement the weight coefficients of load
balancing strategy.

Additionally, some researches have employed a cen-
tralized manager. Pratyaastha in [22] used a centralized
manager to partition SDN application and referred to the
dependencies between applications and switches. Chu et al.
in [23] proposed a coordinator whose responsibility was to
maintain the load information table of global controllers.
Based on this information table, the coordinator decided how
to balance the load among controllers.

In the above works, the operations of load adaptation are
all taken after overload has happened. What is worse, lots
of steps need to be taken before the final load adaptation
decision is executed, such as collecting load measurements,
determining actions, and sending load decisions to the cor-
responding controllers. With such passive and lagging load
adaptation, it is difficult to meet the requirements of high
time efficiency in SDEI.

2) Distributed Decision: In order to solve the problems
in centralized decision schemes, some distributed decision
load balancing schemes have been proposed. DALB was pro-
posed in [24], where controllers made decisions locally, and
the overloaded controller proactively collected others’ load
information before making decision. Following this research,
Yu et al. in [25] also allowed controllers to make decisions
locally, but periodical reporting its load information to all
others.

From the perspective of time efficiency, the load balancing
decisions are also made after the problem of overload has
happened. And masses of signaling is exchanged. Therefore,
the time efficiency in distributed decision scheme is also not
satisfactory.

3) Hybrid Decision: Yao et al. in [26] proposed a Hy-
bridflow architecture, which consisted of several cluster
controllers and one super controller. In lower overload,
Hybridflow allowed cluster controllers to make balancing de-
cisions locally, and in higher overload, super controller made
balancing decisions globally with the help of obtained load
information. Additionally, in order to reduce waiting-time
in super controller, Hader et al. [27] defined a ClusterVector
(CV) to contain addresses and load status of controllers.

Similarly, the hybrid decision is also a passive and lagging
load adaptation method, which has inferior time efficiency.

As we can see that no matter which methods, they all need
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three or more steps and lots of signaling interactions to adjust
to load scheduling after overload has happened. It seems
that improving the time efficiency of load scheduling among
controllers is barely possible to be solved by traditional
methods. However, some novel researches have offered the
other solutions where machine learning is employed. Apiletti
et al. proposed a self-learning network analyzer in [28]. It
was a generic and self-tuning tool to dig the knowledge from
network traffic measurements, so as to control the network
configuration automatically. Batu et al. in [29] used machine
learning tools to proactively control what to cache at base
stations. Fan et al. in [30] proposed a bandwidth control
algorithm to increase the throughput of cellular network
by exploring users data and network data. Albert et al.
considered a Knowledge-Defined Networking [31] which
took the full advantages of centralized management from
SDN and the analysis capacity from artificial intelligence
to solve several problems, including routing in an overlay
network, resource control in an NFV scenario, knowledge
extraction from network logs, and short or long-term net-
work planning. Liu et al. in [32] studied a deep learning
based content popularity prediction system. By this system,
cache control strategy was improved. Moreover, Cui et al.
in [33] learned a stochastic learning based control scheme in
MIMO. They used this online learning algorithm to control
dynamic clustering and power allocation.

Thus we can see more and more researches have begun
to leverage big data analysis and machine learning tools to
solve some complex control problems.

Inspired by the time efficiency problem of load adaptation
among controllers and some researches that utilize machine
learning to solve complex control problem, we consider to
use machine learning to control and manage among multi-
ple controllers. There are some enablers to apply machine
learning in distributed SDEI, including:

• As the brain of SDEI, the control plane almost has all
data of the network, which provides training datasets
for machine learning.

• Controllers have powerful computing capacities, which
is necessary in machine learning.

• Due to the logically centralized control in the control
plane, the offline learning results can be executed
quickly.

In conclusion, it is necessary and achievable to introduce
learning methods into the control plane. In this paper, we
propose a reinforcement learning approach to solve the
problem of load scheduling among controllers for the first
time. Specially, we use a Q-learning approach, which is a
typical algorithm in reinforcement learning. Considering the
slow convergence rate of Q-learning and the periodicity of
users’ behaviors, we train the historical load data offline, so
as to make load scheduling decision ahead of time.

III. SYSTEM DESCRIPTION

In this section, we first give brief overviews of energy
Internet and software-defined energy Internet. Then the CM
framework in SDEI is presented.

A. Energy Internet

With energy crisis and limitation around world, how to
use renewable energy has attracted lots of attentions, rang-
ing from government and industry to academia. Here, the
development of renewable energy, as well as information and
communication technologies (ICTs) are two key enablers of
energy Internet [34]. Thus, energy Internet can be seen as
an energy-utilizing system, combining distributed renewable
energy with the advanced ICTs, which is known as the
version of smart grids 2.0 [35].

Specially, ICTs provide a viable way to use the control
capability of smart grid and allow distributed energy to
access to the backbone grid in EI [36]. Here, smart grid
is used to collect and operate the information about the
behaviors of users and suppliers to improve the sustainability
and reliability of energy.

B. Software-Defined Energy Internet

With traditional TCP/IP protocol, energy Internet has
achieved great success. However, many challenges have
emerged with the increasing number of smart connected
devices in smart grid. It is hard for such rigid and static
Internet to meet the demands of flexibility, agility, and
ubiquitous accessibility.

In order to solve this embarrassment, there is a consensus
to establish the future energy Internet architecture. SDN is
seen as one of the most promising paradigms [37]. It is
an approach to implement the network that separates the
control plane and the data plane, abstracts the underlying
infrastructures, and simplifies the network management by
introducing the ability of programming.

Some works have employed SDN in energy Internet
and smart grid. For example, in order to support secure
communications, the authors in [38] learned a SDN-enabled
multi-attribute secure architecture for smart grid in IIoT
environment. Moreover, the authors in [39] proposed a
software defined advanced metering infrastructure (AMI)
communication architecture. By this architecture, the prob-
lem of global load-balanced routing was solved.

Based on these works, we consider a software-defined
energy Internet. However, before the wide adoption of SDEI,
there are some problems remaining to be solved. The most
intractable one is the scalability and reliability of control
plane in SDEI. It can be anticipated that a logically central-
ized, but physically distributed control plane is necessary.
Thus, we propose a controller mind framework in distributed
SDEI to implement automatic management among multiple
controllers.
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Fig. 1: A framework of controller mind in SDEI.

Fig. 2: The detailed CM framework of QoS-enabled load
scheduling.

C. Controller Mind framework

Based on traditional SDN architecture, we propose CM
framework bridging the control plane and the data plane
transparently, as shown in Fig. 1.

The detailed structure of CM framework is given in Fig. 2.
CM takes the responsibility of re-queuing incoming Packet-
in flows to guarantee QoS and forwarding them to the
appropriate controllers based on the results of reinforcement
learning. Therefore, the CM framework consists of three
modules, including re-queuing module, info-base module
and learning module.

1) Re-Queuing Module: We assume that there are two
types of traffic flows, namely QoS flows with high-priority
and best-effort flows with low-priority. QoS flows include
some traffic about the application of real-time monitor-
ing in SDEI, and best-effort flows include some traffic
from other applications with the low-level requirement of
real-time capability. When these traffic flows are encapsu-
lated into Packet-in messages and sent to CM, based on
source/destination MAC address, IP address, and TCP/UDP
port in the packet headers, the re-queuing module marks and

classifies the incoming Packet-in messages as QoS flows and
best-effort flows [40], then re-queues them by the method
shown in Section IV-A.

2) Info-Table Module: It receives re-queuing Packet-in
messages from re-queuing module, sends them to controllers
based on the learning results from the learning module,
receives Flow-mod messages from the control plane, and
sends Flow-mod messages to the data plane. The corre-
sponding changes of the loads in each controller are aware
by sending Packet-in messages, and receiving Flow-mod
messages, which are all recorded by this module. On the
one hand, these load records are the training datasets of
learning module, on the other hand, by this mechanism,
the frequent signaling interactions that are used to obtain
the current load information are avoided, compared with the
traditional schemes shown in Section II.

3) Learning Module: Based on the historical load records
from the info-table module and reinforcement learning algo-
rithm, learning module trains the data offline, obtains the
learning results, and sends to info-table module. The rein-
forcement learning algorithm, i.e., Q-learning, is executed in
this module, and the detail of the algorithm will be shown
in Section V.

IV. SYSTEM MODEL

In this section, we present re-queuing model, followed by
workload model.

A. Re-Queuing Model

If we use FIFO (First In First Out) model, some delay-
sensitive flows can’t be treated fairly. Therefore, when
arriving at CM, Packet-in messages would be classified into
QoS messages or best-effort messages by extracting their
headers, such as source/destination MAC address, IP address
and TCP/UDP port. The architecture of classification and re-
queuing at CM is shown in Fig. 3.

Here, we use a weight fair queuing(WFQ) [41] algorithm
in re-queuing model. In WFQ, we give weight coefficient wi

to classify queue i. Each classified queue sends the messages
based on weight coefficient wi. When the queue is empty,
skip and access the next queue. Hence, the average service
time of queue i is wi∑

wj
, where

∑
wj is the sum of weight

coefficients of all non-empty queues.

B. Workload Model

With the rapid development of commercial deployment,
the performance of SDN controller is more and more im-
portant. Global SDN certified testing center (SDNCTC) [42]
develops a SDN controller performance test tool, called
OFsuite Performance, and releases a RYU controller per-
formance test report [43]. In this report, when the arriving
rate of Packet-in messages is lower, the flow response time
is linear with the Packet-in messages arriving rate, and the
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Fig. 3: Classification and re-queuing at CM .

acceptable maximum arriving rate of Packet-in messages
is related to the controller’s own performance parameters.
Hence, from the test result in the report, we obtain the
relationship between the response time and the number of
Packet-in messages in (1),

τ = ρNp + β, Np ≤ max, (1)

where τ represents the response time, and Np is the number
of Packet-in messages, ρ and β are the parameters related
to the performance of each controller. max is the maximum
number of Packet − in messages in the controller. This
equation is an empirical expression that is shown in RYU
controller performance test report. Although it has not ever
been used in previously published work, we can have this
relationship according to the real test works.

Meanwhile, Zhang et al. in [44] provided the relationship
between the response time and the servers’ load status as
shown in (2),

τ = θls , (2)

where ls is the load status of servers. θ is a parameter related
to server’s performance. Controllers are always deployed in
servers, so in this paper we use the same load status model
in controllers as servers.

From (1) and (2), we can deduce (3), which explains
the relationship between the load status and the number of
Packet-in messages in the controller.

ls = logθ(ρNp + β), Np ≤ max. (3)

When Np = max, the load status is 100%. Thus using
(3), we have logθ(ρmax + β) = 1, and there is a necessary
relationship between the parameters, which is ρmax+β = θ.
Obviously, when Np > max, the load status is also 100%.
Thus we have (4),

ls =

{
logθ(ρNp + β) Np ≤ max

100% Np > max
, (4)

where ρmax + β = θ
In the following problem formulation and simulation, we

use (4) as the workload model. Since the number of Packet-
in messages Np is recorded by the info-table module, we use

Fig. 4: The agent-environment interaction model of rein-
forcement learning.

(4) to transfer the number of Packet-in messages to the load
status of controllers to formulate and simulate the problem
in the following sections.

V. PROBLEM FORMULATION

In this section, we first describe a brief review of rein-
forcement learning. Then we formulate the load scheduling
problem as a Q-learning process, which starts with the
optimization problem formulation.

A. Reinforcement Learning

Fig. 4 shows the agent-environment interaction model of
reinforcement learning. At the decision epoch, the agent
obtains environment state s and corresponding reward r.
According to the given policy, the agent selects action a
to work on the current environment, which makes state s
turn into new state s′. Then at the next decision epoch, the
agent and environment interact in the same way.

The agent selects the action based on the policy function
which defines the behavior at a given moment. A stationary
random policy is defined as π: S×A→ [0, 1], where π[s, a]
represents the probability of selecting action a under state
s, S is state space, and A is action space.

There are two value functions to represent the feedbacks
from each decision, namely state value function V π(s)
and action-state value function Qπ(s, a). V π(s) means the
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expected total rewards based on policy π in state s, and it
can be represented as:

V π(s) = Eπ[
∞∑

k=0

γkrt+k+1|st = s], (5)

where Eπ[∗] denotes the mathematical expectation under
state transferring probability P (s, a, s′) and policy π . rt is
immediate reward at time t. γ ∈ (0, 1] denotes the discount
factor to trade-off the importance of immediate reward and
long-term reward.

Additionally, action-state value function Qπ(s, a) repre-
sents the expected total rewards based on policy π in state-
action pair (s,a), and it can be represented as:

Qπ(s, a) = Eπ[

∞∑

t=0

γkrt+k+1|st = s, at = a]. (6)

And there is a relationship between V π(s) and Qπ(s, a).
For a certain policy π, V π(s) = Qπ(s, π(s)). For a stochas-
tic policy, V π(s) =

∑
a∈A π(s, a)Qπ(s, a). Hence, Qπ(s, a)

can be expressed by V π(s) as follows:

Qπ(s, a) = R(s, a) + γ
∑

s′∈S

P (s, a, s′)V π(s′), (7)

where R(s, a) =
∑

s′∈S P (s, a, s′)R(s, a, s′) means the
expected reward of selecting action a under state s.
R(s, a, s′) = E[rt+1+γrt+2+γ2rt+3+...|st = s, a = at =
π(st), st+1 = s′] denotes the expected reward of selecting
action a to transfer the state from s to s′.

B. Reinforcement Learning Formulation

In order to obtain the optimal policy, it is necessary to
define state space, action space and reward function in Q-
learning model. Before this, we will give the optimization
problem formulation in the RL based QoS-enabled load
scheduling problem.

1) Optimization Problem Formulation: Our target is to
find out the optimal scheme to allocate Packet-in messages
from the data plane to the control plane with the minimum
waiting time of QoS flows and the acceptable packet loss
rate of best-effort flows. The minimization problem can be
formulated as the weighted sum as follows.

min k1

T∑

t=0

N1∑

i=1

TQ1
i (t) + k2

T∑

t=0

N2∑

k=1

PLQ2
k(t), (8)

subject to

PLQ1
i (t) = 0, ∀i = 1, 2, ...N1, (9)

where we assume there are T time slots during the whole
system, which starts when the first Packet-in message comes
and terminates when the last Packet-in message departs. Let

t ∈ {0, 1, 2, ..., T − 1} denote the time instant. TQ1
i (t) is

the waiting time of QoS flows i at time instant t. PLQ1
i (t)

and PLQ2
k(t) are the packet loss rates of QoS flows i and

best-effort flows k at time instant t, respectively. N1 and
N2 are the total number of QoS flows and best-effort flows,
respectively. k1 and k2 are the scale factors, and k1+k2 = 1.

In the above optimization problem, the constraint (9)
guarantees that the QoS flows have no packet loss.

Notably, one of the optimal target in (8) is to minimize the
packet loss rate of best-effort flows, which is equivalently
substituted by the load variation among all controllers in the
remainder of this paper. Because best-effort messages have
the low priority, i.e., when the messages loss happens, it is
probable that best-effort messages are discarded. Thus, the
lower load variation leads to the lower packet loss rate of
best-effort messages directly.

2) State Space: In order to reduce the load variation
among all controllers and the waiting time of QoS flows,
we propose the definition of state space as follows:

S = {s = [Qincom, lc, qc], |Qincom ∈ Qlevel, lc ∈ Lc, qc ∈ Qc},
(10)

where
Qlevel = {1, 2}, (11)

Lc = {[lc1
, lc2

, · · · , lck
, · · · , lcN

]}, (12)

Qc = {[Qc11, Qc21, · · · , Qck1, · · · , QcN1]}, (13)

where N is the total number of controllers in the system,
and ck means the kth controller. Qlevel means the different
QoS levels of flows in this system. When Qlevel = 1, this
flow is QoS flow with the high-priority. When Qlevel = 2,
this flow is best-effort flow with the low-priority. Lc means
the set of the load status of all controllers, and lck

denotes
the load status of controller ck which is calculated by (4)
and the number of Packet− in messages is recorded by the
info-table module. Qc means the set of the number of QoS
flows in all controllers, and Qck1 denotes the number of QoS
flows in controller ck, which is recorded by the info-table
module.

3) Action Space: In the system, the agent has to decide
how to allocate Packet − in message among multiple
controllers. Thus, the action space A of RL can be defined
as follows,

A = {ac1
, ac2

, · · · , ack
, · · · , acN

}, (14)

where ack
represents the allocation control between the

current Packet− in message and controller ck. if ack
= 1,

the current Packet − in message is assigned to controller
ck. if ack

= 0, the current Packet − in message is not
assigned to the controller ck. Note that

∑N
k=1 ack

= 1, which
guarantees that the current Packet − in message only has
one assigned controller.
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4) Reward Function: We define numerical reward r that
the agent obtains from taking action a at state s. We have
two targets as shown in (8), including minimizing the load
variation and the waiting time of QoS flows. Accordingly,
there are two parts in reward function r, including the
standard deviation of all controllers and the number of
messages whose QoS levels exceed the incoming message,
respectively.

The lower standard deviation means the better load bal-
ancing. Since bigger reward is taken in Q-learning, we use
the negative standard deviation to represent the load variation
in reward function, which is denoted in the first part of
reward function r.

Since all controllers in the system are QoS-enabled, which
means Packet-in messages will re-queue after arriving at all
controllers to make sure QoS flows to be processed with the
high priority. Thus, the waiting time of incoming QoS flows
is only related to the number of QoS flows before them.
The fewer QoS flows lead to the less waiting time, which is
denoted in the second part of reward function r.

In summary, reward function r can be expressed as
follows:

r =− k2std(lc1
, lc2

, · · · , lcN
)

− k1

Nck∑

i=1

bool(Qincom ≥ Qqueue(i)),
(15)

where Nck
is the number of Packet − in messages in

controller ck. Qincom represents the QoS level of incoming
message, and Qqueue(i) means the QoS level of the ith
messages in controller ck. bool denotes the Boolean operator.
For example, when the QoS level of the incoming message
is 1 and the current messages’ QoS line of one controller
is 11222, the result of

∑Nck
i=1 bool(Qincom ≥ Qqueue(i))

is 2. In the other controller, its current messages’ QoS
line is 11122, the result of boolean operation is 3. If only
consider the waiting time of incoming message, the agent is
more possible to allocate this message to the first controller
because of the less waiting time. k1 and k2 are the scale
factors which are the same as (8).

5) Method to Learn the Optimal Strategy: Q-learning
is a typical algorithm of reinforcement learning, and we
use Q-learning to learn the optimal strategy in this paper,
where action-state value function Q(s, a) is selected as the
estimation function, rather than state value function V (s).
The basic idea of Q-learning is to evaluate Q(s, a) by a
temporal difference method, which is denoted as follows:

Q(st, at)← Q(st, at) + α(rt + γ max
a

Q(st+1, a)−Q(st, at)),

(16)
where α denotes the learning efficiency. In Q-learning, each
Q(s, a) is put into Q−table.

At first, Q-learning initializes the Q−table. Then at state
st, the agent determines action at according to ε-greedy
policy, and obtains the experience knowledge as well as
the training samples (st, at, st+1, at+1). Meanwhile, the

agent uses (16) to update Q(st, at) and Q−table. When
meeting with the goal state, the agent terminates one loop
iteration. Then Q-learning continues a new loop iteration
from the initial state until the end of learning. The algorithm
performed on each step is shown in Algorithm 1.

Algorithm 1 Q-learning
1: Initialize Q−table, and set parameters α, γ and k0;
2: for k = 1 : k0 do
3: Select a initial state st randomly
4: while st! = sgoal do
5: Select action at based on ε-greedy policy, and

obtain immediate reward rt and next state st+1

6: Q(st, at)← Q(st, at)+ (rt +γ max
a

Q(st+1, a)−
Q(st, at))

7: st ← st+1

8: end while
9: end for

VI. SIMULATION RESULTS AND DISCUSSIONS

In this section, we use computer simulation to evaluate
the performance of RL based QoS-enabled load scheduling.
Firstly, we describe simulation settings, then present the
simulation results.

A. Simulation Settings

1) Network Topology: We choose the same topology as
the one in [13], which has three controllers in the control
plane, and several switches in the data plane. Thus, N = 3.

2) Parameter Settings: The different seeds are employed
in the simulation, and performances are average to estimate
the performance of our proposed scheme. We utilize the
queuing theory to model the arrival, processing and departure
of Packet-in messages. Here, the arrival of the Packet-
in messages is based on a Poisson distribution with the
parameter of λ, indicated by the arriving rate of Packet-in
messages. The processing time of each controller is based
on the negative exponential distribution with the parameter
of µ, indicated by the performance of controllers. And we
assume that all controllers have the same performance, i.e.,
the same µ. Summarily, the values of all parameters in the
simulation are summarized in TABLE.I.

For performance comparison, four schemes are simulated:
• RL based QoS-enabled load scheduling scheme pro-

posed in this paper and we call it as RL in the remainder
of this section.

• Dynamic weight based QoS-enabled load scheduling
scheme in the work of [13] and we call it as DW in
the remainder of this section.

• QoS-enabled scheme, and this scheme does not take
consideration of the load scheduling. We call it as QS
in the remainder of this section.
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• Mini-connected load scheduling scheme, and this
scheme does not consider the QoS. We call it as MN
in the remainder of this section.

B. Performance Evaluation Results

Fig. 5 shows the relationship between the load varia-
tion and the Packet-in messages arriving rates of different
schemes when the proportion of QoS messages is 75%.
With the increase of the arriving rate, the load variation
is increasing. The reason is that, as the arriving rates
increasing, more messages accumulate in controllers, which
obviously results in the larger load variation. In any case of
arriving rate, QS’s load variation is much bigger than others’,
because QS scheme only considers the priority of messages
and fails to take the load balancing into consideration, some
controllers are overloaded and others are idle, which leads
to the biggest load variation. Taking the load balancing into
consideration, the other three schemes’ load variations are
much smaller. Relatively speaking, DW’s load variation is
bigger. The reason is that, the adjustment of the load does
not happen at each step in DW. Only when overloaded, the
dynamic weight load balancing is triggered. But in MN,
when each message arrives, it is assigned to the controller
with the least load status, which is equivalent to adjust
the load distribution scheme in each step. So MN is better
than DM. But in any case of the arriving rates, RL’s load
variation is very close to the MN’s curve. Even the RL’s load
variation is smaller than the MN’s in some cases. Because
by the offline learning of the historical data, RL performs
the optimal load distribution globally, which results in the
best load scheduling effect.

Fig. 6 displays the relationship between the waiting time
of QoS messages and Packet-in messages arriving rates of
different schemes when the proportion of QoS messages
is 75%. For QS scheme, although it considers the priority
of messages to let the messages with the high priority be
processed firstly, no load balancing mechanism also results

TABLE I: Parameters setting in the simulation
Parameter V alue Description

max 20
The maximum number

of Packet − in messages
in controllers

ρ 0.5 The performance parameter
of the controller

β 5 The performance parameter
of the controller

θ 15 The performance parameter
of the controller

N 3
The number of total controllers

in the control plane
k1 0.6 One scale factor
k2 0.4 Another scale factor
ε 0.9 The greed factor
γ 0.65 The discount factor

Initialized α 1 The learning efficiency
µ 16 Service rate of each controller
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Fig. 5: Load variation versus Packet-in messages arriving
rates of RL, DM, QS and MN.

in more waiting time of QoS messages. In the low arriving
rates case, DW’s waiting time is less than MN’s. The reason
is that, when the arriving rate is lower, it is unlikely to
be overloaded in controllers, but MN scheme needs to get
the load status of controllers by exchanging the signaling
to adjust the load distribution in each step, which results
in the additional time delay. DW scheme isn’t triggered in
the low load status, so it does not lead to the time delay
of the signaling exchange and has relatively smaller time
delay, compared with the MN scheme. With the increase of
arriving rates and messages accumulating in controllers, MN
and DW schemes also exchange the signaling frequently, but
MN has the better load balancing performance, as shown in
Fig. 5, it also has the better time efficiency, compared with
DW. And for RL scheme, because the allocated scheme has
been learned offline and in advance, and it is no need for
RL scheme to exchange the signaling at all. So in the lower
arriving rates, RL scheme has no additional time delay. In
the higher arriving rates, RL scheme has a little time delay
because of the increasing of messages. Overall, RL scheme
has the best time efficiency.

Fig. 7 presents the load variation when the proportion of
QoS messages changes at the arriving rate of 8 packet/s.
Because the arrival rate is constant, the load variation has
no relationship with the proportion of QoS messages. But
we can draw the similar conclusion as Fig. 5, which is that
RL scheme has the best load variation.

Fig. 8 shows the relationship between the waiting time of
QoS messages and the proportion of QoS messages at the
arriving rate of 8 packet/s. For QS, with the growth of QoS
messages, the waiting time increases linearly, because it only
considers the priority of messages but no load balancing.
In the lower proportion case, DW’s waiting time is less
than MN’s. The reason is that, only when overload happens,
DW scheme is triggered. And MN scheme happens in each
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Fig. 6: Average waiting time of QoS messages versus Packet-
in messages arriving rates of RL, DM, QS and MN.
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Fig. 7: Load variation versus the proportion of QoS messages
in RL, DM, QS and MN.

decision epoch. Under the current arriving rate, it is unlikely
to be overloaded. So DW has relatively smaller time delay,
compared with MN in the lower proportion. The increase of
proportion leads to the growth of time delay directly. MN has
the better load balancing as shown in Fig. 7, which results
in the better time efficiency in the higher proportion. RL
enables to learn the allocated scheme in advance and offline
with no signaling exchanging. So when QoS messages are
smaller, RL has no time delay completely. And with the
growth of QoS messages, RL has a litter time delay and the
best time efficiency.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we proposed a controller mind (CM)
framework to manage multiple controllers automatically and
intelligently in SDEI, so as to keep the high accuracy in the

The proportion of Qos messages
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Fig. 8: Average waiting time of QoS messages versus the
proportion of QoS messages in RL, DM, QS and MN.

real-time monitoring of smart grid. Specifically, we solved
the QoS-enabled load scheduling by reinforcement learning,
defined the learning agent, action space, state space, and
reward function, as well leveraged the historical data to
learn the load scheduling scheme offline and ahead of time,
so as to realize the automatic management among multiple
controllers. We simulated the performance of CM framework
compared with three traditional schemes. Simulation results
showed that the reinforcement learning based scheme had
the best load balancing and time efficiency, which solved the
problems of traditional load balancing schemes. However,
the QoS-enabled load scheduling scheme learns from the
historical data, so it has the lower robustness to the burst
traffic. Once the burst traffic happens, state space in our
scheme fails to describe all situations and also needs the
longer time to learn the new allocation scheme. During this
period, the load variation and time efficiency are severely
affected. Future work is in progress to address these chal-
lenges.
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