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Real-Time Energy Storage Management for
Renewable Integration in Microgrid: An

Off-Line Optimization Approach
Katayoun Rahbar, Student Member, IEEE, Jie Xu, Member, IEEE, and Rui Zhang, Member, IEEE

Abstract—Microgrid is a key enabling solution to future smart
grids by integrating distributed renewable generators and stor-
age systems to efficiently serve the local demand. However, due to
the random and intermittent characteristics of renewable energy,
new challenges arise for the reliable operation of microgrids. To
address this issue, we study in this paper the real-time energy
management for a single microgrid system that constitutes a
renewable generation system, an energy storage system, and
an aggregated load. We model the renewable energy offset by
the load over time, termed net energy profile, to be practically
predictable, but with finite errors that can be arbitrarily dis-
tributed. We aim to minimize the total energy cost (modeled
as sum of time-varying strictly convex functions) of the conven-
tional energy drawn from the main grid over a finite horizon
by jointly optimizing the energy charged/discharged to/from the
storage system over time subject to practical load and storage
constraints. To solve this problem in real time, we propose a new
off-line optimization approach to devise the online algorithm. In
this approach, we first assume that the net energy profile is
perfectly predicted or known ahead of time, under which we
derive the optimal off-line energy scheduling solution in closed-
form. Next, inspired by the optimal off-line solution, we propose
a sliding-window based online algorithm for real-time energy
management under the practical setup of noisy predicted net
energy profile with arbitrary errors. Finally, we conduct simula-
tions based on the real wind generation data of the Ireland power
system to evaluate the performance of our proposed algorithm,
as compared with other heuristically designed algorithms, as well
as the conventional dynamic programming based solution.

Index Terms—Convex optimization, distributed storage, energy
management, microgrid, online algorithm, renewable energy,
smart grid.

NOMENCLATURE

Indices and Numbers
i Time slot index.
N Total number of slots for energy scheduling.

Variables
Ci Energy charged at time slot i.
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Di Energy discharged at time slot i.
Gi Energy drawn from the main grid at time slot i.
Si State of the energy storage system at the beginning

of time slot i.
REi Renewable energy at time slot i, which comprises

of a predictable component REi and a prediction
error component δRE,i, i.e., REi = REi + δRE,i.

DEi Demand energy at time slot i, which comprises
of a predictable component DEi and a prediction
error component δDE,i, i.e., DEi = DEi + δDE,i.

�i Net energy profile at time slot i, which comprises
of a predictable component �i and a prediction
error component δi, i.e., �i = �i + δi.

νi, νi, ω Lagrange dual variables.

Constants

αc Charging efficiency of the storage system.
αd Discharging efficiency of the storage system.
Smin Minimum storage level of the storage system.
Smax Storage capacity.
S Minimum storage level at the end of time slot N.
ai, bi, ci Cost coefficients in the quadratic cost function.
M Size of the sliding-window.
T Given threshold in the threshold based online

algorithm.
β Number of quantized levels of the storage system.
K Number of independent realizations.

Functions

fi(·) Conventional generation cost function at time
slot i.

L(·) Lagrangian function.
g(·) Dual function.
J(·) Cost-to-go function in Bellman equations.

I. INTRODUCTION

D ISTRIBUTED renewable energy generations (such as
wind and solar) have been recognized as an environ-

mentally and economically beneficial solution for future smart
grids by greatly reducing both the carbon dioxide emissions
of conventional fossil fuel based generation, and the energy
transmission losses from generators to far apart loads. In
order to efficiently integrate renewable energy to the gird,
the concept of microgrids has drawn significant interests. By
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integrating and controlling a networked group of distributed
renewable generators and storage systems, each microgrid
supplies power to local users in a small geographical area more
cost-effectively. In practice, microgrids can operate either with
connection to the main grid or independently in an islanded
mode [1], depending on their renewable generation capacity
and load demand.

However, due to the random and intermittent characteristics
of practical renewable energy coupled with the uncertainty of
load demands, new challenges arise for the design of reliable
and stable operation of microgrids. For example, the mismatch
between renewable generation and load demand may lead to
demand outage (in the case of insufficient renewable energy)
or result in energy waste (in the opposite case of excessive
renewable energy). To address this problem, various meth-
ods such as using supplement conventional generation [2]
and enabling energy cooperation among neighboring micro-
grids [3]–[5] have been proposed. Moreover, energy storage is
a practically appealing solution to smooth out the power fluc-
tuations in the renewable energy generation, thus improving
both the reliability and efficiency of microgrids.

In this paper, we investigate the real-time energy manage-
ment problem for a single microgrid system consisting of a
renewable generation system, an energy storage system, and an
aggregated load. The main results of this paper are summarized
as follows.

1) We model the renewable energy offset by the load
over time, termed net energy profile, to be practically
predictable but with finite errors that can be arbitrar-
ily distributed. Under this setup, we aim to minimize
the total energy cost (modeled as sum of time-varying
strictly convex functions) of the conventional energy
drawn from the main grid over a finite horizon by jointly
optimizing the energy charged/discharged to/from the
storage system over time subject to practical load and
storage constraints.

2) To solve the formulated problem in real time, we pro-
pose a new off-line optimization approach to devise
the online algorithm. Specifically, our proposed online
algorithm is based on combining the optimal off-line
solution by assuming perfect knowledge of the net
energy profile with a “sliding-window” based sequen-
tial optimization. This is in contrast to the conventional
sliding-window (or model predictive control as in [6])
based algorithm that uses dynamic programming to
solve the optimization problem within each window,
for which the prediction error of the net energy profile
needs to follow a certain stochastic process with known
distribution.

3) Finally, we conduct extensive simulations based on
the real wind generation data of the Ireland power
system [7] to evaluate the performance of our proposed
algorithms. It is shown that our proposed sliding-window
based online algorithm outperforms three heuristically
designed online algorithms. Under the special case
where the energy prediction errors are modeled as a
stochastic process with known distribution, it is also
shown that our proposed online algorithm achieves a

Fig. 1. System model.

performance very close to the performance upper bound
by the optimal dynamic programming based solution for
this case.

There have been rich prior works [8]–[20] which studied the
energy management problem in power systems with renew-
able energy integration and/or energy storage. The off-line
energy management problem was studied in [8]–[13] under
the ideal assumption that the generated renewable energy and
the load demand are either deterministic or known a pri-
ori before scheduling. The prior works [14]–[18] investigated
the real-time or online energy management problem under
the stochastic demand and/or renewable energy generation
by considering either a simplified energy storage model with
infinite capacity [14] or assuming a stationary stochastic
process with known distributions for the demand and/or renew-
able energy generation [15]–[18]. Furthermore, an optimal
online energy management policy was proposed in [19] solely
based on the current demand, renewable generation, and stor-
age information under a simplified time-invariant linear cost
model for conventional energy generation. Last but not least,
Fathi and Bevrani [20] studied the online energy management
problem for multiple microgrids without considering energy
storage.

In contrast to the above prior works,1 the main contribu-
tion of this paper is to devise a new online algorithm for
the real-time energy management of microgrid systems by
innovatively combining the off-line optimal solution with the
sliding-window based sequential optimization, which prac-
tically works well under arbitrary error realizations in the
net energy profile. It is worth pointing out that the con-
ventional dynamic programming approach cannot be applied
for practical scenarios where the distributions of future net
energy prediction errors are not known to the microgrid,
while our proposed online algorithm works with arbitrary error
realizations.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a power system consisting of one main grid and
one single microgrid. The system model of our interest is thus
depicted in Fig. 1, where a microgrid is shown to connect to
the main grid and is composed of three major elements, i.e., a

1A preliminary conference version of this paper has also been presented
in [21]. As compared to [21], this paper provides more detailed proofs and dis-
cussions for our proposed solutions, and includes more substantial simulation
results to corroborate our analysis.
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renewable generation system, an energy storage system, and
an aggregate load. We first have the following assumptions for
our system model.

1) We consider a time-slotted system with slot index
i, 1 ≤ i ≤ N, where N denotes the total number of
slots for energy scheduling.

2) For convenience of analysis, we consider a quasi-static
time-varying energy model, in which the energy rate
(including that of the generated renewable energy, the
demand energy, the energy charged/discharged to/from
the storage system, or the energy drawn from the main
grid) is constant within each slot, but may change from
one slot to another.

3) The duration of each slot is normalized to a unit time
unless specified otherwise; thus, we can use power and
energy interchangeably in this paper for a given slot.

Next, we define each element of the microgrid system in
detail as follows.

A. Energy Storage Model

We denote the energy charged (discharged) to (from) the
storage in slot i as Ci ≥ 0 (Di ≥ 0). In practice, there are
energy losses during both the charging and discharging pro-
cesses, which can be specified by the charging and discharging
efficiency parameters, denoted by 0 < αc < 1 and 0 < αd < 1,
respectively. Then, by denoting the state (stored energy) of the
storage system at the beginning of each time slot i as Si ≥ 0,
we obtain the following equations for modeling the storage
dynamics:

Si+1 = Si + αcCi − 1

αd
Di, i = 1, . . . , N. (1)

Note that S1 is the initial energy storage at the beginning
of slot 1, while SN+1 is the final energy stored at the end
of the N-slot scheduling period. Furthermore, practical energy
storage systems always have finite capacity and also cannot
be discharged completely; as a result, we denote the stor-
age capacity as Smax ≥ 0 and a minimum storage level as
Smin ≥ 0, to avoid deep discharging. Then, we obtain the
following constraints for the states of the storage system:

Smin ≤ Si ≤ Smax, i = 2, . . . , N + 1 (2)

where Smin ≤ S1 ≤ Smax is assumed by default. In addition,
the final energy storage SN+1 needs to be kept above a given
threshold S with Smin ≤ S ≤ Smax, to achieve reliable and effi-
cient energy scheduling for the next N-slot scheduling period.
As a consequence, we have

SN+1 ≥ S. (3)

Note that in practice there are other costs related to the
energy storage system such as installment cost, operational
cost, and aging cost, which should be taken into account
for the long-term battery management. However, these fac-
tors are ignored in this paper for our investigation of real-
time energy storage scheduling over a relatively short time
horizon.

B. Load and Renewable Energy Model

In each slot i, the demand energy in a microgrid is denoted
as DEi ≥ 0, while the generated renewable energy is given by
REi ≥ 0. For convenience, we define the net energy profile
over time as �i = REi − DEi, i = 1, . . . , N, which speci-
fies the mismatch between the renewable energy supply and
demand over time. Note that �i can be zero, positive (repre-
senting a supply surplus), or negative (representing a supply
deficit). We assume that both REi’s and DEi’s are predictable
in general but with finite prediction errors, due to their ran-
domness in practice. Suppose that the predictable demand
and renewable energy values are denoted as DEi and REi,
respectively, in slot i. We then have DEi = DEi + δDE,i and
REi = REi + δRE,i, where δDE,i and δRE,i denote the pre-
diction errors for the demand and renewable energy in slot i,
respectively, which can be modeled by arbitrary (deterministic
or stochastic) sequences over i = 1, . . . , N. Hence, we model
the net energy profile for the microgrid as

�i = �i + δi, i = 1, . . . , N (4)

where �i = REi − DEi and δi = δRE,i − δDE,i. Under this
model, we further assume that at any slot i ∈ {1, . . . , N}, the
exact net energy profile over time k ≤ i, i.e., �1, . . . , �i, as
well as the predictable net energy profile for time k > i, i.e.,
�i+1, . . . ,�N , are perfectly known to the microgrid, whereas
the prediction errors for time k > i, i.e., δi+1, . . . , δN , are
unknown.

We assume that the microgrid should always meet the load
demand by discharging from its storage and/or drawing energy
from the main grid. Let the energy drawn from the main grid
in slot i be denoted by Gi ≥ 0. We then have the following
energy neutralization constraints over time as:

Gi + �i + Di ≥ Ci, i = 1, . . . , N. (5)

Note that in case of energy surplus �i > 0, part of the
energy may be curtailed due to the limited capacity of the
energy storage system. In this case, (5) needs to hold with a
strict inequality.

C. Conventional Generation Cost

In this paper, we focus on the cost of the conventional
energy drawn from the main grid by ignoring other costs
such as the operational cost of energy storage in microgrid,
etc. We consider a general time-varying cost model for con-
ventional generation and specifically model the costs over
time by a sequence of functions of Gi, denoted by fi(Gi),
i = 1, . . . , N, each of which is assumed to be known a priori
to the microgrid2 and have the following properties.

1) fi(Gi) is a strictly convex function [22] over Gi ≥ 0.
2) fi(Gi) is a strictly positive and monotonically increasing

function over Gi ≥ 0.
3) fi(Gi) is continuous and differentiable over Gi ≥ 0,

where Fi(Gi) � f ′
i (Gi) is the differential of fi(Gi) of

which the inverse function, F−1
i (·), uniquely exists.

2We assume that the microgrid and the main grid belong to the same oper-
ator with the common objective to minimize the cost of energy delivered to
microgrid users. In this case, the main grid informs the microgrid the cost
function fi(Gi)’s through an existing communication link connecting them.
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One commonly adopted function of fi(Gi) satisfying all the
above properties is the quadratic cost function for thermal
generators [23] given as

fi(Gi) = aiG
2
i + biGi + ci (6)

where ai > 0, bi ≥ 0, and ci ≥ 0 are given cost coefficients for
slot i; in this case, we can further obtain Fi(Gi) = 2aiGi + bi

and F−1
i (Gi) = (Gi − bi)/2ai.

With the aforementioned models, we proceed to opti-
mize the decision variables {Ci, Di, Gi}N

i=1 to minimize the
cost of the total energy drawn from the main grid, i.e.,∑N

i=1 fi(Gi), while satisfying the given storage and load
constraints. We thus formulate the optimization problem as
follows:

(P1) : min{Ci,Di,Gi}

N∑

i=1

fi(Gi)

s.t. (1) − (3), (5)

Ci ≥ 0, Di ≥ 0, Gi ≥ 0, i = 1, . . . , N.

Due to the unknown prediction error δk’s in (4) at each
slot i with k > i, (P1) is in general a challenging prob-
lem to solve. One commonly used method to solve problems
of similar structure to (P1), is via the technique of dynamic
programming, which provides the optimal online solution if
δi’s are modeled as a stochastic process with known distribu-
tion (e.g., a stationary or cyclostationary stochastic process).
However, due to the notorious “curse of dimensionality”
problem, the optimal solution by dynamic programming in
general has an exponentially growing complexity with the
number of decision variables as N → ∞. Furthermore, in
practical systems, the renewable energy generated and/or the
load demand cannot be exactly modeled by stationary or
cyclostationary processes; as a result, it may not be prac-
tically valid to model δi’s as such a process with known
distributions. Therefore, this motivates our work to pro-
pose an alternative optimization approach for solving (P1)
online or in real-time. First, we derive the optimal off-line
solution of (P1), by assuming that the net energy pro-
file {�1, . . . ,�N} is perfectly known ahead of time with
no prediction errors, i.e., δi = 0, i = 1, . . . , N, in (4).
Next, based on the developed off-line solution of (P1), we
further propose an online algorithm for real-time energy
management under the practical setup with noisy predicted
net energy profile, uniquely exists subject to arbitrary error
sequence of δi’s. Note that as a by-product, the off-line
optimization always provides a performance upper bound
[or a lower bound on the objective value of (P1)] for
any online algorithms under the same net energy profile
realization �i’s.

III. OFF-LINE OPTIMIZATION

In this section, we consider the off-line optimization of (P1)
by assuming the net energy profile {�1, . . . ,�N} are known at
the beginning of slot i = 1. For convenience, we express (P1)

more explicitly as follows:

min{Ci,Di,Gi}

N∑

i=1

fi(Gi)

s.t. S1 + αc

i∑

k=1

Ck − 1

αd

i∑

k=1

Dk ≥ Smin, i = 1, . . . , N (7)

S1 + αc

i∑

k=1

Ck − 1

αd

i∑

k=1

Dk ≤ Smax, i = 1, . . . , N (8)

S1 + αc

N∑

k=1

Ck − 1

αd

N∑

k=1

Dk ≥ S (9)

Gi + �i + Di ≥ Ci, i = 1, . . . , N (10)

Ci ≥ 0, Di ≥ 0, Gi ≥ 0, i = 1, . . . , N. (11)

It is easy to verify that (P1) is a convex optimization
problem, since the objective function is convex and all its
constraints are affine [22]. Thus, (P1) can be solved by stan-
dard convex optimization techniques such as the interior point
method [22]. However, in order to draw more insights from
the optimal solution, in this paper we apply the Lagrange dual-
ity method to obtain a closed-form optimal solution for (P1).
First, we derive the dual function of (P1) by minimizing its
Lagrangian. Next, we solve the dual problem to derive the
optimal dual variables using the subgradient based method.
Finally, with the optimal dual variables at hand, we obtain the
optimal solution to (P1).

Let the Lagrange dual variables associated with the con-
straints in (7)–(9) be denoted by νi, νi, i = 1, . . . , N, and ω,
respectively, and define

νi =
N∑

k=i

(
ν k − νk

)
, i = 1, . . . , N. (12)

Then, the Lagrangian of (P1) is expressed as

L(ω, {νi}, {νi}, {Ci}, {Di}, {Gi})

=
N∑

i=1

fi(Gi) +
N∑

i=1

(νi + ω)

(
Di

αd
− αcCi

)

− ωS1 + ωS

−
(

N∑

i=1

νi

)

(S1 − Smin) −
(

N∑

i=1

νi

)

(Smax − S1). (13)

Accordingly, the dual function of L(·) is given by

g
(
ω, {νi}, {νi}

)

= min{Ci,Di,Gi}
L(ω, {νi}, {νi}, {Ci}, {Di}, {Gi})

s.t. (10), (11). (14)

Thus, the dual problem of (P1) is given by

(D1): max
ω≥0,{νi≥0},{νi≥0} g

(
ω, {νi}, {νi}

)
. (15)

Since (P1) is convex and satisfies the Slater’s condition [22],
strong duality holds between (P1) and (D1) [22]; as a result,
we can solve (P1) optimally by solving (D1) equivalently. In
the following, we first obtain g(ω, {νi}, {νi}) with given ω ≥ 0,
νi ≥ 0, and νi ≥ 0, i = 1, . . . , N, by solving the minimization
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problems in (14), and then search over ω, {νi}, and {νi} to
maximize g(ω, {νi}, {νi}) as shown in (15).

First, we have the following lemma.
Lemma 1: In order for g(ω, {νi}, {νi}) to be bounded from

below, it must hold that νi ≥ −ω, i = 1, . . . , N.
Proof: Please refer to Appendix A.
From Lemma 1, we need to solve the problem in (14) under

given ω, {νi} and {νi} satisfying νi ≥ −ω, i = 1, . . . , N. In
this case, by removing the irrelevant constant terms in (13), the
minimization problem in (14) can be explicitly expressed as

min{Ci,Di,Gi}

N∑

i=1

fi(Gi) +
N∑

i=1

(νi + ω)

(
Di

αd
− αcCi

)

s.t. (10), (11). (16)

Note that the optimization problem in (16) can be decom-
posed over time into N independent optimization problems,
each of which is expressed as follows for one i ∈ {1, . . . , N}:

min
Ci,Di,Gi

fi(Gi) + (νi + ω)

(
Di

αd
− αcCi

)

s.t. Gi + �i + Di ≥ Ci

Ci ≥ 0, Di ≥ 0, Gi ≥ 0. (17)

By denoting {C∗
i , D∗

i , G∗
i } as the optimal solution for the

minimization problem in (17), we then have the following
lemma.

Lemma 2: There always exists an optimal solution for (17)
satisfying that C∗

i · D∗
i = 0, i = 1, . . . , N.

Proof: Please refer to Appendix B.
Lemma 2 is intuitive since it cannot be optimal for the

energy storage system to charge and discharge at the same
time slot given 0 < αc < 1 and 0 < αd < 1.

With Lemmas 1 and 2, we are now ready to obtain the
optimal solution to (17), shown as follows.

Proposition 1: The optimal solution to (17) is given by

C∗
i =

[
F−1

i

(
max(Fi(0), αcω + αcνi)

) + �i

]+
(18)

D∗
i =

[
−F−1

i

(
max (Fi(0), ω/αd + νi/αd)

) − �i

]+
(19)

G∗
i = [

C∗
i − D∗

i − �i
]+ (20)

where [x]+ � max(0, x).
Proof: Please refer to Appendix C.
From Proposition 1, we can obtain g(ω, {νi}, {νi})

with any set of ω ≥ 0, νi ≥ 0, νi ≥ 0, and νi ≥ −ω,
∀i ∈ {1, . . . , N}. Next, we maximize g(ω, {νi}, {νi}) over ω,
{νi}, and {νi} to solve the dual problem (D1) given in (15).
Note that g(ω, {νi}, {νi}) is concave but not necessarily
differentiable [22]. Nevertheless, it can be verified that the
subgradient of g(ω, {νi}, {νi}) always exists [24], which can
be expressed as S − (S1 + αc

∑N
k=1 C∗

k − (1/αd)
∑N

k=1 D∗
k),

Smin − (S1 + αc
∑i

k=1 C∗
k − (1/αd)

∑i
k=1 D∗

k), and

(S1 + αc
∑i

k=1 C∗
k − (1/αd)

∑i
k=1 D∗

k) − Smax at ω, νi,
and νi, respectively, i = 1, . . . , N. Therefore, (D1) can be
solved by subgradient based methods such as the ellipsoid
method [24], for which the optimal (dual) solution can be
obtained as ω�, {ν�

i }, and {ν�
i }. With ω�, {ν�

i }, and {ν�
i }, the

TABLE I
OPTIMAL OFF-LINE ALGORITHM FOR PROBLEM (P1)

optimal value of (D1) must be the same as that of (P1) due to
strong duality. However, the corresponding solution obtained
from Proposition 1, i.e., {C∗

i , D∗
i , G∗

i }, cannot be directly
applied as the optimal solution of (P1), since it is in general
nonunique and thus may not even be a feasible solution
for (P1). Therefore, to obtain the optimal solution for (P1),
we have the following proposition, which provides an optimal
closed-form solution of (P1) in terms of the optimal dual
variables ω�, {ν�

i }, and {ν�
i }.

Proposition 2: The optimal solution to (P1) is given by

C�
i = min

([
F−1

i

(
max

(
Fi(0), αcω

� + αcν
�
i

)) + �i

]+

Smax − S�
i

αc

)

(21)

D�
i = min

( [
−F−1

i

(
max

(
Fi(0), ω�/αd + ν�

i /αd
)) − �i

]+

αd
(
S�

i − Smin
)
)

(22)

G�
i = [

C�
i − D�

i − �i
]+ (23)

for i = 1, . . . , N, where ν�
i is defined in (12) with the given

{ν�
i } and {ν�

i }, and S�
i = S1 + αc

∑i−1
k=1 C�

k − (1/αd)
∑i−1

k=1 D�
k.

Proof: Please refer to Appendix D.
Notice that in Proposition 2, (21)–(23) need to be computed

iteratively from i = 1 to i = N. In summary, one algorithm
for solving (P1) is given in Table I as Algorithm 1, in which
steps a)–d) compute the optimal dual solution ω�, {ν�

i }, and
{ν�

i } in (D1), while steps e)-g) obtain the optimal solution
{C�

i }, {D�
i } and {G�

i } for (P1).

IV. SLIDING-WINDOW BASED ONLINE ALGORITHM

In the previous section, we have studied the off-line opti-
mization under the ideal assumption that the net energy profile
�i’s are perfectly known a priori by deriving the optimal
off-line energy scheduling solution for (P1) which provides
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a performance upper bound for all online energy management
algorithms in general. Inspired by the optimal off-line solu-
tion, in this section, we propose an online algorithm for (P1)
under the practical setup of noisy net energy profile predic-
tion, that is, at each slot i, only the past and current net energy
profile, i.e., �1, . . . ,�i, and the predicable part in the future
net energy profile, i.e., �i+1, . . . ,�N , are known to the micro-
grid, whereas the future prediction errors δi+1, . . . , δN , are
unknown. Our proposed online algorithm is based on com-
bining the off-line solution for (P1) with a sliding-window
based sequential optimization, which is applicable in practical
scenarios where the prediction errors are modeled by arbitrary
(unknown) sequences.

We define a parameter M with 1 ≤ M ≤ N as the size
of the sliding-window. At each slot i, we regard the online
optimization as a finite-horizon energy management problem
over a window of M slots, with an initial energy state given
by Si, and an available net energy profile over this window
as �i,�i+1, . . . ,�i+M−1. Note that except slot i, for the
future M − 1 slots in the online optimization at slot i,3 we
have used the predictable net energy profile �i+1, . . . ,�M+i−1
instead of the exact one �i+1, . . . ,�M+i−1 (since they are
unknown yet) by ignoring their predictions errors. For the
online optimization at slot i, we denote the decision vari-
ables over the window of size M as {C(i)

j , D(i)
j , G(i)

j }M
j=1. Then,

we formulate the online optimization problem at slot i sim-
ilarly to (P1), by replacing N and S1 in (P1) by M and Si,
f1(·), . . . , fN(·) in (P1) by fi(·), . . . , fi+M−1(·), �1,�2 . . . , �N

in (P1) by �i,�i+1 . . . ,�i+M−1, S in (P1) by Si+M−1, and
finally {Ci, Di, Gi}N

i=1 in (P1) by {C(i)
j , D(i)

j , G(i)
j }M

j=1. We also
set Si+M−1 = S if i + M − 1 = N and Si+M−1 = 0 otherwise.
More explicitly, we formulate the online problem at slot i as

min{
C(i)

j ,D(i)
j ,G(i)

j

}M

j=1

M∑

j=1

fi+j−1

(
G(i)

j

)

s.t. Si + αc

j∑

k=1

C(i)
k − 1

αd

j∑

k=1

D(i)
k ≥ Smin, j = 1, . . . , M

Si + αc

j∑

k=1

C(i)
k − 1

αd

j∑

k=1

D(i)
k ≤ Smax, j = 1, . . . , M

Si + αc

M∑

k=1

C(i)
k − 1

αd

M∑

k=1

D(i)
k ≥ Si+M−1

G(i)
1 + �i + D(i)

1 ≥ C(i)
1

G(i)
j + �j + D(i)

j ≥ C(i)
j , j = 2, . . . , M

C(i)
j ≥ 0, D(i)

j ≥ 0, G(i)
j ≥ 0, j = 1, . . . , M. (24)

Equation (24) can be solved by Algorithm 1 directly by
a change of variables/parameters as specified above, with
the optimal solution denoted by {C(i)�

j , D(i)�
j , G(i)�

j }M
j=1. Then

our proposed sliding-window based online algorithm sets the

3The window of size M will exceed the N-slot horizon if i + 1 − M > N.
In this case, we make use of the prediction values in the next N-slot period,
i.e., �N+1,�N+2, . . . ,�N+M−1 for energy management of slots i = N −
M + 2, . . . , N in the current N-slot period.

TABLE II
SLIDING-WINDOW BASED ONLINE ALGORITHM FOR PROBLEM (P1)

decision variables at time i as

Conline
i = C(i)�

1 , Donline
i = D(i)�

1

Gonline
i = G(i)�

1 , i = 1, . . . , N. (25)

In summary, the above proposed online algorithm is given
in Table II as Algorithm 2.

Remark 1: The sliding-window size M is a key design
parameter for our proposed online algorithm. Specifically,
larger M is desirable for the case with small prediction error
δi’s to fully exploit the benefit of long-term prediction, while
smaller M is preferable for the case where the prediction errors
are large so that the predicable net energy profile is rendered
less useful as the window size is increased. On the other hand,
when the storage capacity is large, larger M is preferable in
order to fully utilize the storage capacity. As a result, in case
of small prediction errors, larger M always performs better
regardless of the storage capacity, while for the case of large
prediction errors, the opposite is true unless the storage capac-
ity is large enough so that the gain of using the larger window
size to exploit the storage capacity compensates the loss due
to more prediction errors.

V. ALTERNATIVE ONLINE ALGORITHMS

In this section, we present four alternative online algorithms
to provide performance benchmarks for our proposed sliding-
window based online algorithm. First, we introduce three
heuristically designed online algorithms, namely “thresh-
old based,” “myopic,” and “energy halving,” respectively.
Next, under the special setup where the prediction errors
follow a stochastic process with known distribution, we
consider the dynamic programming based algorithm to
solve (P1), which is optimal in this case and thus serves
as the performance upper bound for our proposed online
algorithm.

A. Threshold Based Online Algorithm

At each slot i, the decision variables Ci, Di, and Gi are
determined only based on the energy state Si, the net energy
profile element �i at the current slot, and a given threshold T .
Specifically, for the case of �i > T , the energy storage is
charged by �i − T until it reaches its capacity Smax; whereas
for the case of �i ≤ T , the energy storage is first discharged
by T − �i to meet the load demand until it reaches its min-
imum level (Smin for i < N and S for i = N), and then the
energy from the main grid is drawn to meet the residual load
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(if any). Thus, at the first N − 1 slots, the threshold based
online algorithm sets

Cthr
i = min

(

[�i − T]+,
Smax − Si

αc

)

Dthr
i = min

(

[T − �i]
+, αd(Si − Smin)

)

Gthr
i =

[
Cthr

i − Dthr
i − �i

]+
(26)

where 1 ≤ i < N; while at the last time slot i = N, it sets

Cthr
N = max

(

min

(

[�N − T]+,
Smax − SN

αc

)

,
S − SN

αc

)

Dthr
N = min

(

[T − �N]+, αd
(
SN − S

)
)

Gthr
N =

[
Cthr

N − Dthr
N − �N

]+
. (27)

This algorithm was shown to be optimal when S = 0,
T = E[1/N

∑N
i=1 �i], the scheduling time horizon is infinite,

i.e., N → ∞, and Smax → ∞ [14].

B. Myopic Online Algorithm

This algorithm is equivalent to the threshold based online
algorithm, by setting T = 0. Note that the myopic online
algorithm was shown to be optimal in [19] when the cost
function fi(·)’s are all linear and also time-invariant over i,
and furthermore S = 0.

C. Energy Halving Online Algorithm

This algorithm performs similarly as the myopic algorithm,
except that only up to half of the stored energy can be used in
the case of energy supply deficit at the first N − 1 slots. For
time slot N, the algorithm performs the same as that in (27),
with T = 0. Please refer to [25] for the detail of this algo-
rithm. In the energy halving algorithm, since at least half of
the stored energy is available for future use in the first N − 1
slots, any energy deficit in future slots is more likely to be
compensated by storage as compared to the myopic online
algorithm. By more conservatively balancing the current and
future renewable energy availability, this algorithm can achieve
lower energy cost than the myopic algorithm, as will be shown
later by simulations.

D. Dynamic Programming Based Online Algorithm

At last, we consider a special case where the prediction
errors, δ1, . . . , δN , follow a stochastic process with known
distribution. Under this special case, we apply the cele-
brated dynamic programming method to solve (P1) optimally.
Specifically, the dynamic programming based online algorithm
aims to minimize the expected cost of the total energy drawn
from the main grid, i.e.,

∑N
i=1 E[ fi(Gi)], subject to (7)–(11).

We thus have the following proposition.
Proposition 3: Given �1 and S1, the optimal value achieved

by minimizing
∑N

i=1 E[ fi(Gi)] subject to (7)–(11), is given
by J1(�1, S1), which can be computed recursively based on
the following Bellman equations, starting from JN(�N, SN),

JN−1(�N−1, SN−1), and so on until J1(�1, S1)

JN(�N, SN) = min
CN ,DN ,GN

fN(GN) s.t. S

≤ SN + αcCN − 1

αd
DN ≤ SmaxGN

+ �N + DN ≥ CN CN

≥ 0, DN ≥ 0, GN ≥ 0 (28a)

Ji(�i, Si) = min
Ci,Di,Gi

fi(Gi) + Ji+1

(

Si + αcCi − 1

αd
Di

)

s.t. Smin ≤ Si + αcCi − 1

αd
Di ≤ SmaxGi

+ �i + Di ≥ Ci Ci

≥ 0, Di ≥ 0, Gi ≥ 0 (28b)

for i = 1, . . . , N − 1, where

Ji+1

(

Si + αcCi − 1

αd
Di

)

= E�i+1

[

Ji+1

(

�i+1, Si + αcCi − 1

αd
Di

)]

(29)

and E�i [ · ] denotes the expectation over �i.
An optimal policy is accordingly given by
π� = {

CDP
i (�i, Si), DDP

i (�i, Si), GDP
i (�i, Si)

}N
i=1, where

CDP
i (�i, Si), DDP

i (�i, Si), and GDP
i (�i, Si) is the optimal

solution to (28).
Proof: The proof follows directly by applying Bellman

equations [26], and thus is omitted here for brevity.
In Proposition 3, we need to solve the problems given

in (28) to obtain the optimal online policy. Since it is dif-
ficult to derive the closed-form expressions for Ji+1(Si+1),
i = 1, . . . , N−1, we take an alternative Monte Carlo approach
to solve the problems in (28) by assuming that the storage
state at each time slot i, i = 1, . . . , N, can only be chosen from
β+1 quantized levels with equal difference, denoted in the set
S = {0, Smax/β, . . . , Smax}. First, consider time slot i = N. For
any given SN ∈ S, we can derive the optimal solution to (28a)
by comparing SN with the threshold S, which is expressed as

CDP
N = [(

S − SN
)
/αc

]+
, DDP

N = [
αd

(
SN − S

)]+

GDP
N = [

CDP
N − DDP

N − �N
]+
. (30)

Given the optimal solution in (30), we then obtain JN(SN)

by averaging JN(�N, SN) (using Monte Carlo simulations)
over K > 0 independent realizations of �N . By performing
this procedure for all storage levels, we can obtain JN(SN),
∀SN ∈ S, which is stored for the next iteration. Next,
consider time slot i = N − 1. For any given SN−1 ∈ S,
we compute the optimal solution to (28b) numerically to
obtain JN−1(�N−1, SN−1) given the stored values of JN(SN)’s
and accordingly, compute JN−1(�N−1) via Monte Carlo
simulations. Similarly, for time slots i = 1, . . . , N − 2, we
solve the corresponding problems in (28b) to recursively
obtain JN−2(�N−2, SN−2), JN−3(�N−3, SN−3), and so on
until J1(�1, S1). It is worth noting that the accuracy of
the Monte Carlo method is determined by the parameters
β and K. If β and K are chosen to be large enough, the above
solution can approximate the optimal solution by dynamic
programming closely.
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Fig. 2. Hourly predictable net energy profile over one week period.

In the above algorithm, we solve the problems in (28)
off-line to obtain Ji(Si), Si ∈ S, i = 1, . . . , N, which
need to be stored in a lookup table for real-time energy
management implementation. In each slot i, 1 ≤ i ≤ N,
given the energy state Si and the future expected energy cost
Ji+1(�i+1, Si+1), we can search from the lookup table to
obtain the corresponding online policy for the current slot,
which is CDP

i , DDP
i and GDP

i . It is worth noting that in
this special case of known prediction error distributions, the
dynamic programming based algorithm obtains the perfor-
mance upper bound for all online algorithms, including our
proposed sliding-window based online algorithm as well as
the three heuristic algorithms previously introduced.

VI. SIMULATION RESULTS

In this section, we provide simulation results to evaluate
the performance of our proposed algorithms by considering
a scheduling period of one week, where we set N = 168
with each slot representing 1 h. We assume a quadratic time-
invariant cost function given in (6), where ai = 0.03125
$/MW2, bi = 1 $/MW, and ci = 0, ∀i ∈ {1, . . . , N} [23]. We
also set the parameters of the storage system in the micro-
grid as αc = 0.7, αd = 0.8, S1 = 0, Smin = 0, S = 0,
and Smax = 400 MW. The predictable net energy profile {�i}
is taken as the hourly predicted wind energy generation over
one week period (from 27 June, 2013 to 3 July, 2013) in
the Ireland power grid [7] offset by a time-invariant demand
load of DEi = 600 MW, ∀i = 1, . . . , N, as shown in Fig. 2.
Furthermore, we assume that the prediction error δi’s fol-
low independent and identical Gaussian distributions with zero
mean and variance σ 2.

First, we compare the performance of our proposed sliding-
window based online algorithm with that of the three heuris-
tically designed online algorithms. For the threshold based
online algorithm we set T = ∑168

i=1 �i/168 = −64.03 MW. In
addition, since the sequence of prediction error δi’s is assumed
as a stationary stochastic process with known Gaussian distri-
bution, we apply the dynamic programming based algorithm
to obtain the performance upper bound (or lower bound on
the total cost) for all considered online algorithms. For the
proposed sliding-window based online algorithm, we consider

Fig. 3. Energy cost versus the variance of prediction error.

two window sizes of M = 2 and M = 8. For the dynamic
programming based algorithm, we set β = 100 and K = 100
to obtain accurate approximate solutions.

Fig. 3 shows the average energy cost versus the prediction
error variance σ 2. First, it is observed that the energy cost of
all considered algorithms increases with increasing σ 2, which
is due to the fact that larger σ 2 corresponds to more sub-
stantial energy fluctuations, thus resulting in a higher average
energy cost (since energy deficit may not be fully compensated
by energy surplus due to limited storage capacity). It is also
observed that for our proposed sliding-window based online
algorithm, the case of M = 8 outperforms that of M = 2 when
σ 2 is small, while the opposite is true when σ 2 becomes suffi-
ciently large. This result is expected since the storage capacity
is not large compared to the net energy profile in this example
and thus in the case of large prediction errors, the algorithm
with M = 2 performs better than that with the larger win-
dow size M = 8, as explained in Remark 1. Furthermore,
it is observed that our proposed sliding-window based online
algorithm achieves its cost very close to the minimum cost
by the optimal dynamic programming based algorithm, and
also outperforms notably over the other three heuristic online
algorithms. Finally, the off-line optimization is observed to
perform the best over all online algorithms since it is under
the ideal assumption that the net energy profile is completely
known (i.e., the prediction errors are known ahead of time).

Fig. 4 shows the performance of the dynamic programming
based algorithm when prediction errors in the net energy pro-
file deviate from the distribution presumed, as compared to
the off-line optimization and our proposed online algorithm.
In this example, we construct the lookup table for the dynamic
programming algorithm by assuming that the prediction errors
follow i.i.d. Gaussian distribution with zero mean and variance
of 16 × 104 (MW)2. However, the actual prediction errors for
simulations are generated from another i.i.d. Gaussian distri-
bution, with mean μ varying in the range of [0, 75] MW and
variance of 1.6 × 104 (MW)2. It is observed that the perfor-
mance of dynamic programming under imperfect knowledge
of the error distribution is considerably worse than that of our
proposed sliding-window based online algorithm with window
size M = 8. Particularly, as μ increases, the performance gap
of dynamic programming becomes more notable.
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Fig. 4. Performance comparison with dynamic programming under imperfect
knowledge of the distribution of prediction errors.

Fig. 5. Energy cost versus storage capacity.

Next, we investigate the impact of storage capacity Smax
on the total energy cost. By fixing the variance of the pre-
diction errors as σ 2 = 12.8 × 104 (MW)2, Fig. 5 shows the
average energy cost versus the storage capacity for the sliding-
window based online algorithm (with window sizes of M = 2
or M = 8), the three heuristic online algorithms, and the off-
line optimization. It is observed that the sliding-window based
online algorithm with window size of M = 2 or M = 8
as well as the three heuristic online algorithms perform the
same as the off-line optimization when there is no storage,
i.e., Smax = 0. This is intuitive, since in this case, the prior
knowledge of the net energy profile cannot be utilized for
scheduling without storage. It is also observed that as Smax
increases, the average energy cost for all considered algorithms
decreases, while that of the off-line optimization decreases
faster than the online algorithms due to the more complete
net energy profile information available for scheduling opti-
mization. Finally, it is observed that the sliding-window based
online algorithm with M = 2 outperforms that of M = 8
when 0 < Smax < 450 MW, while the opposite is true when
Smax > 450 MW. This result is expected, as explained in
Remark 1.

VII. CONCLUSION

This paper studies the finite-horizon real-time energy storage
scheduling for a single microgrid system to minimize the energy
cost of the conventional energy drawn from the main grid by
jointly optimizing the energy charged/discharged to/from the
storage system over time subject to practical load and storage
constraints. Under a practical model in which the net energy
profiles are predictable but with finite errors, we propose a new
sliding-window based online algorithm for real-time energy
management by innovatively combining with a well-structured
off-line optimization solution, and demonstrate the significant
benefits of our proposed online algorithm in practical power
systems by simulations. It is hoped that our results will provide
a new approach to optimally integrating renewable energy and
managing energy storage in practical microgrid systems.

APPENDIX A

PROOF OF LEMMA 1

Suppose that νj < −ω holds for some j ∈ {1, . . . , N}. In
this case, by letting Gj = 0, Cj → ∞, Dj = Cj − �j, and
Gi = Ci = Di = 0,∀i �= j, it can be shown from (17) that
L(ω, {νi}, {νi}, {Ci}, {Di}, {Gi}) → −∞ with (10) and (11)
satisfied. Thus, νi < −ω cannot be true for g(ω, {νi}, {νi}) to
be bounded from below. This lemma thus follows.

APPENDIX B

PROOF OF LEMMA 2

Suppose that the optimal solution to (17) is unique and
there exists a slot j with both C∗

j > 0 and D∗
j > 0,

i.e., C∗
j · D∗

j �= 0, j ∈ {1, . . . , N}. Then, we can con-
struct another solution {Ci, Di, G∗

i } �= {C∗
i , D∗

i , G∗
i } as Ci =

C∗
i − min(C∗

i , D∗
i ) and Di = D∗

i − min(C∗
i , D∗

i ),∀i, which
satisfies Ci · Di = 0. Since νi ≥ −ω,∀i, from Lemma
1, it can be verified that L(ω, {νi}, {νi}, {Ci}, {Di}, {G∗

i }) ≤
L(ω, {νi}, {νi}, {C∗

i }, {D∗
i }, {G∗

i }), i.e., a lower objective value
can be achieved by the newly constructed solution, which con-
tradicts that {C∗

i , D∗
i , G∗

i } is uniquely optimal for (17). This
lemma is thus proved.

APPENDIX C

PROOF OF PROPOSITION 1

Since the problem in (17) is convex and satisfies the
Slater’s condition, the Karash–Kuhn–Tucker (KKT) condi-
tions are both necessary and sufficient for its optimality [22].
Let γi be the dual variable corresponding to the constraint
Gi + �i + Di ≥ Ci, and λC

i , λD
i , and λG

i be the dual variables
associated with the constraints of Ci ≥ 0, Di ≥ 0, and Gi ≥ 0,
respectively. Suppose that the optimal solutions to (17) are
given by C∗

i , D∗
i , and G∗

i , while the optimal (dual) solutions
to (17) are denoted as γ ∗

i , λC∗
i , λD∗

i , and λG∗
i . Then, the KKT

conditions for (17) can be expressed as follows:

G∗
i + �i + D∗

i − C∗
i ≥ 0 (31)

C∗
i ≥ 0, D∗

i ≥ 0, G∗
i ≥ 0 (32)

γ ∗
i ≥ 0, λC∗

i ≥ 0, λD∗
i ≥ 0, λG∗

i ≥ 0 (33)

γ ∗
i

(
C∗

i − �i − D∗
i − G∗

i

) = 0 (34)
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λC∗
i C∗

i = 0, λD∗
i D∗

i = 0, λG∗
i G∗

i = 0 (35)

γ ∗
i − αcω − αcνi − λC∗

i = 0 (36)

γ ∗
i − 1

αd
ω − 1

αd
νi + λD∗

i = 0 (37)

γ ∗
i − Fi

(
G∗

i

) + λG∗
i = 0 (38)

where (31)–(33) are for the primal and dual feasibility,
(34) and (35) for the complimentary slackness, and (36)–(38)
follows due to the fact that the gradient of the Lagrangian of
(17) must vanish at optimal solution {C∗

i , D∗
i , G∗

i }.
With the KKT conditions in (31)–(38), we are now ready

to prove the proposition by considering the nontrivial case of
ω + νi > 0.4 In this case, it follows from (36) that γ ∗

i =
αc(ω + νi) + λC∗

i > 0. Together with (34), we have

C∗
i − �i − D∗

i − G∗
i = 0. (39)

From (39) together with the fact that C∗
i · D∗

i = 0 in
Lemma 2, we then prove this proposition by studying the fol-
lowing three cases: 1) C∗

i = 0 and D∗
i > 0; 2) C∗

i > 0; and
D∗

i = 0; and 3) C∗
i = 0 and D∗

i = 0, respectively.
First, consider the case of C∗

i = 0 and D∗
i > 0. In this case,

it follows from (35) that λD∗
i = 0, and thus (37) is simplified

as γ ∗
i = 1/αd(ω + νi). Accordingly, from (38) we have

G∗
i = F−1

i

(
1/αd(ω + νi) + λG∗

i

)
. (40)

Using (40) together with (32) and (35), the optimal G∗
i is

obtained as

G∗
i =

[
F−1

i (1/αd(ω + νi))
]+

= F−1
i (max (Fi(0), 1/αd(ω + νi))) . (41)

Accordingly, from (39) we have the optimal D∗
i as

D∗
i = −F−1

i (max (Fi(0), 1/αd(ω + νi))) − �i. (42)

Combining C∗
i = 0, D∗

i in (42) and G∗
i in (41), the opti-

mal solution to (17) is obtained for the case of C∗
i = 0 and

D∗
i > 0. It remains to show that this solution is indeed as given

in (18)–(20). Note that D∗
i > 0 is given in this case, and thus it

must hold from (42) that −F−1
i (max (Fi(0), 1/αd(ω + νi)))−

�i > 0. Therefore, D∗
i in (42) is the same as that in (19).

For C∗
i in (18), since it can be verified that

F−1
i (max(Fi(0), αcω + αcνi)) + �i

≤ F−1
i (max (Fi(0), 1/αd (ω + αcνi))) + �i < 0.

It follows that C∗
i in (18) corresponds to C∗

i = 0. By comb-
ing C∗

i = 0 and D∗
i in (42), it can be verified that G∗

i in (41)
is consistent with that in (20). As a result, the solution in
Proposition 1 is proved to be the optimal solution to (17) for
the case of C∗

i = 0 and D∗
i > 0.

Second, consider the case of C∗
i > 0 and D∗

i = 0. In this
case, it follows from (35) that λC∗

i = 0, and thus (36) is
simplified as γ ∗

i = αc(ω+νi). Accordingly, from (38) we have

G∗
i = F−1

i

(
αc(ω + νi) + λG∗

i

)
. (43)

4If ω + νi = 0, then it is easy to verify that the optimal solution to (17)
is given by C∗

i = [�i]+ , D∗
i = [−�i]+ , and G∗

i = 0. This can be shown to
coincide with the optimal solution given in (18)–(20).

Using (43) together with (32) and (35), the optimal G∗
i is

obtained as

G∗
i =

[
F−1

i (αc(ω + νi))
]+

= F−1
i (max (Fi(0), αc(ω + νi))). (44)

Accordingly, from (39) we have the optimal C∗
i as

C∗
i = F−1

i (max (Fi(0), αc(ω + νi))) + �i. (45)

Combining C∗
i in (45), D∗

i = 0 and G∗
i in (44), the optimal

solution to (17) is obtained for the case of C∗
i > 0 and D∗

i = 0.
Using the fact of C∗

i > 0 in this case and following the similar
argument as in the previous case of C∗

i = 0 and D∗
i > 0,

we can show that this solution is consistent with that given
in (18)–(20). Therefore, the solution in Proposition 1 is proved
to be optimal to (17) for the case of C∗

i > 0 and D∗
i = 0.

Finally, consider the case of C∗
i = 0 and D∗

i = 0. In this
case, it follows from (39) that G∗

i = −�i. We show in the next
that this solution is exactly the same as that given in (18)–(20).
Note that this case only occurs when �i ≤ 0 (due to G∗

i ≥ 0).
From (38), we have γ ∗

i ≤ γ ∗
i + λG∗

i = Fi(−�i). Therefore, it
must hold that

F−1
i (max(Fi(0), αcω + αcνi)) + �i

= F−1
i

(
max

(
Fi(0), γ ∗

i − λC∗
i

))
+ �i

≤ F−1
i

(
max

(
Fi(0), γ ∗

i

)) + �i

≤ F−1
i (max (Fi(0), Fi(−�i))) + �i ≤ 0 (46)

where the first equality is true due to (36), the last two inequal-
ities hold since γ ∗

i ≤ Fi(−�i) and �i ≤ 0, respectively.
Therefore, C∗

i in (18) corresponds to C∗
i = 0. Similarly, we

can also show −F−1
i (max(Fi(0), ω/αd + νi/αd))−�i ≤ 0. As

a result, D∗
i in (19) corresponds to D∗

i = 0. With the derived
C∗

i and D∗
i , it follows that G∗

i in (20) is the same as G∗
i = −�i

derived above. Therefore, the solution in Proposition 1 is
optimal to (17) for the case of C∗

i = 0 and D∗
i = 0.

By combining the above three cases, Proposition 1 is thus
proved.

APPENDIX D

PROOF OF PROPOSITION 2

Since (P1) is convex and satisfies the Slater’s condition,
KKT conditions are both necessary and sufficient condi-
tions for its optimality. The KKT conditions for (P1) can be
expressed as in (31)–(38) for all i ∈ {1, . . . , N} by replacing
{C∗

i , D∗
i , G∗

i } and {λC∗
i , λD∗

i , λG∗
i , γ ∗

i , ω, νi} with {C�
i , D�

i , G�
i }

and {λC�
i , λD�

i , λG�
i , γ �

i , ω�, ν�
i }, respectively, together with the

following additional complementary slackness and feasibility
conditions:

S1 + αc

i∑

k=1

C�
k − 1

αd

i∑

k=1

D�
k ≥ Smin

S1 + αc

i∑

k=1

C�
k − 1

αd

i∑

k=1

D�
k ≤ Smax

S1 + αc

N∑

k=1

C�
k − 1

αd

N∑

k=1

D�
k ≥ S
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ν�
i

(

Smin −
(

S1 + αc

i∑

k=1

C�
k − 1

αd

i∑

k=1

D�
k

))

= 0

ν�
i

(

−Smax +
(

S1 + αc

i∑

k=1

C�
k − 1

αd

i∑

k=1

D�
k

))

= 0

ω�

(

S −
(

S1 + αc

N∑

k=1

C�
k − 1

αd

N∑

k=1

D�
k

))

= 0

for i = 1, . . . , N. By applying the above KKT conditions and
following the similar procedures for the proof of Proposition 1,
this proposition is thus proved.
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