
     

Java Based E-Commerce Middleware  
 

 
Sub Ramakrishnan 

Department of Computer Science 
Bowling Green State University 

Bowling Green, OH 43403-0214 
 

Abstract 
 

Organizations that sell products over the Internet 
usually have a product database located at or near the 
web hosting server. Web clients use SSL to connect to 
the web server and order products, which are then 
entered into the product database.  Since web hosting 
services may be outsourced, the order information needs 
to be transmitted securely to the corporate database of 
the enterprise that sells these products. This paper 
concerns the development of a secure middleware 
application in Java that connects the web hosting 
database with the corporate backend database [9]. We 
discuss the design details of the middleware and 
implementation issues of some of the software pieces of 
this puzzle. 

 

1  Background  

Objects are valuable for communicating with students 
and colleagues about the structure and dynamics of a 
system being studied. The objects of the system can be 
divided into groups where each group shares related 
characteristics. Object Oriented Programming (OOP) 
provides a clear set of program design guidelines: (i) 
Identify the object classes that make up the system. (ii) 
Define the interface (i.e. the attributes and methods) of 
each object class. (iii) Implement the class. (iv) Build the 
software that should manipulate the objects according to 
the interface definition. OOP enables modular design 
because each object class encapsulates a data structure 
and the operations that manipulate that data structure or 
abstract data type. Interfaces help separate the services 
from implementation details. They also promote software 
reuse since developers can determine whether a class 
provides the necessary services (through the interface) 
without having to verify and inspect all the source code 
with respect to the implementation. In addition, one can 
use inheritance to extend or refine an existing base class.  

Java [1] is becoming the preferred OOP language of 
choice for both stand-alone and web enabled applications 
as compared to earlier OOP languages such as Small Talk 

[5]. Java code compiled on one machine architecture can 
be ported to another architecture without modification.  
With the widespread availability of Java code on the web, 
applications can be built by reusing components found 
elsewhere. Though portability and reusability are strong 
traits of object-oriented languages few languages 
embrace these two features as well as Java.  On the 
downside, Java startup and runtime costs are higher as 
compared to other fully compiled languages. Java runs at 
least an order of magnitude slower than C code.  
However, Java is catching up and just in time (JIT) 
compilers should help improve runtime performance. Due 
to the simplicity of Java language primitives, program 
design, debug and maintenance cycles are substantially 
lower than that of other languages. Java Cryptographic 
Extension (JCE) addresses secure computing needs by 
providing plug-in cryptographic libraries and seamless 
addition of a number of security components and services 
such as message digests, digital signatures, random 
number generators and algorithms for cryptography. 

Commerce over the Internet is growing at an 
exponential rate. Several vendors are providing secure 
solutions for B2B transactions. For example, in an Internet 
supply chain system, [2] provides mechanisms for 
separation of data from different owners along the entire 
path that the data takes from its source to a recipient.  
Products such as Web Server 4D [13] allow 
manufactureres to sell products or services and include 
features such as shopping cart and automatic credit card 
processing.  If the website is outsourced, the 
manufacturereruns a a program such as Timbuktu, locally, 
to remotely control the website end. IBM and Tivoli's 
SecureWay [5] family of solutions address a number of 
issues in providing for a secure, managed environment for 
web enabled e-business.  

Today’s Internet enabled market place allows 
customers to connect to a web server and place order for 
goods and services over the web. The order sits in a local 
database located behind the web server. These web 
services are typically outsourced to third parties, known 
as web hosting services (also known as the storefront).  
However, the goods and service provider enterprise 
operations (its computing and other infrastructure 

0-7695-0990-8/01/$10.00 (C) 2001 IEEE



 

 

resources) are usually located elsewhere in the Internet, 
often behind the enterprise firewall.  

The web client (user) talks to the web hosting services' 
web server using a secure, SSL, connection. The web 
hosting service manages a web server and a local 
database. This paper concerns the design and 
development of a secure e-commerce Middleware in Java 
that allows for secure transfer of data from this database 
to the enterprise backend database. In an earlier paper [9], 
we gave an overview of such a middleware Java 
application. (see Figure 1). Our contribution is the 
development of a secure client-server application to link 
the two databases; the java client at the web hosting end 
securely transfers orders from the (web hosting services') 
local database, to the corporate database via the server at 
the corporate enterprise, as seen in Figure 1. The 
advantage of this approach is that existing programs that 
pick up and process the order from the corporate 
database are unaffected and continue to function 
normally.  

This paper provides additional details of this 
middleware. Section 2 gives a schematic of the 
application. The software and cryptographic 
implementation issues are addressed in Section 3. 

2 A Middleware E-Commerce Application 

The middleware client and server use public key 
cryptography to do authentication with integrity 
protection [6]. To provide added security, the private key 
is not stored in raw form in the local disk; instead a pass-
phrase based encryption mechanism is used to store the 
private key file, which is encrypted using a key derived 
from a (rather long) pass-phrase string that the user types 
in, just once, when the middleware is brought on-line at 
either end. Following that, they establish a session key 
and use symmetric encryption to encrypt their 
communication.  The client and server know each other 
public-key, as well as their respective private key. The 
client’s public key may also be obtained at runtime if the 
first message from client is modified to include the client’s 
public key certificate. This is especially useful if the same 
server has to interact with multiple web hosting services' 
clients at the same time.  

The client and server communicate with an email server 
periodically and send information to the enterprise about 
activity logs and order statistics. Figure 2 shows the Java 
code for an email client. As can be noted the main module 
seeks connection with the smtp server (usually available 
on port number 25) and sends the email to it according to 
the smtp protocol conventions. Command line arguments 
specify the four required parts: mail server name, sender 
email address, receiver email address, and the message 
string (email) itself.  

Details of middleware process flow are illustrated in 
Figure 3 (from [9]). The client resides at the web hosting 

services while the server resides, behind a firewall, within 
the enterprise. The client provides primitives to access 
the web hosting services' database while the server 
provides primitives to access the enterprise backend 
database. The client and server communication is over a 
socket, which is protected for privacy. The socket 
connection (between the client and server) stays open as 
long as there are active orders, and is disconnected 
during long periods of no activity.  

The middleware client employs a threaded model, and 
consists of the main thread and three other threads: (i) the 
javaTriggerServer thread gathers new orderIDs and drops 
them in a line (queue) for processing by 
javaPullOrderThread. (ii) javaPullOrderThread picks the 
next orderID from the line and pulls the corresponding 
order information (header and detail records for this 
orderID) from the web hosting services' database using a 
JDBC or JDBC-ODBC bridge connection, and securely 
transmits them to the server at the enterprise. In addition, 
the thread processes acknowledgement information from 
the middleware server and updates a local database table, 
orderStatus [8]. (iii) javaKeyManagementThread is 
responsible for public-key based authentication exchange 
protocol at the middleware client. Then, it cooperates with 
the middleware server and generates a session key for use 
by javaPullOrderThread.  The main thread creates these 
three threads when needed, establishes the socket 
connection with the server and tears it down when it is no 
longer needed.  Our model allows de-coupling of the 
functions and provides for concurrency within the 
system.  

The middleware server (bottom half of Figure 3) at the 
enterprise, is located behind the corporate firewall, and 
has a master role in our architecture. The firewall (a 
separate machine) is normally configured to allow the 
socket connection at a specific port, at an Internet visible 
IP address. (Thanks to the firewall,  IP address at the 
enterprise side of the firewall is invisible to the Internet 
community.) The server is multi-threaded (not shown for 
brevity) and listens for connection, at a specific port, from 
the client. It then does authentication negotiation and 
works with the client in setting up a session key for 
communication of payload and acknowledgement.  
Though the server may be communicating with multiple 
middleware clients at the same time, all of the server 
threads share the same (single) connection with the 
backend database at the enterprise mainframe. For 
improved fault-tolerance, the server middleware modules 
are located in a machine distinct from the database 
machine (enterprise mainframe).  

The client at the web hosting service can detect that 
an order is in by using a database trigger (as in Figure 3; 
the trigger launches javaTriggerClient that 
communicates the orderID to javaTriggerServer) or by 
periodically polling the web hosting services' database for 
a new order.  As noted in [9], we prefer the polling 

0-7695-0990-8/01/$10.00 (C) 2001 IEEE



 

 

mechanism though it delays order processing by a few 
seconds. However, if the polling frequency is every 
second, then the order is extracted within one second of 
an order arrival.  

The client and server maintain log files that track 
events  as perceived by the respective sides. A snapshot 
of the application log file, at client and server ends, is 
shown in Figure 4. 

3 Implementation Issues    

JCE [11, 8] comes with a security provider, known as 
SunJCE. We wrote a Java class, 
simpleDESEncryptAndDecrypt (Appendix A) to 
demonstrate the use of a Cipher, from the SunJCE 
provider, for symmetric key encryption. The lines are 
numbered in Appendix A so we can discuss them in the 
body of this main text. The main program covers lines 14–
25. Line 17 is a convenient way to add the SunJCE at 
runtime. Member function createSymmetricKey (lines 26-
34) creates a DES key by getting a DES instance from the 
engine class, KeyGenerator. Line 19-20 of the main then 
calls the function, desEncryptThisMessage (lines 36–47) 
to encrypt the message HelloWorldMessage. The body 
of desEncryptThisMessage function uses the methods of 
the engine class, Cipher, to do encryption. It creates a 
cipher instance with the ECB mode and PKCS padding 
(line 40), specifies whether encryption or decryption is 
needed and supplies the key (line 41), and finally feeds 
the message to get the cipher out (line 45). The init 
method (line 41) resets the engine to an initial state 
discarding any previous data in the engine. This method 
has other overloaded derivatives that handle 
requirements such as initialization vector when the Cipher 
needs one. Function desDecryptThisCipher (lines 48-56) 
serves a role complementary to desEncryptThisMessage, 
decrypting incoming cipher  data.  Note the symmetry in 
the code for these two functions. Line 23 of main prints 
the decrypted output.  

A variant of Appendix A could be used to construct a 
passphrase based encryption algorithm that would be 
required for storing key files on disk (see Section 2, first 
paragraph). 

Java's Vector class allows elements of different type 
(including objects) to be added to a vector instance. The 
vector itself is an object; the entire vector can be sent as 
an object following encryption over the socket. This 
process can be made simpler by wrapping an encryption 
filter over the socket; any serializable object that is sent 
over the socket would be automatically (implicitly) 
encrypted according to the encryption wrapper algorithm, 
as illustrated in Figure 5. Method setUpFilterStreams of 
IpcClientServer  sets up the required filters. Method 
sendObjectEncryptedAndSealed shows how to send a 
sealed and DES encrypted version of the object, 
objectToBeEncrypted, First two lines in this function is 

the (DES) encryption aspects (from Appendix A), while 
the third line provides a SealedObject filter around the 
encrypted version of objectToBeEncrypted. The try 
block  sends the sealed object out using the writeObject 
method of ObjectOutputStream, which is a filter over the 
socket.   

One can write a provider, similar to SunJCE, with a set 
of classes to implement public key cryptographic 
algorithms.   A provider has many classes, each class 
implements an algorithm that has a type and a name. The 
type says whether it is Cipher, Signature etc, and the 
name gives algorithm specifics, such as 
DES/ECB/PKCS5Padding.  An example of a provider 
specification, named as OrderProcess, is given in Figure 
6.  The put primitive names the algorithm and the 
corresponding class that implements it. The name of the 
provider can also be added to an application at runtime by 
a call similar to Line 17 of Appendix A. Additional 
resources on writing a provider are found at Sun website 
[12]. 

Implementation of a cipher engine for a public-key 
cryptographic system (such as the algorithm of ElGamal 
[3]) or a symmetric key cryptography system is 
complicated. For brevity, we only identify the methods 
behind such an implementation [7, 8]. The engine class, 
such as Cipher, is designed to allow users to employ their 
own provider architecture, for example implementation of 
RSA.  In order to write such providers, the engine classes 
support an additional interface called the security 
provider Interface (SPI). The SPI is a set of abstract 
methods that every engine provider must implement in 
order to fulfill its part in providing a particular operation.  
The advantage of this approach is that each provider has 
same set of methods in it, though the functionality of 
these methods will be different depending on what 
algorithm is used for implementation. One can implement a 
cipher by extending the corresponding SPI, CipherSPI.  
Implementing a provider, as we did in Figure 5, and using 
an already written implementation of a Cipher as we did in 
building simpleDESEncryptAndDecrypt (see Appendix 
A), is relatively straightforward. However, implementing 
the classes (for example, MyAlgorithmCipher of Figure 6) 
that must accompany the provider is much harder.  

An implementation of a Cipher class provides the 
functionality for the corresponding abstract methods 
defined in class CipherSPI: (i) engineSetMode – the mode, 
for example, ECB for DES, (ii) engineSetPadding – 
padding scheme used,  (iii) engineGetBlockSize – the 
block size for the engine. Ciphers, such as DES, that allow 
padding can process input that is not a mult iple of block 
size. Some algorithms, such as ElGamal have neither a 
mode nor padding options so implementation of these 
two methods can be easily accomplished. (iv) 
engineGetIV – the vector to initialize the cipher, (v) 
engineInit – the direction of transformation, whether 
plaintext to cipher (ENCRYPT_MODE) or cipher to 

0-7695-0990-8/01/$10.00 (C) 2001 IEEE



 

 

plaintext (DECRYPT_MODE). There are other overloaded 
derivatives, of engineInit, to initialize the cryptographic 
engine.  (vi) engineUpdate – does the bulk of the work, 
and generates cipher or plaintext as output. engineUpdate 
processes any full blocks in the input, and the last 
incomplete block, if any, is left in the buffer for processing 
by the next engineUpdate or engineDoFinal call.  

The astute reader would have noticed that methods in 
CipherSPI have names similar to that in Cipher except for 
the prefix, engine, in methods of CipherSPI class. Usually, 
there is very little intelligence in the methods of the 
Cipher class itself; virtually most of the methods in Cipher 
class are simply pass through calls to the corresponding 
methods in the SPI. See [8] (pp. 308) for an example of a 
simple cipher implementation. 

The BigInteger class of java.math provides a number 
of features such as generation of prime numbers of 
different width with certain probability, doing exponent 
and modulo arithmetic. For example, from [3, 8] the key 
pairs for El Gamal are generated with the public key being 
<g, p, T> and the private or secret key being S, where gS 
mod p = T, as in Diffie-Hellman.  The modulus, p, is 
random and is prime. The public parts, g and T are two 
other random numbers, and are less than p   

One can generate a prime number, p, with a given 
width (or strength, say 512 bits) using the elegant 
probabilistic algorithm due to Solovay and Strassen [10]. 
To test a large number, p, for primality, this algorithm 
picks a random number, a, form the uniform distribution 
on {1, …, p-1} and tests whether  

gcd(a, p) = 1 and J(a, p) = a(p-1)/2mod p.  
where J(a, p) is the Jacobi symbol and has a value in {-1, 
1}. If the above test holds for numberOfTests (say, 10) 
randomly chosen values of a, then p is almost certainly 
prime; there is a negligible chance of one in 210 that p is 
not prime. One can certainly better the odds by increasing 
the value of numberOfTests. Fortunately, all of this 
computation is elegantly captured in one of the Java 
BigInteger constructors, as shown below. 

p = new BigInteger (strengthOfKey, numberOfTests, 
anInstanceOfARandomNumber) 
where strengthOfKey is the width of the desired prime 
number (say, equal to 512 bits), and 
anInstanceOfARandomNumber is a random number that 
can be obtained by instantiating SecureRandom().  
Returning to the computation of key pairs, the public part, 
T, can be computed using one of the BigInteger methods, 
as shown below. 
 T = g.modPow(S, p)  

where g and S are random numbers of type BigInteger. 
For brevity, we could not discuss the full 

implementation of the cryptographic engines.  
There are some providers outside of United States [14] 

who have Java based public key implementations. 
However, the author is unaware of the scope and 
applicability of such tools. 

 

References 

1 Cornell, G et al., Core Java, SunSoft press/Prentice 
hall 1996. 

2 Data Driven Access Control Technology. White 
Paper. http://www.cryptek.com 

3 ElGamal, T. A Public Key Cryptosystem and a 
Signature Scheme Based on Discrete Logarithms, 
IEEE Transactions on Information Theory, Vol. 31, 
pp. 469-472, 1985. 

4 Goldberg, A. et al., Smalltalk-80: the Language and its 
Implementation, Addison-Wesley, 1983.  

5 IBM and Trivoli,  
http://www.tivoli.com/products/solutions/security/ne
ws.html, Using Tivoli® SecureWay® to Manage e-
business Security. 

6 Kaufman, C et. al., Network Security: Private 
Communications in a Public World, Prentice Hall. 
1995. 

7 J Knudson, J. Java Cryptography. O’Reilly and 
Associates. May 1998. 

8 Oaks, S. Java Security. O’Reilly and Associates, 
February 1999. 

9 Ramakrishnan, S. Architecture of a Secure Order 
Entry System in Java, International Systems Security 
Engineering Conference 2001, Orlando, FL, February 
2001, to appear. 

10 Solovay R, and Strassen, V. "A Fast Monte Carlo 
Test for Primality," SIAM J. Computing, vol. 6, no. 1, 
pp. 84-85, March. 1977. 

11 Sun Microsystems, http://java.sun.com/products/jce/ 
12 Sun Microsystems, 

http://java.sun.com/products/jce/doc/guide/HowToI
mplAProvider.html 

13 WS4D/eCommerce, MDG Computer Services, Inc, 
Bartlett, IL. 

14 The Cryptix Foundation Limited, 
http://www.cryptix.org   

 

 
 
 

0-7695-0990-8/01/$10.00 (C) 2001 IEEE



 
Figure 1: Architectural View of Order Flow [8] 

// usage : java smtpoExample  mailServeName senderAddress receiverAddress messageText 
public class smtpExample { 
 public static void main(String[] args) throws IOException { 
  smtpMail  smtpMailHandle = new smtpMail (args [0]); 
  smtpMailHandle.login(); 
  smtpMailHandle.send( args[1], args[2], args[3]  ); 
  smtpMailHandle.quit();    
 } 
} 
class smtpMail { 
 Socket sendMailSocket = null;  PrintWriter sendToSmtp;   BufferedReader rcvFromSmtp ; 
 public smtpMail (String smtpServer) throws IOException { 
  sendMailSocket= new Socket (smtpServer, 25); 
  sendToSmtp = new PrintWriter ( sendMailSocket.getOutputStream(), true); 
  rcvFromSmtp = new BufferedReader ( new InputStreamReader ( sendMailSocket.getInputStream())); 
  getSmtpResponse(); 
 } 
 public void login () throws IOException { 
  String address =  sendMailSocket.getInetAddress().getHostAddress(); 
  sendToSmtp.println("HELO " + address); 
  getSmtpResponse(); 
 } 
 public void send (String sender, String receiver, String message) throws IOException { 
  sendToSmtp.println("MAIL FROM: " + sender); getSmtpResponse(); 
  sendToSmtp.println("RCPT TO: " + receiver); getSmtpResponse(); 
  sendToSmtp.println("DATA" ); sendToSmtp.println( ); 
  sendToSmtp.println( message);  sendToSmtp.println( );  sendToSmtp.println( "."); 
  sendToSmtp.flush(); getSmtpResponse(); 
 } 
 public void quit () throws IOException {  
  sendToSmtp.println("QUIT " ); 
  try { getSmtpResponse();} 
  catch (Exception error) {} 
  sendMailSocket.close(); rcvFromSmtp.close(); sendToSmtp.close(); 
 } 
 protected String getSmtpResponse () throws IOException { 
  String line; 
  do line = rcvFromSmtp.readLine(); 
  while (rcvFromSmtp.ready() ); 
  System.out.println (line); return null; 
 } 
} 

Figure 2: SMTP Mailer Client 

0-7695-0990-8/01/$10.00 (C) 2001 IEEE



 

 

 
 

0-7695-0990-8/01/$10.00 (C) 2001 IEEE



 

 

 
Middleware Client Log Activity  

10/26/99 10:03 PM Program just started... 
10/26/99 10:03 PM Connected to server inside firewall  
10/26/99 10:03 PM I am (client) authenticated!  
10/26/99 10:03 PM New symmetric key generated 
10/26/99 10:03 PM Key manager sleeping...OK  
10/26/99 10:04 PM Masked IP Address-860487226 Order trigger! 
10/26/99 10:04 PM Masked IP Address-860487226 Order being pulled.. 
10/26/99 10:04 PM Masked IP Address-860487226 Order done... 

 

Middleware Server Log Activity  
10/26/99 10:01 PM Program just started... 
10/26/99 10:01 PM Invalid LogIn! USERNAME 
10/26/99 10:02 PM Program just started... 
10/26/99 10:02 PM Connected to ServerDatabase.  
10/26/99 10:03 PM Connected to outside firewall  Client... 
10/26/99 10:03 PM Authentication complete!  
10/26/99 10:04 PM Masked IP Address-860487226 New Order. 
10/26/99 10:04 PM To dump line items: 2 
10/26/99 10:04 PM Masked IP Address-860487226 Order done...  

 

Figure 4: Snapshot of Log Information   
 
package ipcAbstractSealed; 
import java.net.*; 
import java.io.*; 
import javax.crypto.*;  
/*  The class instance contains (Serializable) object which are encrypted. A Vector   
                 is a serializable object that can be contained, in encrypted form, in an instance of the SealedObject    */ 
public class IpcClientServer   { 
 public void setUpFilterStreams   () { 
  try { 
   OutputStream out = theSocket.getOutputStream(); 
   ObjectOutputStream  easyGetOutputObject = new  ObjectOutputStream (out); 
   } 
  catch (IOException fileHandleError) {}   
 } 
     public  SealedObject sendObjectEncryptedAndSealed (Object   objectToBeEncrypted)  
  throws NoSuchAlgorithmException, Exception { 
  cipherHandle.init (Cipher.ENCRYPT_MODE, ... ); 
  SealedObject encryptedAndSealedForIPC =  
   new SealedObject ((Serializable)objectToBeEncrypted, cipherHandle); 
  try { 
   easyGetOutputObject.writeObject (encryptedAndSealedForIPC); 
   easyGetOutputObject.flush(); 
    } 
     catch (IOException fileHandleError) {} 
          } 
} 

Figure 5: Process for Transmission of Encrypted Serializable Objects 
package HomeDir.OrderProcess.crypto; 
import java.security.*; 
public class Provider extends java.security.Provider { 

public Provider () { 
 super  ("OrderProcess", 1.2, " OrderProcess 's Cryptography provider "); 
 put("KeyPairGenerator.MyAlgorithm","HomeDir.OrderProcess.crypto.MyAlgorithmlKeyPairGenerator") 
 put ("Cipher MyAlgorithm ",  "HomeDir.OrderProcess.crypto.MyAlgorithmCipher"); 
   } 

} 
Figure 6: An Example of a Provider Specification in Java 

0-7695-0990-8/01/$10.00 (C) 2001 IEEE



import java.io.*; 1 
import java.net.*; 2 
import java.security.*; 3 
import javax.crypto.*; 4 
import sun.misc.*; 5 
/** 6 
  7 
Do DES encryption and decryption of a "HelloWorldMessage" 8 
 Use SunJCE Provider 9 
*/ 10 
 11 
public class simpleDESEncryptAndDecrypt { 12 
 13 
   public static void main (String[] args)   14 
 throws NoSuchAlgorithmException, Exception { 15 
  16 
 Security.addProvider(new com.sun.crypto.provider.SunJCE()); 17 
 Key desKeyInstance  = createSymmetricKey ();  18 
 byte[]  cipherText =  19 
  desEncryptThisMessage  (  "HelloWorldMesage" , desKeyInstance   ) ; 20 
 String plainTextAfterDecrption =  21 
  desDecryptThisCipher  ( cipherText  ,  desKeyInstance   ) ; 22 
 System.out.println("Decrypted Message  ..." + plainTextAfterDecrption ); 23 
  24 
   } 25 
   public static Key  createSymmetricKey ( )  26 
  throws NoSuchAlgorithmException, Exception { 27 
  Key keyName; 28 
 29 
  KeyGenerator desGenerator=  KeyGenerator.getInstance ("DES"); 30 
  desGenerator.init(new SecureRandom()); 31 
  keyName = desGenerator.generateKey(); 32 
  return keyName; 33 
   } 34 
 35 
   public static byte[] desEncryptThisMessage  ( 36 
 String plainTextMessage , Key keyName) 37 
 throws NoSuchAlgorithmException, Exception { 38 
 39 
  Cipher cipher = Cipher.getInstance ("DES/ECB/PKCS5Padding"); 40 
  cipher.init (Cipher.ENCRYPT_MODE, keyName); 41 
  String plainText = plainTextMessage; 42 
   43 
  byte[] bytePlainText = plainText.getBytes("UTF8"); 44 
  byte[] cipherText= cipher.doFinal(bytePlainText ); 45 
  return cipherText; 46 
   } 47 
   public static String desDecryptThisCipher  (byte[] cipherText , Key keyName) { 48 
  System.out.println("will do Decryption"); 49 
  Cipher cipher = Cipher.getInstance ("DES/ECB/PKCS5Padding"); 50 
  cipher.init (Cipher.DECRYPT_MODE, keyName); 51 
  byte[] almostPlainText = cipher.doFinal(cipherText); 52 
  String plainTextAfterDecryption = new String (almostPlainText, "UTF8"); 53 
  return plainTextAfterDecryption; 54 
   } 55 
} Appendix A: Use of SunJCE Provider Architecture for DES Encryption and Decryption 56 

0-7695-0990-8/01/$10.00 (C) 2001 IEEE


