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A B S T R A C T

In this investigation, the behavior of non-Newtonian nanofluid hydrodynamic and heat transfer are simulated.
In this study, we numerically simulated a laminar forced non-Newtonian nanofluid flow containing a 0.5 wt%
carboxy methyl cellulose (CMC) solutionin water as the base fluid with alumina at volume fractions of 0.5 and
1.5 as the solid nanoparticle. Numerical solution was modelled in Cartesian coordinate system in a two-
dimensional microchannel in Reynolds number range of 10≤Re≤1000. The analyzed geometrical space here was
a rectangular part of whose upper and bottom walls was influenced by a constant temperature. The effect of
volume fraction of the nanoparticles, Reynolds number and non-Newtonian nanofluids was studied. In this
research, the changes pressure drop, the Nusselt number, dimensionless temperature and heat transfer
coefficient, caused by the motion of non-Newtonian nanofluids are described. The results indicated that the
increase of the volume fraction of the solid nanoparticles and a reduction in the diameter of the nanoparticles
would improve heat transfer which is more significant in Reynolds number. The results of the introduced
parameters in the form of graphs drawing and for different parameters are compared.

1. Introduction

The resulted increase in thermal conductivity and improvement in
thermal conductivity behavior in form of the so-called “nanofluids”
heralds their future use as operational fluids in various industries as
well as tools. In order to use nanofluids in scientific and industrial
functions, we must realize their convection heat transfer features. Thus,
a plethora of researchers have conducted research on heat transfer
function of nanofluids [1–7]. The research on convection heat transfer
using nanofluids specifically began a decade ago. The recent studies on
nanofluids indicate that the suspending nanoparticles base fluid bring
about changes in thermophysical features of the cooling fluid and also
in the heat transfer by the dissolution [8–10].

Generally speaking, convection heat transfer can improve through a
geometrical change in the flow, boundary conditions, or an increase in
the thermal conductivity of the fluid. Different methods have been
offered to improve heat transfer capacity of the fluids. Researchers have
also tried to improve thermal conductivity of fluids through adding
suspending particles in the scale of micro or bigger to the fluids.
However, the big size and density of the particles lead to instability and
therefore an increase in the resistance which results in corrosion. For

the same reason, the fluids containing large particles have not been
commercialized so far. Modern nanotechnology has introduced modern
methods of producing materials in average size and crystals below
50 nm. Fluids containing these particles are called nanofluids which
have been dramatically considered as nanoparticles because they have
been proved to be more efficient in heat transfer than pure fluids. The
relative area of the bigger surface, in comparison with the previous
particles, will improve stability in addition to heat transfer capacity.
The use of nanoparticles leads to a reduction in dimensions leading to
smaller and higher designs of heat transfer systems. Over the past few
years, much numerical and experimental research has been done on
convection heat transfer in both turbulent and laminar flows. Zeinali
Herris et al. [11] numerically investigated fluid flow and the heat
transfer of the nanofluid in a spiral pipe.

They concluded that adding a nanoparticle powder to the opera-
tional fluid results in a drastic increase in heat transfer. Akbari et al.
[12] numerically simulated heat transfer and a turbulent flow of a
nanofluid, contains water copper-oxide in a rectangular microchannel
with semi-adhesive dents. They figured out that the upside of using
semi-adhesive dents rather than fully-adhesive ones is to the surface of
the channel is elimination of hot areas with lower heat transfer and
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improving heat transfer. Moreover, these dents caused a significant
reduction in pumping power friction coefficient, and the pressure loss
in the microchannel which, in turn, increases the fluidal thermal
function of these dents.

Studies conducted by Ahmed et al. [13] on the nanofluid flow in
channels and ducts indicated that heat transfer in nanofluids depends
on the kind of solid particles. Chen et al. [14] investigated the heat
transfer behavior of the non-Newtonian fluid in a microchannel using
power-law method. They also studied parameters belonging to heat
transfer and the flow of the fluid for various behavioral indexes.

Hojjat et al. [15] experimentally studied forced convection heat
transfer for 3 different nanoparticle fluids in a round pipe under a
turbulent flow and boundary conditions of fixed flux. The findings
showed that local heat transfer and the average hat transfer of the
nanoparticles were bigger than the base fluid. The heat transfer of
nanofluids was also proved to increase in higher concentrations of
nanoparticles. In this study, an equation was also recommended for the
Nusselt number of non-Newtonian fluids in which Nusselt was a
function of Reynolds and Prandtl number.

Soltani et al. [16] experimentally studied nucleate boiling heat
transfer in non-Newtonian fluids. Their results indicated that the
nucleate boiling heat transfer increased due to an added concentration
of nanoparticles in non-Newtonian fluids.

Ozerinc et al. [17] conducted a numerical analysis on convection
heat transfer in a turbulent flow of aluminum-oxide and water through
a round pipe under two distinct boundary conditions of fixed thermal
flux and temperature on the walls using a thermal scattering model and
finite different method. In agreement with other studies, this one also
resulted in a higher rate of heat transfer in nanofluids compared with
base fluids. Tahir and Mital [18], studied forced convection heat
transfer in laminar nanofluid flow of water–aluminum oxide in channel
with a round cross section through a numerical simulation Navier–
Stokes equations. They compared the effects of nanoparticles size,
volume fraction of them and Reynolds number on the increase in
nanofluids heat transfer and proved the Reynolds number to be the
most effective. They also observed that as the size of the particles
increased, heat transfer function decreased. Xi-Wen et al. [19] studied
the flow of water in micro pipes, through this experiment they found
out the move from laminar to turbulent flow in micro pipes happens in
the Reynolds number range for 1700–1900. In recent decades, studies
of non-Newtonian using nanofluids as coolant is done [20–22].

Industrial use of non-Newtonian nanofluids in order to significantly
increase heat transfer in the chemical, petrochemical, polymer and
pharmaceutical by Chhabra and Richardson [23] is investigated.

In this research, fluid behavior of a laminar flow, heat transfer of
the non-Newtonian water-carboxy methyl cellulose nanofluid with a
0.5% weight concentration as well as solid alumina nanofluids with a
volume fraction of 0.5% and 1.5% were numerically studied in a two-
dimensional microchannel with hydrodynamic fixed boundary condi-
tions and fixed temperature boundary conditions on the walls of the
microchannel. The supposed microchannel was 25 μm high 100 μm
long. The rheological behavior of the operating nanofluid is analyzed,
from a non-Newtonian point of view, using the Power-Law regarding
coefficients of power-law with K (consistency index) and n (power law
index) for each volume fraction. In order to predict the fluid behavior
and laminar flow heat transfer non-Newtonian fluids, Reynolds num-
ber is to be between 10 and 1000. The diameters of these nanoparticles
are 25, 40 and 10 μm. The results must be reported in the form of
comparative figures containing the average Nusselt number, pressure
loss, and Peclet number for the diameter of each nanoparticle and
different Reynolds number.

2. Mathematical model

2.1. Statement of the problem

In this numerical research, laminar forced flow of the nanofluid for
volume fraction of 0.5% and 1.5% of the solid nanoparticle alumina
suspended in a non-Newtonian fluid which is a 0.5% dissolution of
CMC in water was analyzed numerically in a comparative analysis. The
analysis was done on two-dimensional rectangular microchannel. In
this article, heat transfer and the fluid dynamics of a non-Newtonian
fluid have been calculated in different volume fractions and diameters
of nanoparticles. Moreover, the study of velocity and temperature fields
in each of the mentioned conditions were analyzed in different
Reynolds number. Fig. 1 shows a schematic view of the rectangular
microchannel analyzed the length of which is 2500 μm and the height
Dh=h=25 μm. In order to consider the hydrodynamic expansion length
in the beginning of the channel, the length of the upper and lower wall
of the channel has been insulated along 750 μm of the length. The fixed
temperature of Th=303 K has been inserted on the upper and lower
walls. The cooling fluid enters in an input temperature Tin=Tc=293 K.

Nomenclature

A cross section, m2

Cp heat capacity, J/kg K
Dh hydraulic diameter, m
dp nanoparticle diameter, nm
h convection heat transfer coefficient, W/m2 K
k thermal conductivity coefficient, W/m K
K Consistency index, N sn m−2

Kb Boltzmann constant, J/K
L length, m
n exponent of power-law
Nu Nusselt number
p pressure, Pa
Pe Peclet number
Pr Prandtl number
q′′ thermal flux, W/m2

Re Reynolds number
T temperature, K
U dimensionless velocity
u input velocity, m/s

Greek symbols

Δ different
α thermal diffusivity coefficient, m2/s
φ volume fraction, %
λ main free path, nm
ν cinematic viscosity, m2/s
π phi number 3.14
θ dimensionless temperature
ρ density, kg/m3

Super- and Sub-scripts

b bulk
br Brownie
eff effective
f fluid
in input
nf nanofluid
P particle
s solid
w wall
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The flow in the laminar mode is analyzed for Reynolds number of 10,
100, 500 and 1000. The base fluid includes a non-Newtonian dissolu-
tion of water and CMC with concentration of 0.5% and the solid
nanoparticles including alumina powder are added in volume fraction
of 0.5% and 1.5%. The molecular diameter of the base fluid is 2 Ả and
the diameters of the solid particles are 25, 45 and 100 nm and they are
hemispheric and homogeneous. The thermophysical properties of the
base fluid and particles of the alumina powder are presented in Table 1.

In this analysis the flow is two-dimensional, incompressible, non-
Newtonian, laminar and single-phase and the properties of the nano-
fluid are considered in affixed temperature. The fluid enters the
microchannel in the entrance constantly and the nanoparticles are
considered to be round. The n and K coefficients along the micro-
channel are fixed in relation to the temperature for each volume
fraction.

3. The governing equations

For this research a single-phase model for the analysis of heat
transfer and the flow of the non-Newtonian nanofluid is of importance.
The predominant equations on the flow of the fluid are those of
conservation of mass, momentum, and energy [24].

ρ V∇. ( ) = 0nf m (1)

ρ V V P μ V∇. ( ) = −∇ + ∇. ( ∇ )nf m m nf m (2)

ρ C V T k T∇. ( ) = ∇. ( ∇ )nf m nf (3)

Since a non-Newtonian method (power-law) has been used, shear
stress is defined as follows based on Ref. [25]:

τ Kγ= ṅ (4)

In this equation K, γ, and n are respectively shear stress, shear rate
and power-law indice (exponent of power-law). In order to define the
Reynolds number for the non-Newtonian fluid, the role of the power-
law indice and coefficient is important in determination of the
Reynolds number and the beginning velocity of the fluid in the

entrance of the pipe. The Reynolds number for a non-Newtonian fluid
is defined as [26]

Re ρu D
K

=
n n2−

(5)

where K is the power-law coefficient. The Peclet number defines
thermal diffusivity. Also, the Prandtl number in the non-Newtonian
fluid is defined as follows [27]:

Pe Re Pr
ρ C u D

k
= . =

. . .nf p h

nf

nf

(6)

⎛
⎝⎜

⎞
⎠⎟Pr

Cp r
k

u
D

=
.nf

nf h

n−1

(7)

In this numerical study, the power-law model has been used to
study the rheological behavior of a fluid. Therefore, instead of
determining the viscosity of the nanofluid, n and K which are
respectively the constant and the indice of the power-law have been
calculate through Hojjat et al. [28] study for the concentration of 0.5%
and 1.5% volume fractions of alumina in a fluid of water and CMC
(0.5 wt%). Fig. 2 shows the values of n and K for nanofluid used.

To reach the properties of the nanofluid, experimental relationships
proposed by researchers are used. The following are used to calculate
the density of the nanofluid [29,30] and the special thermal capacity
[31]:

ρ φ ρ φρ= (1 − ) +nf f s (8)

ρC φ ρC φ ρC( ) = (1 − )( ) + ( )p nf p f p s (9)

where φ indice is the volume fraction of the solid nanoparticle and f, s,
nf are respectively fluid, solid and nanofluid. To determine thermal
conductivity coefficient Chon et al. [32] equation has been used [33]:

k
k

φ
d
d

k
k

= 1 + 64.7 ( ) *( ) Pr Renf

f

f

p

p

f

0.7460 0.3690 0.7476 0.9955 1.2321

(10)

In Eq. (10), Pr and Re are defined as [34]

Pr
μ

ρ α
= f

f f (11)

Re
ρ V d

μ
ρ k T
π μ λ

= =
3

f Br p

f

f B

f f
2

(12)

In Eq. (11), αf is thermal diffusivity coefficient of the base fluid and
the dynamic viscosity of the fluid is calculated like

μ A= × 10f
B

T c( − ) (13)

In Eq. (13) A, B, and C are fixed which are respectively equal to
2.414×10−5 Pa s, 247.8 K, and 140 K. Parameter T is on the scale of
Kelvin and Vbr is the Brownian velocity of the nanoparticle which is

V k T
π μ d λ

k
π μ d λ

T

A
=

3
=

3 .10
Br

B

p f

B

p f
B

T c( − ) (14)

where λf is the molecular free path. The above-mentioned only count
for particles with dimensions of 11–150 nm in the temperature range
of 1–71 °C. In Eq. (14), the effect of Brownian movement, the diameter
of the solid particles and the molecules of the base fluid are considered
to calculate thermal conductivity. To calculate the local and mean
Nusselt number, the following are used [35–37]:

⎛
⎝⎜

⎞
⎠⎟Nu X

k
k

θ
Y

( ) = − ∂
∂

eff

f Y=0 (15)

∫Nu
L

Nu X dX= 1 ( )m (16)

The parameters of coefficient of local heat transfer are defined as

O.A. Akbari et al.

Fig. 1. Schematic view of the microchannel.

Table 1
The thermophysical properties of the base fluid, nanofluid and nanoparticles.

Material Pr ρ (kg/m3) Cp
(J/
kg K)

k (W/m K)

Pure water 6.2 997.1 4179 0.613
Al2O3 – 3970 765 40

dp=25 nm dp=45 nm dp=100 nm
CMC

(0.5%)+1%
Al2O3

– 1013.5 4121 0.6262 0.6211 0.6157

CMC
(0.5%)+1.5-
% Al2O3

– 1040.5 4012 0.660 0.648 0.6356
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[38]

h q
T T

= ″
−w m (17)

∫h
L

h z dz= 1 ( )ave
L

0 (18)

In Eqs. (17)–(20), parameters m, ΔP, A, uin, Tw, Tm, q′′ are
respectively mass flow, pressure loss, input flow cross-section, the local
temperature of flow wall, the average mass temperature, and the heat
flux on the wall of the microchannel. To calculate the mean friction
coefficient the following equation is used [39]:

Pe Re Pr= . (19)

f ΔP D
L ρ u

= 2 . .
. .

h

in
2 (20)

In this paper to calculate parameters, the dimensionless value used
as follows [40–44]:

X x
h

Y y
h

U u
u

V v
u

H h
h

θ T T
T T

= , = , = , = , = = 1, = −
−c c

c

h c

(21)

4. Properties and methods

In this study, finite volume method are used. In the numerical
simulation, coupled equations of velocity–pressure are implemented.
To reach a suitable accuracy in the numerical solution, second order
discretization as well as Simple C algorithm are taken into considera-
tion. In all cases for all Reynolds number and volume frictions, to
occupy less memory space on the computer and to economize the
numerical solution process, the maximum 10−6 remainder is used.

5. Grid-independence study

Regarding the fact that the supposed geometric space of the micro-
pipe is two-dimensional, an organized rectangular grid is used. In this
study, the number of grids is analyzed in accordance with Table 2
regarding criteria including acceptable number of numerical faults and
suitable number of grids to calculate mean Nusselt number and
pressure loss in Table 2, grid independence is reviewed for Re=500
for a non-Newtonian nanofluid in a volume friction of 0.5% for a solid
nanoparticle with a diameter of dp=25 nm. In a revision of grid-
independence, the fault for mean Nusselt number and pressure loss are
considered in proportion to more accurate answers (number of grids
50×1500). Since the fault is less than 10%, the number of grids is
smaller and less memory and processing time is spent, an organized
rectangular grid is used for the supposed space with 50×1500 dimen-
sions.

6. Analysis of the results

6.1. Validation

Fig. 3 shows the validation of the current numerical solution in the
2D (a) [45] and 3D (b) [46] microchannel by Newtonian fluid and non-
Newtonian nanofluid. It has also been verified through the numerical
work of Leng et al. [46] and Santra et al. [45]. Fig. 4 shows the Nusselt
number figures for the Nusselt number10, 100, 500, and 1000 for
volume frictions of 0.5% and 1.5% for the solid nanoparticles. The
Nusselt number increased rapidly with an increase in volume friction of
the nanoparticle and the Reynolds number. The variations in the
increase in heat transfer are little in lower Reynolds number. Thus, the
figures for lower Reynolds number are lower than those of higher
number. The reason for better heat transfer in higher Reynolds number
is the better blending of the areas and the layers of the fluid and the
boost in heat transfer mechanisms. In all figures of Nusselt number on
the input to channels, the number along the entrance of the pipe is of
high levels since the effects of expansion have not affected the flow of
the fluid completely.

Fig. 5 shows the average heat transfer coefficient for different
Reynolds number and volume fractions 0.5 and 1.5 of the solid
nanoparticle. In the case of a solid non-Newtonian fluid, bigger
Reynolds number lead to bigger heat transfer coefficients. The increase
in this trend is also upwards with a rise in volume fraction. An increase
in the volume fraction of nanoparticles also has a significant effect on
heat transfer behavior of the fluid. The more the volume frictions of the
nanoparticles are, the higher the figures go. The effect of the decrease
in the diameter of the nanoparticles distinguishes the figures for
average heat transfer coefficient from others. The decrease in the
diameter of the particles results in a bigger molecular surface a bigger
number of solid nanoparticles for fixed mass and volume friction which
in turn causes an increase in the heat transfer surface and more contact
in molecular levels which eventually improves heat transfer and
prevents the impacts of settlement and lumping of the solid nanopar-
ticles. The effect of the use of solid nanoparticles with a bigger volume
friction and a smaller diameter on the Reynolds number is obvious.

Table 2
Grid-independence for this study.

Mesh size )ΔP) (Nuave)

30×300 198,766 3.151
50×500 211,324.08 3.4987
50×1000 212,031 3.6776
50×1500 213,552.1 3.9021
70×1800 213,600 3.9112

Fig. 2. The values of n and K for nanofluid used in volume fraction and different
temperatures [28].
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Fig. 6 shows the mean heat transfer coefficient for various Peclet
number and diameters of nanoparticles. It can be seen that for the
same Peclet number, the coefficient of heat transfer increases for higher
concentrations of nanoparticles. This increase in Peclet number
significantly affects the coefficient of convection heat transfer in a
non-Newtonian heat transfer positively. The upward trend of the
coefficient of mean heat transfer with the increase in volume fraction
is dramatic which can be due to the increase in convection heat transfer
of the nanofluid in higher concentrations in higher volume fractions.
Nanoparticle in a non-Newtonian fluid results in an increase in
temperature gradient in the walls of the walls of the microchannel
which boosts heat transfer.

Fig. 7 shows mean pressure loss for different Reynolds number and
volume fractions of nanoparticles for a fixed diameter of 100 nm for the
nanoparticle. This parameter for non-Newtonian nanofluid with a
higher volume fraction has a significant trend. Because a nanofluid
with more nanoparticles loses velocity along the walls of the micro-
channel and the decrease in volume fraction of the nanoparticle leads
to more contact with the walls. An increase in volume fraction results in
an increase in dynamic viscosity and density of the nanofluid which
brings about changes in the velocity of the fluid. Heavier fluids with
higher viscosity cause bigger momentum corrosion.

Fig. 8 shows dimensionless temperature for Re=10 and volume
fraction of 1.5% of solid nanoparticle in comparison with the base fluid.
This figure depicts the changes in this temperature for different cross
sections of the microchannel. Using non-Newtonian fluids with higher
volume fractions causes big changes in the distribution of dimension-
less temperature along the microchannel height. In fact, nanoparticles
involved in heat transfer boost the process. Thus, with the introduction
of the fluid to the microchannel and in the entrance sections of the
channel, the variations in the dimensionless temperature are signifi-
cant due to lack of expansion. After the flow through the channel and
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the occurrence of expansion, the variations take a steady and almost
stable trend.

Fig. 9 illustrates dimensionless temperature for Re=100 and 1000
and a volume fraction of 1.5% of the nanoparticles and their various
diameters in cross sections of X=60, 80 and 100. Regarding its
definition, dimensionless temperature allows for a better heat transfer
in its lower amounts closer to zero. The use of nanoparticle powders
with smaller diameters has been proved to be the most effective in heat
transfer. Also the higher velocity of the fluid implements changes in the
trend of the dimensionless temperature. To sum up, the variations of
dimensionless temperature in the entrance of the channel are high and
increase in proportion to higher Reynolds number.

7. Conclusion

The laminar flow of the fluid water/CMC-alumina for volume
fractions of 0.5% and 1.5% of solid nanoparticle (alumina) suspended
in a non-Newtonian dissolution made of 0.5% concentration of CMC
was studied. In this research, calculative fluid dynamics and laminar
heat transfer behavior of the non-Newtonian fluid in rectangular two-
dimensional using an organized mesh and Simple C algorithm and

second order discretization were all studied. To determine a more
accurate viscosity of the fluid, the power-law was used to draw the non-
Newtonian fluid. The results indicated that an increase in volume
fraction of the solid nanofluid lead to an upward trend in heat transfer,
rate, Nusselt number and pressure loss. Furthermore, the presence of
solid nanoparticle had a great impact on the increase of the above-
mentioned especially Reynolds number which can be a result of
boosting micronic heat transfer mechanisms and a better combination
of nanofluid flow in higher Reynolds number. The use of solid
nanoparticles with a smaller diameter had a good effect on the increase
in heat transfer, decrease in pressure loss, and economized variation of
dimensionless temperature in different sections of the microchannel.
The extension of this paper for nanofluids according our previous
works [47–62] affords engineers a good option for turbulent jet
impingement simulation.
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