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• We show the performance of machine learning for face recognition using partial faces and other manipulations of the face such as rotation and
zooming which we use as training and recognition cues.

• We use the state of the art convolutional neural network based architecture along with the pre-trained VGG-Face model through which we extract
features for machine learning.

• Our results show that individual parts of the face such as the eyes, nose and the cheeks have low recognition rates though the rate of recognition
quickly goes up when individual parts of the face in combined form are presented as probes.
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a b s t r a c t

Today, computer based face recognition is a mature and reliable mechanism which is being practically
utilised for many access control scenarios. As such, face recognition or authentication is predominantly
performed using ‘perfect’ data of full frontal facial images. Though that may be the case, in reality, there
are numerous situations where full frontal faces may not be available — the imperfect face images that
often come from CCTV cameras do demonstrate the case in point. Hence, the problem of computer
based face recognition using partial facial data as probes is still largely an unexplored area of research.
Given that humans and computers perform face recognition and authentication inherently differently,
it must be interesting as well as intriguing to understand how a computer favours various parts of
the face when presented to the challenges of face recognition. In this work, we explore the question
that surrounds the idea of face recognition using partial facial data. We explore it by applying novel
experiments to test the performance of machine learning using partial faces and other manipulations
on face images such as rotation and zooming, which we use as training and recognition cues. In
particular, we study the rate of recognition subject to the various parts of the face such as the eyes,
mouth, nose and the cheek. We also study the effect of face recognition subject to facial rotation as
well as the effect of recognition subject to zooming out of the facial images. Our experiments are
based on using the state of the art convolutional neural network based architecture along with the
pre-trained VGG-Face model through which we extract features for machine learning. We then use two
classifiers namely the cosine similarity and the linear support vector machines to test the recognition
rates. We ran our experiments on two publicly available datasets namely, the controlled Brazilian FEI
and the uncontrolled LFW dataset. Our results show that individual parts of the face such as the eyes,
nose and the cheeks have low recognition rates though the rate of recognition quickly goes up when
individual parts of the face in combined form are presented as probes.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Faces are the most painted pictures in the visual system within
the life time of a human being. In this sense, it is not sur-
prising that humans possesses remarkable ability to be able to
recognise faces. Typically, it takes a glimpse of someone’s face

∗ Corresponding author.
E-mail addresses: a.a.m.elmahmudi@bradford.ac.uk (A. Elmahmudi),

h.ugail@bradford.ac.uk (H. Ugail).

for us to remember that individual. Thus, it is not surprising
that humans have a dedicated region in the brain for solely
processing faces as well as for recognising them [1]. When it
comes to face recognition by humans, it is thought that the brain
remembers important details such as the shapes and colours of
crucial features corresponding to the eyes, nose, forehead, cheeks
and the mouth [2]. Moreover, the human brain can cope with
significant variations in lighting, facial expressions as well as faces
observed from afar. However, contrary to this, for a computer, in
general, a variability of an appearance of a face has a direct effect
on its capacity for recognition. For instance, the variations in
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Fig. 1. An example of how partial faces may be presented as input probe images
for face recognition.

illumination, expression, pose and other added physical changes,
i.e. glasses or beard, may have a huge impact on the recognition
rates. Though this may be the case, due to the copious amount
information a computer can cope with and along with the in-
creased data processing power of machines, it is thought there
are areas a machine algorithm, such as a convolutional neural
network (CNN), can at least match or outperform when it comes
for face recognition. Thus, the aim of this work is to explore the
intriguing question of how a computer performs face recognition
subject to imperfect facial information as recognition cues. More
specifically, this work is geared to explore how various parts of
the face perform on the task of face recognition and how faces
observed from a distance – via the effect of zooming out, for
example – as well as how the rotation of facial images perform
on the task of face recognition.

In Fig. 1, we illustrate a typical example of how face recogni-
tion can be called for based on partial facial data as input probe
images. Some of the recent approaches to classify and recognise
a face are discussed in [3–5]. As the example illustrates, under no
circumstances, the full face is available and only parts of the face
such as the eyes, forehead, mouth, nose or the cheeks of the given
subject are available as input probe data as [6–8].

The practical application of this work is borne out by the
increasing need to undertake functionally automatic face recog-
nition tasks in everyday environments. Like other biometric au-
thentication tools such as the fingerprints, face recognition and
face perception has become a very common practice [9,10]. To
this end, reliable automated face processing [11,12] and recog-
nition [13–16] tools which can utilise practical facial data, such

as images that come from everyday CCTV cameras, are becom-
ing paramount. In Fig. 2, we illustrate the overview of our face
recognition framework using partial faces as probes.

2. Related work

As far as computer aided face recognition based on partial
facial images are concerned, the literature surrounding this topic
appear to be relatively sparse and not so consistent. Many algo-
rithms have been introduced to solve face recognition problems,
e.g. [17,18]. One of the earliest work on this topic we could iden-
tify was that of Savvides et al. [19]. In that study, they tested on
various facial regions to establish quantifiers with discriminative
ability. Based on grey scale images the method of kernel cor-
relation filters was utilised to reduce image dimensionality and
for feature extraction [20]. Following that, they utilised Support
Vector Machines (SVM) to discriminate between various facial
features. In their work, they test three main face regions, namely
the eye, nose and mouth. Results from their experiments suggest
that the eye region has a higher verification rate compared to the
mouth and nose regions.

In a similar fashion, He et al. [21] introduced a technique called
the Dynamic Feature Matching (DFM) for partial face recognition.
Their study was based on a combination of fully convolutional
networks (FCN) [22] with sparse representations. The purpose
of FCN is to extract a feature map of images which has the
capacity to cater for more discriminative features. The heart of
their work is the utilisation of VGG-Face model [23] from which
features were transferred to the FCN. This method appears to
have produced good classification accuracy compared to other
existing methods.

Furthermore, several robust face recognition methods have
been suggested in order to address the challenges arising for face
recognition due to face occlusion in different scenarios. In [24],
Long et al. proposed Subclass Pooling for Classification (SCP) to
solve the double occlusion problem by using limited data in a
training set. They used a fuzzy max pooling method and average
pooling schemes. Their results showed that a remarkable margin
of performance can be achieved.

More recently, Lahasan et al. [25] proposed a framework
named as the Optimized Symmetric Partial Facegraph (OSPE)
for face recognition under different conditions. For example, oc-
cluded face, facial expression and variation of lighting are some of
the cues they use in their experiments. Again, their experimental
results have shown that some improvements in recognition rates
can be achieved by introducing partial facial data.

Moreover, Duan et al. [26] introduced a technique called
Topology Preserving Graph Matching (TPGM), in order to enhance

Fig. 2. An overview of our computational framework for face recognition using partial faces as probes.
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Fig. 3. Humans possess inherent difficulty in accurately recognising inverted
faces.

Fig. 4. Illustration of an example of a physical stimuli utilised to understand
human face perception.

the recognition process in the case of using partial faces. Their
method is based on building geometric graphs for probe faces
and gallery faces. The TPGM method minimises a geometric and
textural cost function. Outcomes of their experiments on four face
databases demonstrated that their approach outperformed other
state of the art methods at the time.

Similarly, Cai et al. [27] proposed a facial variation modelling
system for sparse representation for face recognition. Based on a
single sample face, they build facial variation bases to separate
neutral, frontal faces from different facial views. Their exper-
iments show that major enhancements can be performed for
single image face recognition problems.

Another piece of work which is notable in this area is by
Li et al. [28] which considered that the human face recognition
problem in frontal views with varying illumination, disguise and
occlusion. They presented a new method for face recognition
which extracts a dynamic subspace from images and they obtain
the distinctive parts for each subject. A characteristic of discrim-
inative components was represented by those parts in order to
give a recognition protocol to classify face images by using the
K-nearest neighbour algorithm (K-NN) [29]. They applied their
method to public databases such as ORL and Extended Yale B. The
results illustrated that the recognition rates could be improved
using partial facial cues.

Furthermore, Peng et al. [30], introduced a technique called
Locality-Constrained Collaborative Representation (LCCR) to en-
hance discrimination of representative images. The LCCR was
applied to different databases with five distance measures. In the
case of partial faces, they used three facial features, i.e. right eye,
nose and mouth with chin by masking the original images. The
results indicate that the right eye, mouth and chin have high
recognition rates — for example, by using LCCR and City Block
distance measures [31].

Many mechanisms of human face perception in the literature
have addressed how a human can perceive parts of the face in-
cluding the inverted face [13–16]. The work of Murphy et al. [32],
for example, based on facial stimuli shows the mechanism of hu-
man face perception. Their work, along with that of others, show,
for humans, faces are difficult to perceive when turned upside
down, as illustrated in Fig. 3. Moreover, in their experiments, they
tried to test the ability for a participant to classify faces presented
in whole and region by region using a dynamic aperture which
moved incrementally through the facial picture, as illustrated in
Fig. 4. The main idea in this work was to understand the limits of
human ability to face perception and recognition. In their work,
they tested this idea in four ways, namely for identity, gender, age
and expression under four conditions, which are, upright whole
face, inverted whole face, upright aperture and inverted aperture.
The results presented by the observers were put into categories
of identity, gender, age and expressions. Their results indicate
that the detrimental effects of an inverted whole face were no
less in the aperture conditions of showing partial face to the
participants.

Similarly, Andre and Nummenmaa [33] studied face recogni-
tion on the partial face subject to the presence of facial expres-
sions. In one of their experiments, they tested the face recogni-
tion rates for the common six expressions — happiness, anger,
sadness, disgust and fear. In the case of the partial face, they
partitioned the face into two regions, one containing the eyes
and the other containing the mouth. A considerable result of their
work is that humans have poor recognition rates when it comes
to the situation of the eye only and mouth only. On the other
hand, they noted that the expression of smile produces slightly
better recognition rates.

However, when dealing with acute occlusions in a face, the
performance of current methods declines remarkably. Many pre-
vious studies note that, when it comes to human face recognition,
familiarity appears to be a key recognition factor. The rate of fa-
miliarity of course changes when the target face image is partial,
occluded, with expressions and with changes in the age of the
subject [32,33].

On the other hand, machine learning algorithms can utilise the
power of computations to use copious amounts of input data for
training and use numerical analysis in order to produce outputs
which can challenge the power of human face recognition. Thus,
machine learning helps a computer to build models from exam-
ples of input data with a view to making a more accurate decision.
This is a distinct advantage that machine learning algorithms
appear to have over human face perception and recognition. Thus,
it is also plausible to state that machine learning algorithms can
potentially provide better recognition rates on partial faces or,
in the worst case, may aid humans to perform better at face
recognition, especially in challenging cases where very limited or
partial facial data are presented.

Based on the work carried on machine based face recognition,
we note none of the studies has looked how machine learning
favours in face recognition using partial faces in a consistent
manner. Our aim in this study, therefore, is to close that gap. We
study how different parts of the face favours in recognition. We
also study how the rotation of the face as well as zooming out of
the face at various levels fares recognition in a machine learning
scenario. In our experiments, we use a CNN based architecture
along with the pre-trained VGG-Face model to extract features.
We then use two classifiers namely the cosine similarity (CS) and
the linear SVM to test the recognition rates.

The rest of the paper is organised as follows. In Section 3, we
explain the CNN architecture we have utilised along with a brief
description of the VGG-Face model and the CS as well as the SVM
based classification. In Section 4, we discuss the face recognition
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Fig. 5. Overview of our CNN VGGF based feature extraction approach.

Fig. 6. Illustration of the convolutional layers in the VGGF model.

experiments we have carried out using partial face data, and
we report some of the interesting results we obtained following
those experiments. In Section 5, we reflect on the results and
finally, in Section 6, we conclude this paper.

3. Proposed methodology

One of the most popular examples of machine learning in
the recent times has been those based on deep learning, oth-
erwise known as Convolutional Neural Networks (CNNs), the
use of which has been literary explosive in the area of visual
computing. In fact, the exploitation of CNNs for face processing
and face recognition is noteworthy here. CNNs are supervised
machine learning techniques that can extract deep knowledge
from a dataset through rigorous example based training. This ma-
chine learning approach mimics the human brain when learning.
CNNs have been successfully applied to feature extraction, face
recognition, classification, and segmentation, to name some. As
noted here, the explosion on the use of CNNs in recent times
is due to their ability to learn complex features using nonlin-
ear multi-layered architectures [34]. Though the origin of CNN
goes back to the early 1990s, the predominant scepticism for
using CNN has been based on the assumption that feature ex-
traction using gradient descent will always overfit. The main
argument for this has been that gradient based optimisation
methods are notorious for getting stuck in the local minima.
However, in recent times, these assumptions have been over-
turned due to the promising results CNNs have produced across
many domains of research. Thus, today, state-of-the-art deep
learned models, based on CNN architectures are being used in
almost all visual computing related domains. Examples include
image perception [35], recognition [36], classification [37], and
information retrieval [38].

Generally, there are three ways of deploying CNNs. They are
training a network from scratch, fine-tuning an existing model,
or using off the shelf CNN features. The latter two approaches are
referred to as transfer learning [39]. It is important to highlight
that training a CNN from scratch requires an enormous amount

of data, which is often a huge and challenging task [40]. On the
other hand, fine-tuning involves transferring the weights of the
first few layers learned from a base network to a target network.
The target network can then be trained using a new dataset.

For face perception work, using CNN, there are several pre-
trained models which can readily be utilised for feature extrac-
tion, e.g. VGGF, VGG16, VGG19, OverFeat [23]. In our case, for
feature extraction, we have utilised the VGGF pre-trained model
which we discuss below. Thus, the methodology we adopt here
uses the pre-trained VGGF model for feature extraction which
is followed by CS [41] or linear SVM for classification. Fig. 5
illustrates an overview of our feature extraction steps.

3.1. The VGG-Face model

As mentioned above, there are several pre-trained models
for CNN and one of the most popular and widely used in face
recognition is the VGGF model — developed by Oxford Visual
Geometry Group [23]. The model was trained on a huge dataset
containing 2.6M face images of more than 2.6 K individuals. The
architecture of VGGF comprises of 38 layers, starting from the
input layer up to the output layer. The input should be a colour
image with a size of 224 by 224, and as the pre-processing step,
an average is normally computed from the input image.

In general, the VGGF contains thirteen convolutional layers,
each layer having a special set of hybrid parameters. Each group
of convolutional layers contains 5 maxpooling layers and there
are also 15 rectified linear units (ReLUs). After these layers, there
are three fully connected layers namely the FC6, FC7 and FC8.
The first two have 4096 channels, while FC8 which has 2622
channels are used to classify the 2622 identities. The last layer
is the classifier which is a softmax layer to classify an image
to which the individual face class belongs to. We illustrate the
architecture of this further in Fig. 6.

3.2. Feature extraction using the VGGF model

Given an input image, X0, it can be represented as a tensor
X0 ∈ RHWD, where H is the image height, W is the width and D
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Fig. 7. A sample of the resulting features form the conv5_3 layer of the VGGF
model.

represents the colour channels. A pre-trained layer L of the CNN
can be expressed as a series of functions, gL = f1 → f2 → . . . →

fL.
Let X1, X2, . . . , Xn be the outputs of each layer in the network.

Then, the output of the ith intermediate layer can be computed
from the function fi and the learned weights wi such that Xi =

fi(Xi−1 : wi).
As we know, CNNs learn features through the training stage

and then use such features to classify images. Each convolutional
(conv) layer learns different features. For example, one layer may
learn about entities such as edges and colours of an image while
further complex features may be learnt in the deeper layers. For
example, a result of conv layer involves numerous 2D arrays
which are called channels. In VGGF, there are 37 layers, 13 of
them are convolutions and the remaining layers are mixed be-
tween ReLU, pooling, fully connected and the last layer is the
softmax. However, after applying the conv5_3 layer to an input
image, which has 512 filters with size 3x3, the features can be
extracted for classification purposes. By examining the activations
of that layer, one can obtain the main features as shown in Fig. 7,
where a sample of the features is presented.

In order to decide the best layer within the VGGF model to
utilise for facial feature extractions, one must usually carry out
a number of trial and error experiments. In this particular case,
we tested the layers 34 through to 37. In our experiments, we
tried other layers, but the best results came from layer 34. It
is noteworthy that this layer is the fully connected layer and is
placed at the end of a neural network which means the extracted
features represents the whole face.

The features from the layer 34 are the results that arise from
the fully connected layer FC7 after applying ‘ReLU6’, which gives
a vector of 4096 dimensions. The suggestion that layer 34 was
optimal was inferred by undertaking a number of face recognition
tests where we used the full frontal face for both training and
testing thereby obtaining the rate of recognition to be 100%. The
whole process of training and testing through feature extraction
is described further in Algorithms 1.

3.3. Feature classification

A classification in a supervised machine learning is a function
that assigns new observational items to which a set of target
categories or classes belong to. In other words, the objective of
classification is to build a brief model of the distribution of class
labels in terms of predicted features. There are several techniques
for the classification — decision trees [42], K-NN [29], SVM [43]
are good examples.

Algorithm 1: Feature extraction from the face dataset
Input: Training set M , with m classes
nj = number of images in a given class
for i=1 to m do

for j=1 to nj do
im → read an image;
im → resize(image);
im → normalize(image);
imfeatures → ExtractFeatures(CNNs(im));

end
end

In this work, all extracted features in both the training and
testing phases are used for the purpose of classification. In our
experiments, for the classification scenarios, we have utilised the
Cosine Similarity (CS) [41] and linear SVM classifiers [43]. There
are two reasons for this choice. Firstly, we tested other classi-
fiers and the best results were by using CS and SVM. Secondly,
through our experiments and analysis, we found out that these
two classifiers have an ability to separate data more accurately.

The cosine similarity is a measure between two non-zero
vectors. It uses the inner product space to measure the cosine of
the angle between those two vectors. The Euclidean dot product
formula as in Eq. (1) can be used to compute the cosine similarity
such that,

a.b = ∥a∥∥b∥ cos θ, (1)

where, a and b are two vectors and θ is an angle between them.
By using the magnitude or length, which is the same as the Eu-

clidean norm or the Euclidean length of vector
x = [x1, x2, x3, . . . , xn] as in Eq. (2), the similarity S is computed
using the formulation given in Eq. (3) such that,

∥x∥ =

√
x21 + x22 + x23 + · · · + x2n, (2)

S = cos θ =
A.B

∥A∥∥B∥
, (3)

=

∑n
i=1 AiBi√∑n

i=1 A
2
i

√∑n
i=1 B

2
i

, (4)

where, A and B are two vectors.
For classification, in all our experiments in this work, we

compute the CS to find the minimum distance between the test
image test_im and training images training_imn by using Eqs. (5)
and (6). The procedure for this classification is further illustrated
in Fig. 8. Thus,

CSmin = min(dist(test_im, training_imn)), (5)

where n is a total number of images in the training set and,

CSdist (test_im, training_imn)

=

∑m
j=1 training_im

i
jtest_imj√∑n

j=1 training_im
i2
j

√∑n
j=1 test_im

2
j

, (6)

where m is a length of vector and i = 1, . . . , n.
Similarly, SVM is a supervised machine learning algorithm

which can be used for both binary classification and multi classi-
fication problems. The SVM focuses on identifying the margins
via hyperplanes to separate the data into classes. Maximising
the margin reduces the upper bound on the expected general-
isation error by creating the largest possible distance between
the separating hyperplanes. It is clear that the SVM is geared
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Fig. 8. Procedure adopted for the classification.

to solve binary classification problems. In all our experiments,
we use the linear SVM to solve the multi-classes classification
problem based on One-vs-One (OVO) approach [44]. This is also
known as pairwise classification. The OVO decomposition con-
structs n(n − 1)/2 binary classifiers for a given n number of
classes. Then, for a final decision, the Error Correcting Codes (ECC)
combination approach [45,46] decides how the various classifiers
can be combined.

Consider that we have a training dataset (xi, yi), then we can
use the linear SVM as in Eq. (7) such that,

min
w∈Rd

1
2
∥w∥

2
+ C

N∑
i

max(0, 1 − yiwT xi), (7)

where, w is a weight vector, N is the number of classes and C is
a trade-off parameter between the error and the margin.

As for the type of SVM (between linear and non-linear kernel),
here we have chosen the linear SVM for the reasons as explained
here. Prior to running the main experiments, we ran some trial
experiments to test the accuracy of recognition results between
linear SVM and non-linear SVM (with radial basis function ker-
nels) to test their accuracy and efficiency. We found, in general,
the linear SVM works well when small parts of the face are used
as probes. For instance, in one trial experiment involving faces
from 60 subjects, we found that for the right cheek, the linear
SVM produced a recognition rate of 24.44% while the kernel SVM
with radial basis functions only produced a rate of 2.77%. In ad-
dition to this, in general, the linear SVM is computationally more
efficient in all the trial experiments we ran. Thus, we concluded
that the kernel SVMwith its marginal gains (only in larger parts of
the face such as half or 3/4 face) does not lend overall additional
advantages. Hence, we made use of the linear SVM throughout
the rest of the experiments.

4. Experiments and results

Here, we present a comprehensive set of experiments we
have conducted on face recognition using different parts of the
face. To undertake this work, we have utilised face images from
two popular face datasets, namely, the FEI [47] and LFW [48]
dataset. All images in both databases were cropped to remove the
background as much as possible using a cascade object detector
in order to extract the face and the internal facial features [49].
However, for some images, with very complex backgrounds, as in
the case of the LFW database, we cropped those faces manually.
In this work, numerous settings of occlusion have been carried
out in order to verify that our methodology can handle the
normal and occluded face recognition tasks. For that purpose, we

Fig. 9. Sample face data from the FEI dataset.

conducted two main sets of experiments — one which does not
use the partial, rotated and zoomed face as part of the training
face data and the other in which partial, rotated and zoomed faces
have been utilised as part of the training data. In each case, we
undertook 14 sub experiments involving the partial, rotated and
zoomed out faces using both classifiers. For training purposes,
70% of the images per subject were utilised which were also
augmented through operations such as padding and flipping. The
remaining 30% of the images were used for testing, in each case.

4.1. The FEI dataset

This database contains Brazilian faces of 200 students and staff
with an equal number of males and females from FEI University.
For each subject, there are 14 images bringing the total number of
images in the dataset to 2800. The resolution of the images is 640
pixels by 480 pixels. All images are in colour and are taken against
a white homogeneous background. The subjects are between 19
and 40 years old. The dataset contain images with variations in
facial expressions as well as the pose. Fig. 9 shows some sample
images from the FEI face dataset.

4.2. Experiments on parts of the face using the FEI dataset

In our experiments, using part of the face using the FEI dataset,
twelve test sets were generated thereby each test corresponding
to one part of the face. The parts were eyes, nose, right cheek,
mouth and the forehead. Also, faces were generated just with
eyes and nose, the bottom half of the face, the top half of the
face, right half and three quarters of the face as well as the full
face. Fig. 10 shows the parts of the face we have used for testing
the recognition rates.

After extracting features from the VGGF model, the CS without
parts (CS-Wo) and the linear SVM (with 19 900 binary classifiers)
without parts (SVM-Wo) were applied in order to investigate the
rate of recognition for each facial part separately. The results of
these experiments are summarised in Fig. 11. As it can be inferred
from the graph, the highest rate of recognition is achieved with
the full face and the three-quarter of the face with the recognition
rate of 100% using both classifiers. However, the recognition rate
starts to drop down slightly at the right half and the top half of
the face respectively with SVM-Wo, but in the case of CS-Wo, the
rate still holds at 100%. As we approach the bottom half of the
face, the rate decreases further reaching to about 50% in the case
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Fig. 10. Parts of the face we have used for testing the recognition rates on the
FEI dataset.

of SVM-Wo and about 60% for CS-Wo. This decline continues until
nearly 0.5% on the right cheek.

In contrast to that, in order to measure the rate of recognition
using parts of the face, we repeated the above procedure, but
this time we added the individual parts of the face into training
set too. As shown in Fig. 11, it can be seen the recognition rates
have significant improvements in this case. For instance, while
the results from right cheek previously were nearly to 0%, it has
moved up to 15% using both the classifiers. Also, in the case of
the combined eyes and nose, it was 22% for SVM-W and 40%
for CS-W previously, and in this case, has improved to about
57% for SVM-W and 90% for CS-W. However, we have noticed
that not all recognition rates steadily increased in this particular
case. In fact, in some cases, the results were slightly worse for
SVM-W. For example, a slight decrease in the recognition rate
was observed for the bottom half of the face, which was 53%
and dropped down to 51%. In contrast, the CS-W has produced
a significant improvement, for instance, the recognition rate for
combined eyes and nose increased from 40% to 90%.

4.3. Experiments on rotated faces using the FEI dataset

In this experiment, all the faces in test sets were rotated in
eighteen degree increments, starting from 10◦ to 180◦. In Fig. 12,
we illustrate some sample rotations.

Fig. 11. Face recognition rates using SVM and CS classifiers based on parts of the face – without and with using individual facial parts of the face in training – on
the FEI database.

Fig. 12. Illustration of face rotation (10◦ to 180◦) on the FEI dataset.
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Fig. 13. Face recognition rates using SVMs and CS classifiers – based on face rotations without and with rotated faces in the training set – on the FEI dataset.

Fig. 14. An example of zooming out (10% to 90%) of faces on the FEI dataset.

All rotated images in each subset were passed to the VGGF
model to extract features and we followed the same procedure in
the experiments as above. Fig. 13 shows the recognition rates for
the rotations by using the two classifiers. Note, the experiments
are carried forward with adding and without adding rotated facial
data into the training set.

In the case of without adding rotated images (SVM-Wo and
CS-Wo) to the training sets, it is clear that the rotated faces at
10◦ to 20◦ respectively show the highest recognition rate which
is approximately 100% in both classifiers as shown in Fig. 13. On
the other hand, the recognition rate starts falling down partially
at 30◦ to 40◦ and the rate of recognition achieved are between
about 98% and 80% for SVM-Wo and CS-Wo. However, the worst
case of recognition begins when the degree of rotation becomes
high (50◦ to 180◦) where the rate of recognition reaches almost
0% in some cases for both the classifiers.

In the second situation, when the rotated images are added
to the training set, we can observe that the recognition has
improved significantly among all the rotated faces for both classi-
fiers (SVM-W and CS-W) as shown in Fig. 13. The CS-W recorded
the highest recognition rate in most of the cases. For example,
at 40◦ the previous rate was nearly 33% and it has enhanced to
an impressive recognition rate of about 95% using CS-W. Using
the SVM-W also it has gradually increased the recognition rate
especially for higher degrees of rotation. For example, for 80◦ of
rotation, without rotated data being added to the training dataset,
the rate reaches from 2% to 76%. As the rotation increased, the
rate of recognition became very low for SVM-W and CS-W while
these rates have gone up dramatically from about 0% to between
82% and 84% for SVM-W and from nearly 0% to about 92% in
CS-W, which again indicate that CS-W outperforms SVM-W.

4.4. Experiments on zoomed out faces using the FEI dataset

In this experiment, we zoomed out all the faces in the test
sets from 10% to 90% in order to find out the effect of zooming
on the rate of recognition. Here, we have nine groups of test
images as shown in Fig. 14. Similar to what has been adopted for
rotation experiments, the zoomed test faces were passed to the
VGGF model in order to extract features and later passed them to
the two classifiers (SVM and CS) for classification.

In the first part of this experiment, we evaluated the recogni-
tion rate in the case without adding zoomed out faces into the
training set (SVM-Wo and CS-Wo). As we can see, in Fig. 15,
the higher recognition rates were reached at 10% to 50% zoom-
ing levels by using SVM-Wo which about 100%. On the other
hand, when the faced are zoomed out between 70% and 90% the
recognition rates went down significantly ultimately reaching to
approximately 0%. Contrary to that, in case of using CS-Wo, the
recognition at zooming levels of between 10% and 50% produced
lower recognition rates than SVM-Wo which is between 97% and
86%. Moreover, the recognition between 70% and 90% still is a
remarkable improvement compared to the results for SVM-Wo.

As we added the zoomed out images into the training set, it
became clear that there is a slight improvement in the recognition
rates in the case of using SVM-W at zooming levels for 40% and
50% with 70%, 80% and 90% still steady, as shown in Fig. 15.
The CS-W reached a higher rate of recognition at zoomed out
levels from 10% to 60% where the recognition rate reaches 100%.
Additionally, with 70% and 80% zooming out levels, we can notice
a gradual increase in the recognition rate, for instance, from
around 45% to about 52%. However, at the zooming out level of
90%, the recognition rates drop off to about 45% to 36%.

4.5. The LFW dataset

Labelled Faces in the Wild (LFW) [48] is a large dataset of face
pictures designed for testing the capability of face recognition in
simulating uncontrolled scenarios. All the images in the dataset
have been collected from the Internet. The dataset has faces
with large variations in expression, pose, age, illumination as
well as resolution. LFW has 5749 subjects and a total of 13 000
images. The number of images per individual is not constant and
about 4070 subjects have just one image. As shown in Fig. 16,
the sample shows that the images have significant background
clutter. For this reason, for our experiments on the LFW dataset,
we have done some pre-processing to extract the face from the
original image.
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Fig. 15. The rate of recognition for zoomed out faces using SVM and CS classifiers on the FEI database.

Fig. 16. Some sample face images from the LFW dataset.

Fig. 17. A samples of facial parts from the LFW database.

In these experiments, using the LFW dataset, we followed the
same procedures as with the FEI database, as above. Thus, two
main sets of experiments were conducted — without and with
parts for rotation and zooming out. In total we conducted, 14 sub
experiments using both the SVM and CS classifiers.

4.6. Experiments on parts of the face on the LFW dataset

In the case of the partial face experiments, we followed the
same procedures as we did for the FEI dataset to generate 12
datasets for our experiments. Fig. 17 illustrates some samples of
the partial faces we utilised.

All the extracted features for partial faces from the VGGF
model were passed to both the classifiers (SVM and CS), in both

cases namely without parts for training (SVM-Wo and CS-Wo)
and with parts for training (SVM-W and CS-W). In order to
investigate the recognition rates for each facial part, we applied
the classifiers separately. In the case of without adding parts into
the training, it is clear that in a general CS-Wo outperforms the
SVM-Wo for most of the parts of the face. By looking at Fig. 18, we
can observe that the for the right cheek, mouth, forehead and the
nose have there exist low levels of discrimination, with about 1%
for both the classifiers. In contrast to that, the rate of recognition
increases significantly for the parts containing the eyes, which
reaches to about 40% using CS-Wo. As we increase the proportion
of the face, the recognition rate improves significantly reaching
nearly 100% for the 3/4 face and for the full face. Again, we note,
the CS outperforms the SVM in all cases.

Similar to the previous experiments, we repeated all the tests
on the facial parts and using the same classifiers but this time we
added the facial parts to the training sets (SVM-W and CS-W). The
results, as shown in Fig. 18, indicate there are marked improve-
ments in the recognition rates by using SVM-W. For instance, the
rate of recognition for the right cheek was about 1% and now
reaches almost 10%. Regarding the mouth, forehead and the nose
also we observe slight improvements in the recognition rates for
both classifiers. As we increase the proportion of the face, the
recognition rates significantly improve with CS-W which reaches
to 70% instead of about 42% in the eyes, but this improvement did
not occur with SVM-Wwhere it is almost 7%. Furthermore, for the
faces with occluded eyes and nose, bottom, top and right half, the
rate of recognition enhanced significantly with CS-W, but it has
a slight decrease for the 3/4 of face, from about 94% to around
93.5%.

4.7. Experiments on rotated face on the LFW dataset

For experiments, using rotated faces, similar to the exper-
iments we ran on the FEI dataset, all faces in the LFW test
sets were rotated in eighteen degree increments. After extracting
features, we used the same methodology to find out the rate of
recognition subject to facial rotation. Again, we trained the CNN
both without rotated images and with them.

As shown in Fig. 19, the results show that in the first situation,
without the rotated faces, the rate of recognition recorded is
higher for rotated faces of 10◦ to 30◦ where the recognition rates
were around the 98% mark for SVMs-Wo. Furthermore, for this
case, using the CS-Wo, the results are even better. On the other
hand, as the rotation increases, the proportion of recognition
drops significantly for both the classifiers, which were approxi-
mately 55% for SVM-Wo and 58% for CS-Wo. We can also see that
for rotations between 60◦ and 180◦, the recognition rate falls to
almost 0% for both the classifiers.
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Fig. 18. Recognition rates based on parts of the face using both the classifiers, SVM and CS, without and with using individual facial parts of the face in the training,
on the LFW dataset.

Fig. 19. Face recognition rates using SVM and CS classifiers based face rotations – without and with using individual rotated face as training data – on the LFW
dataset.

Fig. 20. The recognition rates for zoomed in images based on SVM and CS classifiers on the LFW database.

In the second case, once the rotated faces were added to the
training set, the rate of recognition, in general, has improved
for both classifiers, i.e., for SVM-W and CS-W. For example, the
recognition rates at 150◦ which was initially at about 0.5% has
improved to about 37%.

4.8. Experiments on zoomed out faces on the LFW dataset

Similarly, here in this experiment, again all the faces in the
test sets were zoomed out from 10% to 90% in order to find out
how the zooming out can affect the rate of recognition. In Fig. 20,
we show the results of these experiments. There, we observe that
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Fig. 21. The result of correct matching using CS, for parts of the mouth.

Fig. 22. The result of incorrect matching using the CS measure, for parts of the
mouth.

Fig. 23. The result of correct matching using the CS measure, for the right cheek.

the rate of recognition is higher for zoomed out images for cases
between 10% until 50% where the recognition rates range from
85% to 100% in the cases of SVM-Wo and CS-W. On the contrary,
this rate has fallen sharply to almost 0% after 50% zoom out, both
for SVM-Wo and CS-W. Again, once the zoomed faces are added
to the training set, we note that the performance of the CS-W also
improves further.

5. Discussions

From what we have presented for the partial facial experi-
ments using the controlled FEI dataset, in the case of without
adding the various parts into the training set, the highest recog-
nition rate observed was for the 3/4 face, where we found the
recognition rate to be 100% by using SVM-Wo. Also, in the case of
CS-Wo the right half, the top half as well as the 3/4 face returned
the recognition rate of 100%. However, the worst recognition
rates observed are for the smaller and perhaps less significant
parts of the face. By applying the same methodology to the
uncontrolled LFW dataset, even bigger proportions of the face
had slight decrease in the recognition rates compared with the
FEI dataset which is between 76% to 99% for SVM-Wo and 83%
to 99% for CS-W. Besides, according to the results obtained for
smaller proportions of the face, the worst case observed is for
the cheeks, mouth, forehead and nose but as far as recognition is
concerned, the eyes appear to hold more information.

In the second part of the experiments, where we added the
individual parts of the face to the training sets, the rate of recogni-
tion with the partial face improved dramatically, particularly for
recognition using smaller proportions of the face. For example,
the recognition rate for the right cheek improved from 0% to 15%

Table 1
The comparison of recognition results with He et al. [21] and ours on the LFW
database.
Area He et al. [21] Ours

Upper 39.2% 90.2%
Down 7.8% 70.73%
Right 24.2% 88.9%
Left 27.6% –

on the FEI dataset. We also note that the eyes still have the high-
est recognition rates among the other individual parts for both
the FEI and LFW datasets. Whereas the combined eyes and nose
recorded around 90% in the recognition rate in the controlled FEI
dataset, opposite to that, in the case of the uncontrolled LFW
dataset, this percentage dropped slightly. Furthermore, we note
that better recognition results overall can be achieved by using
the CS measure.

Thus, an important point to highlight here is that the CS
measure, in general, appears to be a better classifier in this
case, compared to both linear and non-linear SVMs. In the case
of SVMs, they require complete re-training when new data are
added which obviously has computational issues to deal with.
However, in the case of the CS classifier this is not necessary.
Though having said that, in the testing stage, the CS classifier can
be more computationally intensive but given the greater degree
of accuracy it provides it makes sense to utilise the CS classifier
over SVMs in this case.

In order to compare our results with the state of the art
techniques, we note that He et al. [21], presented work somewhat
similar to what is presented in this paper, whereby they applied
the recognition task to parts of the face by using data from LFW
dataset. This is the closest work we have come across in the
domain of partial face recognition by which we can make some
form of direct comparison with our results. In Table 1, we show
their results which we compare with ours. As one can clearly see,
in this case, our results are significantly better.

From the results of the experiments we have undertaken, we
can make further observations about the accuracy of classifiers
between CS and SVM, in that, in general, the CS outperforms the
SVM. In addition, we can observe at the individual class level by
considering the matching images picked by the classifiers. For
example, in Fig. 21 we present the images that were matched
correctly for a subject by using CS-W and in Fig. 22, we show
a case in which the CS classifier got confused.

In some cases, we also observed that even greater matching
performance demonstrated by the CS classifier. For example, in
Fig. 23 we show the images of cheeks being correctly matched by
the CS classifier, though in this case, the classification may have
resulted from the prominent mark on the cheek of the face of the
individual, as shown in Fig. 23.

An interesting question that may come to one’s mind may
be on the generalisation capability of our proposed approach,
for example, by eliminating one or two facial parts within the
training sets. To investigate this, we ran some further experi-
ments whereby we randomly left out two facial parts – i.e. the
right cheek, no eyes + no nose – from the training data on
the LFW database. We ran the experiments, without these two
parts, as outlined previously. We utilised the linear SMV (L-SVM),
kernel SVM (k-SVM) and CS for classification. The results of these
experiments are summarised in Fig. 24. As we can see in Fig. 24,
for the two removed parts, the rate of recognition falls drastically,
for example, from about 25.55% to around 3.88% in the cheek for
CS. In addition, for the part without eyes and nose, the recognition
rate fell by almost half for all classifiers, and the k-SVM performed
worst in this case. As far as recognition, in this experiment, for
other parts are concerned, in general, the rates for SVMs fell
slightly whereas the CS appears to be maintaining the recognition
rates.
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Fig. 24. The results of the recognition task when some parts of the face (cheeks and the part with no eyes and no nose) are removed from the training sets.
Classifiers used here are linear SVM, kernel SVM and CS.

6. Conclusions

The ability for existing machine based face recognition algo-
rithms to perform adequately in the cases of imperfect facial data
– such as occluded faces, rotated faces or zoomed out faces – as
cues remains a challenging task in the field of computer vision
and visual computing. In this work, we have presented the results
of some novel experiments we have undertaken to highlight
these issues as well as to outline some potential solutions. To
do this, we have utilised both controlled and uncontrolled public
facial datasets through which we show how deep learning can
be utilised for face recognition using imperfect facial cues. Thus,
given some partial facial data, we show how feature extraction
can be performed using popular CNNs such as the VGGF model.
We show how classifiers based on popular SVMs as well as CS
can be utilised to undertake facial recognition tasks.

In this paper, we have discussed a rather comprehensive set
of experiments for face recognition using imperfect facial data.
Our results show that as the proportion of the face gets smaller,
regardless of the prominent nature of the facial features such as
the eyes, nose or the mouth contained in it, the recognition rate
appears to perform poorly. However, we note, even in the case of
machine based face recognition, the eyes appear to carry more
recognition cues compared to other individual facial features.
Furthermore, when it comes to rotated faces, we note that it
would be far better to avoid highly rotated faces, e.g. faces rotated
between 110◦ and 120◦, as they appear to be performing very
poorly in recognition tasks, regardless of incorporating rotated
faces as part of the training data. In the case of zoomed out faces,
again it is advisable not to use highly zoomed out faces, e.g. faces
zoomed out to 70% to 90% as probes. Finally, we note that the CS
measure greatly improves the performance of the classification
when compared to both the linear and kernel SVMs.

From an application point of view, we believe this work is
still preliminary in that we have only utilised datasets which are
somewhat controlled and far removed from practical scenarios.
Therefore, it will be very useful to extend this work to assess
its practical applicability in terms of extending our experiments
where, for example, real CCTV footage of faces may be used as
recognition cues.

Further, in this work, we have simply shown the capacity of
CNNs, in particular, the use of VGGF for facial feature extraction
and analysis of imperfect facial data. There exist a whole host of
other methods and techniques that can be utilised to develop as
well as to test facial recognition cues using imperfect facial data.
One such mechanism would be the use of general adversarial
networks (GANs) which are increasingly becoming popular as

a tool for machine learning, which, for example, comparatively
speaking would require a minimal dataset for training a neural
network.
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