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Abstract:  Monte Carlo simulation has been used exten-
sively for addressing probabilistic uncertainty in range
estimating for construction projects. However, subjective
and linguistically expressed information results in added
non-probabilistic uncertainty in construction manage-
ment. Fuzzy logic has been used successfully for rep-
resenting such uncertainties in construction projects. In
practice, an approach that can handle both random
and fuzzy uncertainties in a risk assessment model is
necessary. This article discusses the deficiencies of the
available methods and proposes a Fuzzy Monte Carlo
Simulation (FMCS) framework for risk analysis of con-
struction projects. In this framework, we construct a
fuzzy cumulative distribution function as a novel way
to represent uncertainty. To verify the feasibility of the
FMCS framework and demonstrate its main features,
the authors have developed a special purpose simulation
template for cost range estimating. This template is em-
ployed to estimate the cost of a highway overpass project.

*To whom correspondence should be addressed. E-mail: aminah.
robinson@ualberta.ca.

© 2009 Computer-Aided Civil and Infrastructure Engineering.
DOI: 10.1111/j.1467-8667.2009.00632.x

1 INTRODUCTION

Performing risk analysis using Monte Carlo simula-
tion is very common in construction project manage-
ment; traditionally, probability theory is used to model
uncertainty regarding simulation model inputs. In prac-
tice, the probability of an event can be estimated ac-
cording to the frequency of that event occurring in a
number of experiments (Pedrycz, 1998). However, if the
number of experiments is not large enough to be sig-
nificant, and more experiments cannot be performed,
it is not possible to accurately estimate the event’s
probability. In these circumstances, we can engage hu-
man experts who are usually good at supplying the re-
quired information. Some researchers try to convert ex-
perts’ knowledge into probabilistic distributions. This
estimated probability may be used directly in a risk anal-
ysis problem (Ahuja et al., 1994), or it may be combined
with available data using Bayesian methods to estimate
a parameter that considers both subjective judgment
and historical data (Garthwaite et al., 2005). However,
there are some criticisms on performing probabilistic
analysis on subjective and linguistically expressed data
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Fig. 1. (a) A probability density function (PDF) developed
based on historical data. (b) A fuzzy set developed based on
experts’ judgment.

because subjective reasoning of individuals may not be
appropriate for objective scientific conclusions (Gold-
stein, 2006). In other words, the information gained
from experts is subjective and contains ambiguity, and
there is a chance of introducing artificial knowledge that
is not actually available to the model using probability
values gained from experts (Guyonnet et al., 2003).

Fuzzy set theory (Zadeh, 1965) provides a methodol-
ogy for handling subjective and linguistically expressed
variables and representing uncertainty in the absence of
complete and precise data. A fuzzy set A on the univer-
sal set X is defined by its membership function p(x) and
represents the degree that x belongs to the fuzzy set. In
probability theory, a probability density function (PDF)
is defined on continuous variables. The area under the
curve of a PDF can be used to find the probability
that the random variable falls into a particular interval
(Figure 1a). In fuzzy set theory, instead of represent-
ing the probability value, the degree to which the ob-
jects are compatible with the properties of the fuzzy set
is represented (Pedrycz and Gomide, 2007; Figure 1b).
Therefore, although probability theory can handle the
reach information gained from historical data, fuzzy set
theory can represent the imprecise information of ex-
perts’ judgments.

Fuzzy logic methods have been used successfully in
various types of construction applications. For exam-
ple, fuzzy logic approaches have been implemented for
project scheduling (Lorterapong and Moselhi, 1996),
construction bidding (Chao, 2007), modeling risk allo-
cation in privately financed infrastructure projects (Jin
and Doloi, 2009), predicting industrial construction la-
bor productivity (Fayek and Oduba, 2005), saving en-
ergy in domestic heating systems (Villar et al., 2009),
cost and life-cycle cost optimization of steel structures
(Sarma and Adeli, 2000a, 2000b, 2002), freeway work
zone capacity estimation (Adeli and Jiang, 2003), traffic
flow forecasting (Stathopoulos et al., 2008), structural

health monitoring (Carden and Brownjohn, 2008), and
nonlinear control of high-rise building structures (No-
mura et al., 2007; Jiang and Adeli, 2008), just to name a
few representative examples.

As fuzzy and probabilistic methods are appropriate
for representing the uncertainty of different parame-
ters, we usually face problems in which some of the vari-
ables are fuzzy and some are random (Guyonnet et al.,
2003). These situations are common in the simulation of
construction projects, where each project is unique and
only limited data are available for many factors affect-
ing a project. Information gained from experienced per-
sonnel is an excellent source of data in these projects.
Furthermore, some factors, such as worker’s skill and
complexity of the work are subjective. In current con-
struction simulation frameworks, a PDF should be pro-
vided for all uncertain variables. Having a simulation
framework that can handle both fuzzy and probabilistic
uncertainty is very essential in the risk analysis of con-
struction projects.

This article proposes a Fuzzy Monte Carlo Simulation
(FMCS) framework that, for the first time, provides the
capability of considering fuzzy and probabilistic uncer-
tainty simultaneously for the risk analysis of construc-
tion projects. The output of FMCS has been modeled
using fuzzy random variables and represented using a
cumulative distribution function (CDF). Fuzzy CDF is
a novel approach for risk analysis that is capable of con-
sidering both types of uncertainties in a single represen-
tation. We develop a cost range estimating simulation
template based on the FMCS method. Finally, an exam-
ple involving cost range estimating of a highway over-
pass project is provided to illustrate the feasibility of the
proposed FMCS framework and fuzzy CDF method.

2 LITERATURE REVIEW

The Monte Carlo simulation method is used for esti-
mating the output Y of a function (M) with random
input variables (Ry, Rz, ..., R,) (Figure 2). We run var-
ious experiments for inputs by sampling from the in-
put probability distributions and collecting the model
outputs (Ahuja et al., 1994). In general, the generated
random samples in Monte Carlo simulation are statis-
tically independent for each input variable; therefore,
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Fig. 2. The output Y of a function M with random inputs can
be calculated using Monte Carlo simulation.
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Fig. 4. Converting fuzzy sets to PDF before performing
Monte Carlo simulation.

M

the independence of input parameters should always be
investigated.

In practice, we may face a generalized problem in
which we have both types of uncertainty, fuzzy and
probabilistic. Here, we need to determine the output Y
of a function (M) that has Ry, R;,. .., R, being random
variables and represented by probabilistic distributions
and Fy, F»,. .., F, being fuzzy sets (Figure 3).

To estimate the output of this generalized model,
most researchers attempt to eliminate or transform one
type of uncertainty to another before performing a sim-
ulation. For example, Wonneberger et al. (1995) per-
formed a possibility to probability transformation for
a problem with both types of uncertainty to change
the problem to a purely probabilistic simulation (see
Figure 4). However, fuzzy logic and probability theory
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are orthogonal (and complementary) concepts and cap-
ture different types of uncertainty. Also, there is no fully
accepted way of transforming one to another (Pedrycz
and Gomide, 1998).

Guyonnet et al. (2003) proposed a “hybrid approach”
for solving a model that has both fuzzy and random
types of uncertainty without transforming one type to
another. The essence of their approach is summarized
in Figure 5 for a model M that has random variables as
probabilistic distributions R;, R;, ..., R, and fuzzy sets
Fy, F>,...,F, for the inputs. To determine the output
Y of this model, as indicated in Figure 5, a number of
sample sets (w) are generated from the probability dis-
tributions. After assigning each sample setry, 7z, ..., 7
to the random variables of the model, the «-cuts of the
fuzzy inputs are calculated for different levels of «. Let
us recall that the «-cut of a fuzzy set F at the level of
a € (0,1] is a set F,, whose members have a membership
degree equal or greater than «. Therefore, the a-cut of
each fuzzy input represents a set of values. Guyonnet
et al. (2003) calculated the Infimum (Inf) and Supre-
mum (Sup) values of the model M considering all the
values that are located within the a-cuts of the input
fuzzy sets. In this way, for each sample set (i) and each
a-level («;) two output values are calculated: Yiyj inf
and Yy sup (Figure 5). Guyonnet et al. (2003) suggested
that minimization and maximization algorithm can be
used for finding Inf and Sup values of a general model.
However, in their application, the model was a sim-
ple monotonic function, and the Inf and Sup values
were identified directly without using minimization or
maximization algorithms.

For decision making based on the hybrid approach,
Guyonnet et al. (2003) developed the histograms of the
Inf and Sup values of the a-cuts at each «-level and cal-
culated the final Inf and Sup of the output a-cut based
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Fig. 5. Guyonnet et al.’s (2003) “hybrid approach” for fuzzy Monte Carlo simulation.
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Fig. 6. Calculating the output «-cut based on the histogram of the Inf and Sup values of the «-cuts at the level of «.

on a 5% probability of getting values lower than Inf
and higher than Sup (Figure 6). The «a-cuts are then
aggregated to produce the output as a fuzzy set. This
aggregation is done based on the representation the-
orem, which states that each fuzzy set can be recon-
structed from its a-cuts according to Equation (1).

A(x) = Supgepo 13[or Au (x)] 1)

In their application, Guyonnet et al. (2003) were in-

terested in finding the possibility that the output of the

model is less than a specific threshold. For the fuzzy set

F with membership function ur and a threshold T, the
possibility P is calculated based on Equation (2).

P(F > T) =\ pp(u) )

u>T

The approach of Guyonnet et al. (2003) is unique
in considering fuzzy and probabilistic inputs simulta-
neously in Monte Carlo simulation; however, it is not
free from shortcomings. A careful analysis reveals some
aspects of the approach that require further evalua-
tion/refinement.

1. The a-cuts of a fuzzy set cannot always be repre-
sented by Inf and Sup values (Figure 7a). There-
fore, as indicated in Figure 7b, values that do not
actually belong to an a-cut may be considered in
the o-cut when representing a fuzzy set only with
Inf and Sup values of the a-cuts. Therefore, the
specificity of the results may be decreased in this
approach.

2. Guyonnet et al. (2003) do not mention why a 5%
probability of getting lower and higher values of
the histograms of the «-cuts will generate the Inf
and Sup of the output «-cut. In this manner, they
remove the random type of uncertainty and con-
sider a fuzzy set for the output. Baudrit et al.

(2005) indicate this method leads to unrealistic
output and overestimation.

3. In addition, if only random inputs are consid-
ered as the extreme case for this model, the result
will not be similar to the traditional Monte Carlo
simulation approach. In this case, the absence of
fuzziness results in equal histograms for the Inf
and Sup values at all levels of «, because the dif-
ference between these histograms result from the
fuzzy inputs. Therefore, the method will produce
the same «-cuts for all values of «, and the result
of their aggregation will be an interval that does
not contain enough probabilistic or fuzzy infor-
mation to help in decision making (Figure 8).

Baudrit et al. (2005) propose an approach for “post-
processing” of the hybrid method of Guyonnet et al.
(2003) using the theory of evidence (or theory of belief
functions; see Shafer, 1976). The final output of their
proposed method does not directly represent the fuzzi-
ness or randomness, but rather analyzes the output with
concepts that are defined in the theory of evidence.
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Fig. 7. (a) An «-cut of a non-convex fuzzy set.
(b) Considering only Inf and Sup values of the a-cuts and the
associated lack of specificity.
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Fig. 8. Output of Guyonnet et al.’s (2003) approach in the
absence of fuzziness.

As the sources of uncertainty for different parameters
of a project differ, a framework that can handle fuzzy
and probabilistic uncertainty simultaneously and repre-
sent each type of uncertainty separately is helpful. How-
ever, as discussed, existing frameworks do not represent
both fuzzy and probabilistic types of uncertainty in the
output results. In this article, we propose a new method
for handling both fuzzy and probabilistic uncertainty in
the inputs of a simulation model.

3 FUZZY MONTE CARLO SIMULATION
FRAMEWORK

A FMCS framework is developed for risk analysis
of problems that contains both fuzzy and random in-
puts. Consider a model (M) that has both random
variables as probabilistic distributions Rj, R;,...,R,
and subjective variables as fuzzy sets Fi, Fa,...,Fy,
for the inputs. In the FMCS framework, sample sets
are produced from the probabilistic distributions. After
assigning each sample set r1, r,...,r, to the random
variables of the model, the model will contain only fuzzy
input variables. We perform fuzzy arithmetic to calcu-
late the output in the form of a fuzzy set (Figure 9).
Based on extension principle (Zadeh, 1975), one
can apply fuzzy arithmetic on a function (M) with in-
put fuzzy sets Fy, F,,...,F, that are defined on the
universes X1, X»,...,X,. Assuming that ui(x1),...,
ui(xx) are membership functions defined on Fy,
F,,...,F, the membership function of Y can be cal-
culated as in Equation (3) according to Zadeh’s exten-

Y =M(R,..R.F,..F,)
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sion principle. Similar to Monte Carlo simulation, the
independence of input parameters is assumed in fuzzy
arithmetic; the output may be overestimated when us-
ing fuzzy arithmetic for a function with dependant input
parameters (Hanss, 2004).
..... ®)
The a-cut method can also be used to perform fuzzy
arithmetic on a function. This method is equivalent to
the Zadeh’s extension principle. However, it is easier
to implement because it is based on interval analysis
of the «-cuts of the input fuzzy sets. Given a function
Y = M(A4, Az,...,A,), Equation (4) shows how the
a-cut of Y may be calculated at the level of « using in-
terval analysis (Chang and Hung, 2006). For calculating
Equation (4) using a computer program, optimization
routines should be carried out for finding the Inf and
Sup values of the output a-cut intervals. However, if the
model is monotonic (increasing or decreasing) with re-
gard to the input fuzzy sets, we can calculate the output
a-cut based on the Inf and Sup values of the input «-
cut intervals (Abebe et al., 2000). The output a-cuts are
usually calculated for a finite number of «-levels. The
a-cuts of Y at different levels of « can be aggregated to
produce the fuzzy set for Y according to Equation (1).

Ya = M(Al,uu AZ,a ..... An,a) (4)

As explained previously, in FMCS, we perform fuzzy
arithmetic for each sample set. Therefore, each output
in FMCS framework is in the form of a fuzzy set. The
final output is represented as fuzzy sets with random
variation that can be modeled with a fuzzy random vari-
able. A fuzzy random variable is a mapping from the
probability space to the fuzzy sets (Teran, 2007).

The ultimate goal of any risk analysis model is
decision-making support. FMCS is proposed as a gen-
eral form of Monte Carlo simulation and similar deci-
sions that are made using Monte Carlo simulation can
be made based on the FMCS framework. The mean and
variance can be calculated to provide an estimate of the
output of Monte Carlo simulation. We can benefit from
work in measurement theory for calculating the mean
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Fig. 9. Fuzzy Monte Carlo Simulation (FMCS) approach.
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and variance of the output of the FMCS framework.
Teran (2007) used fuzzy random variables to represent
the results of measurements. He represented each mea-
surement as a fuzzy set, whereas the variability between
fuzzy sets was considered random. This scenario is sim-
ilar to results obtained from FMCS. Teran (2007) sug-
gested the use of fuzzy arithmetic to perform statistical
calculations on the fuzzy samples.

Similarly, we can apply fuzzy arithmetic to the fuzzy
outputs of FMCS to find the mean and variance. This
approach provides an analysis tool that behaves reason-
ably well. When we have no fuzziness, the results are the
same as those obtained with a classical statistical analy-
sis approach. Also, when we have no randomness, the
results are compatible with the fuzzy set theory analysis
approach. To compare, the approach proposed by Guy-
onnet et al. (2003) does not allow for the calculation of
the mean or variance.

However, the mean and variance is not enough for
the risk analysis of construction projects. In construc-
tion management, a decision maker is usually interested
in two other important statistics: (1) an arbitrary quan-
tile and (2) the probability of exceeding (or not exceed-
ing) a specific threshold. For example, one may want
to estimate the completion time of a project with 95%
confidence. This value is referred to as the 95th quantile
of the output. In the context of the simulation process,
this means that 95% of the conducted simulation results
are less than the completion time. Decision makers are
also interested in finding the probability that a project

Number of Inf of e~cuts of the samples that are less than ¢
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Fig. 10. The threshold is in the sample fuzzy set.

However, the samples of the output of a FMCS are
fuzzy sets, and when the threshold is a member of a sam-
ple fuzzy set, there is an uncertainty in considering the
sample fuzzy set as less than or greater than the thresh-
old ¢ (Figure 10).

We solve this problem by incorporating fuzziness into
the CDF and generating a fuzzy CDF. We consider a-
cuts of the samples and calculate two CDFs at each «-
level: F, max is calculated based on the Inf values of the
a-cuts of the samples at the level of « (Equation (7)),
and F, min is calculated by considering the Sup val-
ues of the a-cuts of the samples at the level of «
(Equation (8)). When we compare the Inf values of
the a-cuts with the threshold, more a-cuts are less than
the threshold ¢, which results in the maximum CDF,
F, max- Similarly, Sup values of the a-cuts will gener-
ate the minimum CDF function, F, mi,. For example, in
Figure 10, the fuzzy set A is considered less than ¢ for
calculating F, max(?), and is considered greater than ¢ for
calculating Fy min().

Fa,max(t) =

Fa,min(t) -

Total number of samples

Number of Sup of e~cuts of the samples that are less than ¢

™)

will exceed a certain value of cost or time (Ahuja et al.,
1994).

The CDF is typically used for finding the probability
of not exceeding a given threshold. Equation (5) defines
the CDF function of a random variable X (Ahuja et al.,
1994). The inverse of the CDF is used for finding the
arbitrary quantile.

F.(x) = Pr{X < x} (5)

Considering a finite number of random samples re-
sulting from a Monte Carlo simulation, the CDF func-
tion can be estimated from Equation (6).

Number of samples that are less than ¢

E(r) = (6)

Total number of samples

Total number of samples

®)

Fy min and F, max Will generate a CDF bound F,(x) at
each a-level. The final fuzzy CDF, F(x), can be deter-
mined based on its corresponding «-cuts, F,(x), accord-
ing to the representation theorem (Equation (1)). The
graphical representation of aggregating CDF bounds to
produce the final fuzzy CDF is shown in Figure 11. The
fuzzy CDF is a fuzzy function, meaning that if we pro-
vide a numeric input, the function produces a fuzzy set
as output.

By using the fuzzy CDF method in the FMCS frame-
work, we remove the second and third shortcomings
associated with Guyonnet et al.’s (2003) hybrid ap-
proach. The output of FMCS captures both fuzzy and
probabilistic uncertainty, and therefore we do not have
the overestimation problem that exists in Guyonnet
et al.’s (2003) method. Furthermore, when we have no
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Fig. 11. Aggregating the CDF bounds at different levels of « to generate the fuzzy CDF.

fuzziness, each sample value is a real number instead of
a fuzzy set. In this case, Fy max(x) equals to Fy min(x),
and all of the « levels will have equal CDFs. There-
fore, the results are exactly equal to those obtained by
traditional Monte Carlo simulation. Finally, having de-
veloped the fuzzy CDF, we can perform any decision
analysis that can be performed using CDF, as discussed
in the section below. However, the fuzzy CDF analy-
sis method still retains the first shortcoming of the hy-
brid approach, in that only the Inf and Sup values of
the a-cuts are considered for decision making. The ulti-
mate goal of any risk analysis model is decision mak-
ing. The estimator can estimate the probability that
the output is less than a threshold ¢. The answer is in
the form of a fuzzy set that is obtained by intersect-
ing the fuzzy CDF graph at the desired threshold. A
method for making decisions using fuzzy sets is based
on the confidence level. The estimator is able to decide
on a confidence level between 0 and 1 to get a range
of values for the final output. This range is calculated
by finding the «a-cut at the value of 1 minus the con-
fidence level (Mauris et al., 2001). In this way, the es-
timator can choose from a range of values instead of
a crisp output. An arbitrary quantile can also be esti-
mated using the inverse of the fuzzy CDF. In Section 5,
we explain decision making using fuzzy CDF using an
example.

4 PRACTICAL ASPECTS OF USING FMCS IN
CONSTRUCTION RISK ASSESSMENT

A simulation based approach for risk analysis of a prob-
lem in construction management can be summarized in
the following steps: (1) identifying the structure of the

problem, (2) quantifying uncertainty in different param-
eters of the model, (3) performing a simulation, (4) an-
alyzing the results, and (5) making a consensus deci-
sion (Walls III and Smith, 1998). Traditionally, all the
input uncertainties are modeled based on probability
theory, and simulation is performed to find the output
results. FMCS framework extends the practical use of
Monte Carlo simulation by providing the capability of
choosing between fuzzy sets and probability distribu-
tions for quantifying the input uncertainties of a Monte
Carlo simulation model. However, different simulation
methods may be applied on a model depending on the
structure of the problem. For example, discrete event
simulation can be used to analyze the sensitivity of dy-
namic schedule and resource constraints to unexpected
construction scenarios, whereas Monte Carlo simula-
tion is applied to a model that does not depend on the
time. Future research can be conducted to provide the
capability of considering both fuzzy and probabilistic
uncertainty in other simulation approaches such as dis-
crete event simulation.

One can find many practical examples in Monte Carlo
simulation models of construction projects in which
some of the input variables are estimated based on ex-
perts’ judgment and some are derived from historical
data. Life-cycle analysis of a pavement design by Walls
III and Smith (1998) is a good practical example. They
have used recent bid records to find probability distri-
butions of the costs of construction and rehabilitation of
a project, whereas experts’ judgment has been used for
estimating the service life of the pavement. Monte Carlo
simulation is used as the method of risk analysis in this
study. Although explaining the details of this project is
beyond the scope of this article, we suggest this work
can be used as an actual case study for future research.
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Range estimating is another example in which FMCS
can be applied. Range estimating using Monte Carlo
simulation is a common process for risk analysis and
decision making regarding the budget and schedule of
construction projects. The approach is based on consid-
ering the work breakdown structure (WBS) of a project
and estimating the cost or duration of each work pack-
age in the form of a PDF. The Monte Carlo simulation
method is used to aggregate the work packages and to
estimate the range and degree of uncertainty for the
overall project cost or duration (Shaheen et al., 2007
Ahuja et al., 1994).

Accurate cost estimation plays a major role in the suc-
cess of a construction project. Different methods have
been suggested in the literature for estimating the cost
of construction projects (e.g. Adeli and Wu, 1998) and
for determining a contingency value (Touran, 2003).
Contingency is the anticipated cost for unknowns that
may increase the total cost of a project (Ahuja et al.,
1994). Monte Carlo simulation is a common approach
that is performed for estimating the cost and contin-
gency. The process of Monte Carlo simulation for cost
range estimating can be summarized as follows:

1. Provide the WBS and remove work packages that
do not have major effects on the total cost of the
project. Ahuja et al. (1994) suggest that those work
packages that affect the total cost of the project
with at least 0.5% should be considered major.

2. Provide the quantity and unit cost related to each
work package. Use a PDF to represent the uncer-
tainty associated with different values of the quan-
tity and unit cost of each work package.

3. Use Monte Carlo simulation to determine the
uncertainty associated with the total cost of the
project.

Although expert judgment is usually used in range es-
timating of construction projects (Ahuja et al., 1994),
only the random type of uncertainty can be considered
using this approach. Experts’ judgment is especially use-
ful in the preliminary stages of a project when not
enough data are available for many factors. For exam-
ple, before performing geotechnical tests, experts may
estimate the geotechnical parameters to calculate the
cost of the project. In the later stages of the project, we
may still have some fuzzy parameters due to the unique
aspects of the project, lack of data, or subjectivity. Sha-
heen et al. (2007) suggested an alternative method of us-
ing fuzzy set theory for modeling uncertainties in range
estimating problems. The researchers proposed a range-
estimating model that uses fuzzy arithmetic to estimate
the cost or duration of a project with purely fuzzy inputs.
However, as the source of information about various pa-
rameters of a project differs, we may have probabilistic

uncertainty for some of the input variables and fuzzy
uncertainty for others. Therefore, we need a range-
estimating model that is capable of handling both types
of fuzzy and probabilistic inputs. The FMCS framework
can be used to solve this problem by using the PDF to
represent random uncertainty and fuzzy sets for rep-
resenting subjective or linguistically expressed values
in the WBS. We have developed a cost range estimat-
ing template based on FMCS framework. This template
illustrates how the FMCS framework can be imple-
mented for practical use in construction management.

A special purpose simulation (SPS) template has
been developed by connecting the Simphony.NET©
2005 platform (The University of Alberta, Edmonton,
Alberta) and MATLAB (The MathWorks, Inc., Natick,
Massachusetts) for range estimating based on the pro-
posed FMCS. Simphony.NET is a simulation software
application for construction processes that is capable
of developing different SPS templates. The SPS tem-
plate provides a tool for an expert, who is not neces-
sarily knowledgeable in simulation, to develop a simu-
lation model in the area of his/her expertise (Hajjar and
AbouRizk, 1999). Our developed cost range estimating
SPS template allows the user to represent the WBS of
a project by dragging and dropping the elements on a
computer screen and connecting them according to the
structure of the WBS. Using the fuzzy Monte Carlo cost
range estimating template, input values can be entered
as the properties of each element in the form of fuzzy
sets or probabilistic distributions.

We have used the «-cut method to perform fuzzy
arithmetic on the fuzzy sets in FMCS. As the calcula-
tions for cost range estimating are limited to addition
and multiplication, which are monotonically increasing,
finding the Inf and Sup values of the output a-cut inter-
vals is straightforward by using the Inf and Sup of the
input a-cut intervals. The elements of the developed
template are listed in Table 1. The root element is
responsible for calculating the value of « and decid-
ing whether a minimum or maximum value of the
a-cut should be calculated in each run of the simulation.
Other elements identify their appropriate actions based
on the status of the root element in each run. The cost
of each child work package is calculated by multiplying
its unit cost and quantity. A number of child work pack-
ages or parent work packages may be defined under a
parent work package. Therefore, it is possible to have
any number of levels in the WBS. The cost for the par-
ent work package is the sum of the costs of its lower
level work packages multiplied by the quantity of the
parent work package. The analysis element collects the
output results and sends them to a MATLAB routine.
In this routine fuzzy CDF graph is created for decision
making.
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Table 1
Elements of fuzzy Monte Carlo cost range estimating template
Element Graphical
name representation Description
Root This element defines the status of the simulation and
o controls the actions of all the other elements.
Root
Parent Work A Parent Work Package represents a group of work
Package D packages that will be defined under this element.
A
Child Work A Child Work Package represents the lowest level of the WBS,
Package the unit cost and quantity can be defined for this element.

Analysis
Element

This element collects the outputs and calculates the
statistics.

Table 2

Major work packages of WBS for a highway overpass project and their associated cost and quantity
(adapted from Ahuja et al. 1994)

Work package

Quantity

Unit cost

—_

. Excavation (m?)
. Backfill (m?)
3. Pilings and Bells

N

Uniform (2,200, 2,500)
Uniform (1,700, 2,200)

Triangular (10, 11, 13)
Triangular (9, 10, 13)

Piling (300 dia) (m) Constant (160) Constant (29)

Piling (750 dia) (m) Constant (510) Triangular (175, 183, 190)
Bells (1,500 dia) (ea) Constant (42) Triangular (370, 390, 420)
Bells (1,200 dia) (ea) Constant (16) Constant (340)

4. Cast in place concrete

Pier footing (m?) Constant (73) Triangular (320, 330, 350)
Pier column (m?) Constant (55) Triangular (600, 650, 700)
Abutments (m?) Constant (635) Triangular (200, 235, 290)
Approach slabs (m?) Constant (55) Triangular (220, 230, 400)
Bridge girder (m?) Constant (1,310) Triangular (370, 390, 450)
Parapets incl. finish (m) Constant (171) Triangular (150, 160, 175)
Concrete median (m) Constant (67) Constant (124)

. Concrete slope protection (m?)

. Hot mix asphaltic concrete paving (m?)
. Deck water proofing

. Class 5 finish (NIC parapets) (m?)

[C BN Ie V)]

Uniform (1,000, 1,100)
Constant (1,900)
Uniform (1,800, 2,000)
Constant (565)

Triangular (42, 45, 50)
Triangular (17, 18, 19)
Constant (5.7)
Constant (6)

5 ANILLUSTRATIVE EXAMPLE TO COMPARE
MONTE CARLO SIMULATION AND FMCS

In this section, we analyze the behavior of FMCS frame-
work in comparison with Monte Carlo simulation us-
ing a cost range estimating example. Consider a sample
application by Ahuja et al. (1994) of a cost range es-

timating problem for a highway overpass project. The
unit cost and quantity for major work packages of this
project are shown in Table 2, and probabilistic distri-
butions are used to express the uncertainty regarding
those variables. These uncertainties may result from
uncertainty regarding the accuracy of take-off values
or different scenarios that may happen in the field
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Fig. 12. Developed model for the highway overpass example using fuzzy Monte Carlo cost range estimating SPS template.

during construction. For example, uncertainty in the
unit cost may be a result of uncertainty associated with
the productivity of workers or variability in weather
conditions. Ahuja et al. (1994) used subjective judgment
to derive the given probabilities, and it is beyond the
scope of this article to verify these distributions, which
are also specific to this example and its assumptions.
We assume that the model is developed correctly and
their suggested probability values are appropriate. We
should note that this assumption does not bring any lim-
itations to our analysis, becuse the model is used with
the sole goal of performing a sensitivity analysis on the
FMCS framework and comparing the results with the
probabilistic approach. Figure 12 illustrates the model
developed for this example using the fuzzy Monte Carlo
cost range estimating template.

To experiment with the FMCS approach using a com-
bination of fuzzy and probabilistic inputs, some of the

Probability density

320 330 350

=

probability distributions of Table 2 are transformed into
fuzzy sets using the probability-possibility transforma-
tion method of Dubois et al. (2004). For example, Fig-
ure 13 represents the transformation of the triangular
distribution for the unit cost of the pier footing pro-
cess in Table 2 to a fuzzy membership function based
on Dubois et al. (2004). In this method, the confidence
level of the intervals is estimated using the probability of
that interval. This probability is equal to the area under
the PDF that is bounded within that interval. Among
different intervals of the same confidence level, Dubois
et al. (2004) proved that the most informative interval
is the one with minimal length, and this interval should
be considered as the a-cut of the final fuzzy set. This ap-
proach will produce a nested family of intervals that are
considered as the a-cuts of the final fuzzy set.

We are not recommending that such transformations
from probabilistic to fuzzy sets be done in practice but

MemberShip Degree

320 330 350

Fig. 13. Transformation of the triangular distribution for the unit cost of the pier footing process to a fuzzy membership function.
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(e} All the parameters are fu.'-:z-y andk=16

Fig. 14. Three-dimensional view of fuzzy CDF resulting from the output of FMCS for the highway overpass project; k indicates
the number of fuzzy sets in each experiment.

rather that the fuzzy sets be derived directly (e.g., from
expert judgment). However, these transformations are
performed in this study only to be able to compare
the FMCS framework with traditional Monte Carlo
simulation.

In Section 5.1, we perform a sensitivity analysis to in-
vestigate the effect of different numbers of fuzzy sets
on the output of the FMCS framework. Section 5.2
discusses how similar decisions that can be made us-
ing Monte Carlo simulation can be made based on the
FMCS framework.

5.1 Sensitivity analysis of the FMCS framework

For experimenting with differing numbers of fuzzy sets
as inputs to the FMCS framework, we select the first
k uncertain variables from Table 2, which are not con-
stant, and transform them into fuzzy sets, although
keeping the rest of the inputs as probabilistic distribu-
tions. For example, when k equals 4, the unit cost and
quantity of the excavation and backfill processes are

transformed into fuzzy numbers, because these parame-
ters comprise the first four uncertain parameters in Ta-
ble 2. We gradually increase the value of k in each ex-
periment. The total number of uncertain variables in
Table 2 is 16; therefore, when k equals 16, all of the un-
certainty is in the form of fuzzy numbers, and we have
no randomness in the model. Other variables are con-
stant and are considered as crisp values in the model.

Figure 14 illustrates the three-dimensional graphs of
the fuzzy CDFs that are generated by MATLAB for
several experiments performed using the FMCS frame-
work. The x-axis indicates the total cost of the model
in millions of dollars, the y-axis is the probability, and
the z-axis is the o value associated with each output.
Therefore, these graphs illustrate both probabilistic and
fuzzy uncertainty. We can see how the fuzziness of the
output increases when the number of fuzzy inputs (k)
increases, illustrating the intuitively appealing behavior
of the method.

The x—y view of the fuzzy CDF is also represented in
Figure 15. These figures illustrate the CDF bounds of



FMCS and risk assessment in construction

59 24
=Y Sl
z | 3
= ﬂ-‘l g?_‘ d
:: 0z
[
05 105 18 1% 10 115 12 L .
St <id ¥ 09 105 10 Il';ni;:’nﬂ’“ 12 g
(a) All the parameters are probabilistic and k=0 (b) k=4
10 beod I?r 7:7} |
>0 29 i S i
= S oe |h I
g 0% 2 - L | : ’ |
g & |J| . |,| ¢|Il!
(%3 F g ||I A
0.2 + | I 'Iu
| i SO e VISRl )
n" 105 10 165 110 115 . ) L i .:','ﬂ I ] ”xﬁf
Total cost ca L eost
{C} k=8 ’ - (d:' k=12
ém 1[
Sos Hl
B A
204 |
|
0.2 || |
0 1w 18 12 1
Total cost =10

(e) All the parameters are fuzzy and k=16

249

Fig. 15. x—y view of output results of Figure 14; k i

the output of the experiments for different values of k.
As expected, for smaller values of k, the CDF function
has less fuzziness, and the CDF bound is narrower.

The reasonable behavior of the FMCS in the absence
of fuzziness or randomness is also illustrated by these
experiments. If a traditional Monte Carlo cost range es-
timating model is developed using the inputs of Table 2,
the output will be exactly equal to the one shown in
Figure 15a. Therefore, in the absence of fuzziness, the
results of the proposed methodology in Figure 15a will
be exactly equal to the traditional CDF derived from the
purely probabilistic Monte Carlo simulation method.
Also, the results in Figure 15e indicate that when we
have no randomness in the model, the CDF bound does
not contain any probabilistic information. However, the
fuzzy information can be viewed in the x—z view of
the output in Figure 16. This figure is exactly equal to
the output of the same model solved using the purely
fuzzy cost range estimating method suggested by Sha-
heen et al. (2007). This example illustrates the reason-
able behavior of the proposed methodology in the sense
that the output is similar to a purely fuzzy model in the
absence of randomness.

ndicates the number of fuzzy sets in each experiment.

=& o ¥ -

Membership Degree

. xio®
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(=]

1.07 1.11

Total cost

0.99

o
i

1.03 1.15

Fig. 16. The fuzzy information of the output in the absence
of randomness (k = 16).

5.2 Decision making based on fuzzy CDF

Similar to the CDF function resulting from Monte Carlo
simulation, an estimator can use the fuzzy CDF of the
total cost to estimate the probability of finishing the
project within a certain budget. For example, using
the CDF function for k equals 4 in which we transform
the first 4 uncertain variables of the example by Ahuja
et al. (1994) to fuzzy sets, Figure 17a indicates how the
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Fig. 18. (a) Intersecting the fuzzy CDF to find an arbitrary quantile. (b) The fuzzy set representing this arbitrary quantile.

probability that the total cost of the project will be less
than $1,100,000 is calculated by assigning $1,100,000 to
the x-axis of the fuzzy CDF. This probability is in the
form of a fuzzy set, as shown in Figure 17b. We can de-
fuzzify a fuzzy set to get a crisp value and use that value
for decision making. The centroid method is one of the
most common methods for defuzzification, in which the
defuzzified value is calculated by finding the center of
the area under the membership function. By defuzzify-
ing the fuzzy output of Figure 17b using the centroid
method of defuzzification, we can state that the prob-
ability of finishing this project with $1,100,000 is about
0.82.

An arbitrary quantile can be used to find an appropri-
ate contingency value for a project. Traditionally, this
decision is made by considering a quantile value and us-
ing the CDF to find the output. In a fuzzy CDF, the
arbitrary quantile is in the form of a fuzzy set. Figure
18a illustrates how the 80th quantile of the total cost of
the project is calculated by intersecting the y-axis of the
fuzzy CDF aty is equal to 0.80. The result indicates that,
with 80% probability, a budget of around $1,095,000
is enough for recovering the total cost of the project
(Figure 18b).

We should note that the real intent of FMCS frame-
work is not to defuzzify the output results, but rather

to indicate the fuzziness that exists in the output and to
allow the estimator to use his/her subjective judgment
in deciding on a final value. After obtaining the output
fuzzy sets using the above-mentioned methods, the es-
timator has to decide on a confidence level between 0
(no confidence) and 1 (full confidence) to get a range
of values. This range is calculated by finding the a-cut
at the value of 1 minus the confidence level (Mauris
et al., 2001). The final value should be selected from
this range based on the optimistic or pessimistic view
of the decision maker. For example, a manager may
wish to estimate a final bid price based on the fuzzy set
obtained from the 80'" quantile of the project. If the de-
cision maker chooses 0.6 as the confidence level, the a-
cut at the level of 0.4 (1 — 0.6) represents the range of
outputs [1,085,000, 1,100,000] (Figure 18b). Finally, the
decision maker can choose the bid price from this range.
For example, a conservative decision maker may go for
the Sup value of this range, which is $1,100,000.

6 CONCLUSIONS

This article proposes a FMCS framework as a gen-
eralized form of Monte Carlo simulation for model-
ing construction projects. This framework is capable of
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considering both fuzzy and probabilistic uncertainty in
a problem. In FMCS, the output is modeled using fuzzy
random variables. We have introduced the fuzzy CDF
as a generalized form of CDF. Fuzzy CDF has the
unique feature of representing both fuzzy and prob-
abilistic uncertainty in a single figure. The proposed
FMCS framework is capable of considering imprecise
information in the form of fuzzy sets without assuming
probabilistic information that is not actually available
in a simulation model. Therefore, the decision maker is
presented with the uncertainty in the output in the form
of fuzziness and probabilistic uncertainty, and he/she
can use subjective judgment and experience to make
the final decision. Practical examples are suggested for
applying the FMCS framework on real construction
projects. However, actual testing on real projects by in-
dustry personnel should be conducted to better justify
the benefits that FMCS framework brings to the con-
struction industry.

Examples are provided indicating that the FMCS
framework is very effective for providing decision sup-
port for risk assessment of construction projects. We
have applied FMCS to develop a cost range estimating
template for construction projects. The template is used
for sensitivity analysis of the FMCS framework based
on a highway overpass example. The results illustrate
the reasonable behavior of the FMCS framework.

Finally, although the fuzzy CDF is developed as part
of the proposed FMCS framework, the fuzzy CDF ap-
proach is a general method based on fuzzy random vari-
ables and may be used for risk analysis in any applica-
tion, in which both fuzzy and probabilistic uncertainty
are involved. For example, fuzzy CDF can be used in
measurement theory to analyze the uncertainty of the
data resulting from measurements in cases in which
there is both probabilistic and fuzzy uncertainty (for ex-
ample, Terén, 2007).
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