
A Fast Elitist Non-dominated Sorting Genetic Algorithm
for Multi-objective Optimization: NSGA-II

Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and T Meyarivan

Kanpur Genetic Algorithms Laboratory (KanGAL)
Indian Institute of Teciinclogy Kanpur

Kanpur, PIN 208 016, India
{deb,samira,apratap,mary}@iitk.ac.in

http://www.iitk.ac.in/kangal

Abstract. Multi-objective evolutionary algorithms which use non-dominated sort­
ing and sharing have been mainly criticized for their (i) 0{MN^) computational
complexity (where M is the number of objectives and N is the population size),
(ii) non-elitism approach, and (iii) the need for specifying a sharing parameter. In
this paper, we suggest a non-dominated sorting based multi-objective evolution­
ary algorithm (we called it the Non-dominated Sorting GA-II or NSGA-II) which
alleviates all the above three difficulties. Specifically, a fast non-dominated sort­
ing approach with O(MN^) computational complexity is presented. Second, a
selection operator is presented which creates a mating pool by combining the
parent and child populations and selecting the best (with respect to fitness and
spread) N solutions. Simulation results on five difficult test problems show that
the proposed NSGA-II, in most problems, is able to find much better spread of
solutions and better convergence near the true Pareto-optimal front compared to
PAES and SPEA—two other elitist multi-objective EAs which pay special at­
tention towards creating a diverse Pareto-optimal front. Because of NSGA-II's
low computational requirements, elitist approach, and parameter-less sharing ap­
proach, NSGA-II should find increasing applications in the years to come.

1 Introduction

Over the past decade, a number of multi-objective evolutionary algorithms (MOEAs)
have been suggested [8,3,5,11] . The primary reason for this is their ability to find
multiple Pareto-optimal solutions in one single run. Since the principal reason why a
problem has a multi-objective formulation is because it is not possible to have a single
solution which simultaneously optimizes all objectives, an algorithm that gives a large
number of alternative solutions lying on or near the Pareto-optimal front is of great
practical value.

The Non-dominated Sorting Genetic Algorithm (NSGA) proposed in Srinivas and
Deb [8] was one of the first such evolutionary algorithms. Over the years, the main
criticism of the NSGA approach have been as follows:

High computational complexity of non-dominated sorting: The non-dominated sort­
ing algorithm in use until now is 0{MN^) which in case of large population sizes
is very expensive, especially since the population needs to be sorted in every gen­
eration.

850

Lack of elitism: Recent results [10,7] show clearly that elitism can speed up the per­
formance of the GA significantly, also it helps to prevent the loss of good solutions
once they have been found.

Need for specifying the sharing parameter a share '• Traditional mechanisms of insur­
ing diversity in a population so as to get a wide variety of equivalent solutions have
relied heavily on the concept of sharing. The main problem with sharing is that it
requires the specification of a sharing parameter {ashare)- Though there has been
some work on dynamic sizing of the sharing parameter [4], a parameterless diver­
sity preservation mechanism is desirable.

In this paper, we address all of these issues and propose a much improved version
of NSGA which we call NSGA-II. From the simulation results on a number of difficult
test problems, we find that NSGA-II is, in general, better than PAES and SPEA—two
other elitist multi-objective evolutionary algorithm—in terms of converging near the
Pareto-optimal front and maintaining diversity among obtained solutions. These results
encourage the application of NSGA-II to more complex and real-world multi-objective
optimization problems.

2 Elitist Multi-Objective Evolutionary Algorithms

In the study of Zitzler, Deb, and Theile [10], it was clearly shown that elitism helps in
achieving better convergence in MOEAs. Among the existing elitist MOEAs, Zitzler
and Thiele's [11] strength Pareto EA (SPEA), Knowles and Gome's Pareto-archived
evolution strategy (PAES) [6], and Rudolph's [7] elitist GA are well known.

Zitzler and Thiele [11] suggested an elitist multi-criterion EA with the concept of
non-domination in their strength Pareto EA (SPEA). They suggested maintaining an
external population at every generation storing all non-dominated solutions discovered
so far beginning from the initial population. This external population participates in
genetic operations. At each generation, a combined population with the external and
the current population is first constructed. All non-dominated solutions in the com­
bined population are assigned a fitness based on the number of solutions they dominate
and dominated solutions are assigned fitness worse than the worst fitness of any non-
dominated solution. This assignment of fitness makes sure that the search is directed
towards the non-dominated solutions. A deterministic clustering technique is used to
ensure diversity among non-dominated solutions. Although the implementation sug­
gested in [11] is 0{MN^), with proper book-keeping the complexity of SPEA can be
reduced to O(MiV^).

Knowles and Come [6] suggested a simple MOEA using an evolution strategy (ES).
In their Pareto-archived ES (PAES) with one parent and one child, the child is compared
with respect to the parent. If the child dominates the parent, the child is accepted as the
next parent and the iteration continues. On the other hand, if the parent dominates the
child, the child is discarded and a new mutated solution (a new child) is found. However,
if the child and the parent do not dominate each other, the choice between the child and
the parent is made by comparing them with an archive of best solutions found so far.
The child is compared with the archive to check if it dominates any member of the
archive. If yes, the child is accepted as the new parent and the dominated solution is

851

eliminated from the archive. If the child does not dominate any member of the archive,
both parent and child are checked for their nearness with the solutions of the archive. If
the child resides in a least crowded region in the parameter space among the members
of the archive, it is accepted as a parent and a copy of added to the archive. Authors
have calculated the worst case complexity of PAES for N evaluations as 0{aMN),
where a is the archive length. Since the archive size is usually chosen proportional to
the population size N, the overall complexity of the algorithm is 0{MN^).

Rudolph [7] suggested, but did not simulate, a simple elitist multi-objective EA
based on a systematic comparison of individuals from parent and offspring popula­
tions. The non-dominated solutions of the offspring population are compared with that
of parent solutions to form an overall non-dominated set of solutions, which becomes
the parent population of the next iteration. If the size of this set is not greater than the
desired population size, other individuals from the offspring population are included.
With this strategy, he has been able to prove the convergence of this algorithm to the
Pareto-optimal front. Although this is an important achievement in its own right, the al­
gorithm lacks motivation for the second task of maintaining diversity of Pareto-optimal
solutions.

3 Elitist Non-dominated Sorting Genetic Algoritlim (NSGA-II)

The non-dominated sorting GA (NSGA) proposed by Srinivas and Deb in 1994 has been
subjected to a number of criticism, as mentioned earlier. In this section, we suggest
NSGA-II, which alleviate all these difficulties. We begin by presenting a number of
different modules that form part of NSGA-II.

3.1 A fast non-dominated sorting approach

In order to sort a population of size A'̂ according to the level of non-domination, each
solution must be compared with every other solution in the population to find if it
is dominated. This requires 0{MN) comparisons for each solution, where M is the
number of objectives. When this process is continued to find the members of the first
non-dominated class for all population members, the total complexity is 0{MN^). At
this stage, all individuals in the first non-dominated front are found. In order to find the
individuals in the next front, the solutions of the first front are temporarily discounted
and the above procedure is performed again. The procedure is repeated to find the sub­
sequent fronts. As can be seen the worst case (when there exists only one solution in
each front) complexity of this algorithm without any book-keeping is 0{MN^). In the
following we describe a fast non-dominated sorting approach which will require at most
0{MN^) computations.

This approach is similar in principle to above approach, except that a better book­
keeping strategy is performed to make it a faster algorithm. In this approach, every
solution from the population is checked with a partially filled population for domina­
tion. To start with, the first solution from the population is kept in a set P'. Thereafter,
each solution p (the second solution onwards) is compared with all members of the
set P' one by one. If the soluUon p dominates any member q of P', then solution q

852

is removed from P'. This way non-members of the non-dominated from get deleted
from P'. Otherwise, if solution p is dominated by any member of P', the solution p
is ignored. If solution p is not dominated by any member of P', it is entered in P'.
This is how the set P' grows with non-dominated solutions. When all solutions of the
population is checked, the remaining members of P' constitute the non-dominated set.

fast-nondominated-sort(P)
P ' = {1} include first member in P'
for eachp £ P Ap ^ P' take one solution at a time

P ' = P ' U {p} include p in P ' temporarily
for each q E P' A q ^ p compare p with other members of P '

if p -< q, then P ' = P'\{q] if p dominates a member of P ' , delete it
else if q <p, then P ' = P'\{p} if p is dominated by other members of P ' ,

do not include p in P '

To find other fronts, the members of P ' will be discounted and the above procedure is
repeated.

Here, we observe that the second element of the population is compared with only
one solution P ' , the third solution with at most two solufions of P ' , and so on. This
requires a maximum of 0{N'^) dominafion checks. Since each domination check re­
quires M function value comparisons, the maximum complexity of this approach is
also 0(MAr2).

3.2 Density estimation

To get an estimate of the density of solutions surrounding a particular point in the pop­
ulation we take the average distance of the two points on either side of this point along
each of the objectives. This quantity idistance serves as an estimate of the size of the
largest cuboid enclosing the point i without including any other point in the population
(we call this the crowding distance). In Figure 1, the crowding distance of the i-th so­
lution in its front (marked with solid circles) is the average side-length of the cuboid
(shown with a dashed box). The following algorithm is used to calculate the crowding
distance of each point in the set I:

crowding-distance-assignment{I)
I = I J | number of solutions in I
for each i, set I[i]distance = 0 initialize distance
for each objective m

I = sort(I, m) sort using each objective value
2^[l]distance = I[i]distance = oo SO that boundary points are always selected
for i = 2 to (/ — 1) for all other points

I[i]distance - ^ijdistance + (I[« + 1]-"^ - I[i - l]-»7i)

Here X[i].m refers to the m-th objective function value of the i-th individual in
the set I . The complexity of this procedure is governed by the sorting algorithm. In
the worst case (when all solutions are in one front), the sorting requires 0{mN log A'̂)
computafions.

853

0
• o

o

i-1
Cuboid

I
r O

i+1

fi

Fig. 1. TTie crowding distance calculation is shown

3.3 Crowded comparison operator

The crowded comparison operator (-<„) guides the selection process at the various
stages of the algorithm towards a uniformly spread-out Pareto-optimal front. Let us
assume that every individual i in the population has two attributes.

1. Non-domination rank (irank)
2. Local crowding distance (idistance)

We now define a partial order ^ „ as :
^ ^ n J II \'^rank ^ Jrank) OT {{trank ~~ Jrank) anu \ldistance -^ Jdistance))

That is, between two solutions with differing non-domination ranks we prefer the
point with the lower rank. Otherwise, if both the points belong to the same front then
we prefer the point which is located in a region with lesser number of points (the size
of the cuboid inclosing it is larger).

3.4 The main loop

Initially, a random parent population PQ is created. The population is sorted based on
the non-domination. Each solution is assigned a fitness equal to its non-domination
level (1 is the best level). Thus, minimization of fitness is assumed. Binary tournament
selection, recombination, and mutation operators are used to create a child population
Qo of size A'̂ . From the first generation onward, the procedure is different. The elitism
procedure fort >1 and for a particular generation is shown in the following:

Rt = PtU Qt combine parent and children population
T= f a s t - n o n d o m i n a t e d - s o r t (i?() J^ = (.Fi, .F2,...), all non-dominated

fronts of Rt
Pt+i = 0
until \Pt+i I < N till the parent population is filled

c r o w d i n g - d i s t a n c e - a s s i g n m e n t {!Fi) calculate crowding distance in J",
Pj+i = Pt+i U J^i include i-th non-dominated front in the parent pop

Sort(P(+i, -<n) sort in descending order using -<„

854

Pt+i = Pt+i [0 : A'̂] choose the first N elements of Pt+i
Qt+i = make-new-pop (Pt+i) use selection, crossover and mutation to create
t = t + l a new population Qt+i

First, a combined population Rf = Pf \J Qi is formed. The population Rt will be
of size 2A'̂ . Then, the population Rt is sorted according to non-domination. The new
parent population P^+i is formed by adding solutions from the first front till the size
exceeds A'̂ . Thereafter, the solutions of the last accepted front are sorted according to
-<„ and a total of A'̂ solutions are picked. This is how we construct the population Pt+i-
This population of size A'̂ is now used for selection, crossover and mutation to create a
new population Qt+i of size A'̂ . It is important to note that we use a binary tournament
selection operator but the selection criterion is now based on the niched comparison
operator-<„.

Let us now look at the complexity of one iteration of the entire algorithm. The
basic operations being performed and the worst case complexities associated with are
as follows:

1. Non-dominated sort is ©(MAT^),
2. Crowding distance assignment is 0{MN log A'̂), and
3. Sort on -<„ is 0{2N log(2Ar)).

As can be seen, the overall complexity of the above algorithm is 0{MN^).
The diversity among non-dominated solutions is introduced by using the crowding

comparison procedure which is used in the tournament selection and during the popula­
tion reduction phase. Since solutions compete with their crowding distance (a measure
of density of solutions in the neighborhood), no extra niching parameter (such as Cshare
needed in the NSGA) is required here. Although the crowding distance is calculated in
the objective function space, it can also be implemented in the parameter space, if so
desired [1].

4 Results

We compare NSGA-II with PAES on five test problems (minimization of both objec­
tives) [9,10]:

M0P2: <̂

MOPS

fi{x) = 1 - e x p f - E L i {^i - 7 f)) - 4 <xi,X2,X3 < 4

f2{x) = 1 - exp (- J^j'^i (^Xi + ^ j

/ / i (x) = [1 + [Ai - 5i)2 + {A2 - B2f]
\f,ix)=[{x + 3r + {y + ir]

(1)

(2)

where

Ai = 0.5 sin 1 - 2 cos 1 -I- sin 2 - 1.5 cos 2
A2 =1 .5 sin 1 — cos 1 -I- 2 sin 2 - 0.5 cos 2
Bi = 0.5 sin a; — 2 cos a; -t- siny — 1.5 cosy
Bi = l.Ssina; — cosi -I- 2siny — 0.5cosy

855

M0P4 '\f2ix) = EtA\^ir+^Mxir)
'̂ *^4- I h{x) =g(l- ^) - 5 < a.2,... ,a:io < 5 "̂̂ ^

10

where g{x) = 91 + 2_, {^^i ~ 10cos(47ra:i))
j = 2

T,^, / / i (a ;) = 1-exp(-4a;i)sin®(67ra;i) 0 < a;, < 1 « = 1,...,10

10 \ 0-25

where g{x) = 1 + 91 2_\ ^il^

Since the diversity among optimized solutions is an important matter in multi-
objective optimization, we devise two measures—one based on the consecutive dis­
tances among the solutions of the best non-dominated front in the final population and
the other based on the average distance of solutions from the known global Pareto-
optimal front. The obtained set of the first non-dominated solutions are compared with
a uniform distribution and the deviation is computed as follows:

^ = E ''\<i.-d\ ^,^
1-̂ 1

In order to ensure that this calculation takes into account the spread of solutions in the
entire region of the true front, we include the boundary solutions' in the non-dominated
front Ti- For discrete Pareto-optimal fronts, we calculate a weighted average of the
above metric for each of the discrete regions. In the above equation, di is the Euclidean
distance between two consecutive solutions in the first non-dominated front of the final
population in the objective function space. The parameter d is the average of these
distances.

The second metric T measures the convergence property of an algorithm. From each
solution in the non-dominated front, its perpendicular distance to the global Pareto-
optimal front is calculated by approximating the Pareto-optimal front as a combination
of 500 piece-wise linear segments. The average of these perpendicular distances is mea­
sured.

For all test problems and with NSGA-II, we use a population of size 100, a crossover
probability of 0.8, a mutation probability of 1/n (where n is the number of variables).
We run NSGA-II for 250 generations. The variables are treated as real numbers and
the simulated binary crossover (SBX-20) [2] and the real-parameter mutation operator
(with distribution index of 500) are used. For the (l-i-l)-PAES, we have used an archive
size of 100 and depth of 4 [6]. For SPEA, we have used N = SO and an external
population of size 20. A crossover probability of 0.8 is used. A mutation probability of

' Boundary solutions are not considered for TC4 and TC6. This is because in these problems
the none of the algorithms has converged to the global Pareto-optimal front.

856

0.01 is used^ are different. In order to make the comparisons fair, we have used 25,000
iterations in PAES, so that total number of function evaluations in NSGA-II, PAES, and
SPEA are the same.

Table 1 shows the deviation from an ideal (uniform) spread (A) and its variance in
10 independent runs. We show two columns for each test problem. The first column
presents the A value of 10 runs and the second column shows its variance. It is clear
from the table that in most test problems NSGA-II has found much smaller A, meaning
that NSGA-II is able to find a distribution of solufions closer to a uniform distribution
along the non-dominated front. The variance columns suggest that the obtained A val­
ues are consistent in all 10 runs. Table 2 shows the average of convergence measure T

Table 1. Comparison of mean and variance of deviation measure A obtained using NSGA-II,
PAES, and SPEA

Algorithm
NSGA-II

PAES
SPEA

MOP2
0.361
1.609
0.740

0.00068
0.00671
0.00748

MOP3
0.445
1.341
0.880

0.00043
0.00495
0.00508

M0P4
0.387
1.087
0.733

0.00164
0.00687
0.00175

TC4
0.383
1.563
0.167

0.00099
0.05723
0.00000

TC6
0.365
1.195
0.804

0.01613
0.05151
0.01142

and its standard deviation of 10 runs. It is evident that NSGA-II can come closer to the
actual Pareto-optimal front in all problems compared to other two algorithms (except in
TC4, where PAES is the best).

Table 2. Comparison of distance T from the true Pareto-optimal front and its standard deviation
obtained using NSGA-II, PAES and SPEA

Algorithm
NSGA-II

PAES
SPEA

MOP2
0.0019
0.1704
0.1257

0.00000
0.00002
0.00004

MOP3
0.0151
11.8315
0.0378

0.00000
12.13053
0.00009

MOP4
0.0250
0.1046
0.0456

0.00004
0.03054
0.00005

TC4
4.5128
0.5846
7.3403

4.55386
0.53599
6.57252

TC6
0.0611
0.1999
0.2211

0.00056
0.00122
0.00045

In order to have a better understanding of how these algorithms are able to spread so­
lutions over the non-dominated front, we present the entire non-dominated front found
by NSGA-II and PAES in two of the above five test problems. Figures 2 and 3 show
that NSGA-II is able to find a much better distribution than PAES on MOP4. In TC4,
converging to the global Pareto-optimal front is a difficult task. PAES's grid assignment
scheme does well in coming closer to the global Pareto-optimal front. With NSGA-II,

^ Mutation probability used in PAES and SPEA is different from NSGA-II, since in NSGA-II a
real-parameter mutation operator is used and in PAES and SPEA a bit-wise mutation operator
is used.

857

Fig. 2. Non-dominated solutions obtained us­
ing NSGA-II on MOP4

Fig. 3. Non-dominated solutions obtained us­
ing PAES on MOP4

we find a front with g = 3.5 in one out of five different runs. Figure 4 shows the non-
dominated solutions obtained using NSGA-II, PAES, and SPEA for TC6. It is clear
that the NSGA-II is able to better distribute its population along the obtained front than
PAES.

1.2

1

0.8

0.6

0.4

0.2

N

:
\
* • »

-

Pareto-Optimal Front -
NSGA-II

PAES
SPEA

• ^

X "

^***^ •*>< * 1

~~^-^!!***» "

\ > * . X ,

\ > ^
xTx"

^ \ _ **"+

*
X

' "«

^ \ * ^ + + '^ V

^
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f 1

Fig. 4, Obtained non-dominated solutions with NSGA-II and PAES on TC6

5 Conclusions

In this paper, we have proposed a computationally fast elitist multi-objective evolution­
ary algorithm based on non-dominated sorting approach. On five difficult test problems

858

borrowed from the literature, it has been found that the proposed NSGA-II outperforms
PAES and SPEA—two other popular multi-objective EAs with the explicit goals of pre­
serving spread on the non-dominated front. With the properties of a fast non-dominated
sorting procedure, an elitist strategy, and a parameterless approach, NSGA-II should
find increasing attention and applications in the near future.

Acknowledgements

Authors acknowledge the support provided by All India Council for Technical Educa­
tion, India during the course of this study.

References

1. Deb, K. (1999) Multi-objective genetic algorithms: Problem difficulties and construction of
test Functions. Evolutionary Computation, 7(3), 205-230.

2. Deb, K. and Agrawal, R. B. (1995) Simulated binary crossover for continuous search space.
Complex Systems, 9 115-148.

3. Fonseca, C. M. and Fleming, P. J. (1993) Genetic algorithms for multi-objective optimiza­
tion: Formulation, discussion and generalization. In Forrest, S., editor. Proceedings of the
Fifth International Conference on Genetic Algorithms, pages 416-423, Morgan Kauffman,
San Mateo, California.

4. Fonseca, C. M. and Fleming, P. J. (1998). Multiobjective optimization and multiple constraint
handling with evolutionary algorithms-Part II: Application example. IEEE Transactions on
Systems, Man, and Cybernetics: Part A: Systems and Humans. 38^7.

5. Horn, J. and Nafploitis, N., and Goldberg, D. E. (1994) A niched Pareto genetic algorithm
for multi-objective optimization. In Michalewicz, Z., editor, Proceedings of the First IEEE
Conference on Evolutionary Computation, pages 82-87, IEEE Service Center, Piscataway,
New Jersey.

6. Knowles, J. and Come, D. (1999) The Pareto archived evolution strategy: A new baseline al­
gorithm for multiobjective optimisation. Proceedings of the 1999 Congress on Evolutionary
Computation, Piscataway: New Jersey: IEEE Service Center, 98-105.

7. Rudolph, G. (1999) Evolutionary search under partially ordered sets. Technical Report No.
CI-67/99, Dortmund: Department of Computer Science/LS 11, University of Dortmund, Ger­
many.

8. Srinivas, N. and Deb, K. (1995) Multi-Objective function optimizadon using non-dominated
sorting genetic algorithms, Evolutionary Computation, 2(3):221-248.

9. van Veldhuizen, D. and Lamont, G. B. (1998). Multiobjecrive evolutionary algorithm re­
search: A history and analysis. Report Number TR-98-03. Wright-Patterson AFB, Ohio: De­
partment of Electrical and Computer Engineering, Air Force Institute of Technology.

10. Zitzler, E., Deb, K., and Thiele, L. (2000) Comparison of multiobjective evolutionary algo­
rithms: Empirical results. Evolutionary Computation, 8(2). 173-195.

11. Zitzler, E. and Thiele, L. (1998) Multiobjective optimization using evolutionary
algorithms—A comparative case study. In Eiben, A. E., Back, T, Schoenauer, M., and
Schwefel, H.-R, editors. Parallel Problem Solving from Nature, V, pages 292-301, Springer,
Berlin, Germany.

