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Being water quality oriented, large-scale industries such as wastewater treatment plants tend to overlook
potential savings in energy consumption. Wastewater treatment process includes energy intensive
equipment such as pumps and blowers to move and treat wastewater. Presently, a data-driven approach
has been applied for aeration process modeling and optimization of one large scale wastewater in
Midwest. More specifically, aeration process optimization is carried out with an aim to minimize energy
usage without sacrificing water quality. Models developed by data mining algorithms are useful in
developing a clear and concise relationship among input and output variables. Results indicate that a
great deal of saving in energy can be made while keeping the water quality within limit. Limitation of the
work is also discussed.

© 2016 Published by Elsevier Ltd.
1. Introduction

In order to clean wastewater from certain contaminants,
wastewater treatment includes different methods and processes
that energy intensive. Across USA, wastewater treatment facilities
collect, treat, and release about 4 billion gallons of treated effluent
per day from about 26 million homes, businesses, and recreational
facilities nationwide (Electric Power Research Institute and Inc.
(EPRI, 2002). Such moving and treating processes accounts for
more than 4% of the US electricity consumption. Minimizing the
energy use ofWWTPs by just 10% could lead to an annual savings of
$400 million or more (http://water.epa.gov/infr). Due to the envi-
ronmental regulations, wastewater industries are primarily con-
cerned with water quality. The energy consumption in WWTPs is
mainly attributed to their heavy mechanical systems, such as the
pump and air support systems which are responsible for moving
and treating wastewater (Singh et al., 2012; Zhang et al., 2016). The
air support system consists of a group of air blowers that provides
oxygen to the aeration tanks for removing organic compounds and
converting ammonia. Pump system and the air support system are
typically 0.5-MW class mechanical equipment and accounts for
a).
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more than 70% of the electricity consumption of WWTPs.
Traditionally, WWTP operations and designs are based on ki-

netic models or simulated data (Flores-Alsina et al., 2008; Sin et al.,
2009). While such models have provided promising results, it re-
quires some expert knowledge about different systems and sub-
systems within the process. Moreover, modeling of such systems
heavily depends on the design of WWTPs and hence cannot be
efficiently generalized.

In wastewater treatment plants, much effort and money is
invested in operating andmaintaining dense plant-widemeasuring
networks which is often untouched. With the proliferation of in-
formation technologies (IT), it is now possible to perform long term
data archiving for analysis. The steadily growing amount of plant
data fosters the avenues for plant wide analysis. Over the past few
years, data-mining algorithms have gained tremendous popularity
in industrial engineering sector consisting of numerous process and
sub-processes. Successful applications of data-mining are visible in
many domains such as semiconductor manufacturing (Kusiak,
2000; Tan et al., 2006), fault prognosis and diagnosis (Bae et al.,
2003), information retrieval (Seo et al., 2001), transportation sys-
tems (Long and Li, 2015; Mashayekhy et al., 2015) and renewable
energy (Krioukov, 2011; Lu et al., 2005). Few applications of data-
mining algorithms in wastewater treatment industry have also
been reported. In this regard, Maurice, et al. (Dixon et al., 2007)
implemented a set of data-mining algorithms namely regression,
t aeration process optimization: A data mining approach, Journal of
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neural network (NNs), rule induction and visual analysis on TELE-
MAC project datasets to analyses and predict anaerobic digestion in
the wastewater treatment plants. Garcia and Gonzalez (Garcı

́

a and
Gonz�alez, 2004) applied self-organized maps (SOM) and k-means
clustering to develop wastewater supervision techniques in acidic
chromic wastewater treatment plant. Researchers applied data
mining in specific industrial wastewater process namely alcoholic
beverage production (Dixon et al., 2007) and metallic industry
wastewater (Garcı

́

a and Gonz�alez, 2004). However, being a rather
consistent combination of pollutants, and steady and predictable
wastewater production, there approach cannot be generalized to
other wastewater treatment plants. Gernaey et al (Gernaey et al.,
2004). provided a comprehensive list of white box models for
municipal wastewater systems. Authors also suggested using more
advance data analytics techniques particularly artificial intelligence
(AI) to understand and improve performance of wastewater treat-
ment facilities. For improving the prediction accuracy, Chen and
Chang (Chen et al., 2003) developed a hybrid control algorithm
combining neural network (NN), Genetic Algorithm (GA) and Fuzzy
Logic (FL). The control algorithm developed in their work can be
used for optimizing and controlling systems when coping with on-
line upset conditions. While their models provide good results, it
demands a field expert to set up the fuzzy rules and also demands
the full control of the system to be able to be implemented.
Hernandez-del-Olmo (Hern�andez-del-Olmo et al., 2012;
Hernandez-del-Olmo et al., 2012) applied AI techniques in order
to improve the performance of wastewater plant. Authors utilized
model-free reinforcement learning to minimize operational cost
while keeping the quality of water within acceptable level. Despite,
their methodology seems promising, the model is tested on
simulated data with assumption of 70% sunny, 20% raining and 10%
stormy days in a year. Tay and Zhang (Tay and Zhang, 1999)
attempted to simulate a lab-scale anaerobic wastewater treatment
system utilizing lab scaled wastewater treatment and simulated
data. Villez et al. (Villez et al., 2008). used a two stage process to
aiming to remove nitrogen and phosphorus from a pilot-scale SBR.
Authors applied a multi-way principal component analysis (MPCA)
process first to clean the data, and then they utilized LAMBDA
based clustering method. Their method claims to converge fast but
relies on visual inspection to detect outliers and erroneous data.
Later, Verma et al. (Verma et al., 2013; Kusiak et al., 2013), utilized
data-mining algorithms to predict total suspended solids and
carbonaceous biochemical oxygen demand (CBOD) of an industrial
wastewater treatment facility. Kusiak and Wei (Kusiak and Wei,
2012; Wei et al., 2012; Wei and Kusiak, 2015) developed a multi-
objective model to optimize the activated sludge process in a
WWTP and a significant energy saving was observed.

The literature review above indicates lack of large scale, real
studies on plant wide aeration process which do not need the full
control of the system in order to be implementable as well as being
accurate while keeping analysis understandable and explainable to
decision makers. Even the published work in the literature that
utilizes real world data has simplified models, i.e. effect of sus-
pended phosphorous and dissolved phosphorous etc. is not
analyzed (Kusiak and Wei, 2012; Wei et al., 2012; Wei and Kusiak,
2015). The research developed here aims to bridge the gap in the
literature by performing analysis on aeration process of a treatment
facility and developing easy to use and implementable data-driven
models without scarifying the process accuracy.

The paper is organized as follows. In section 2, the description of
the aeration process and related dataset is presented. Section 3
describes the proposed solution methodology along with the
formulation of the optimization models. In section 4, results ob-
tained from different optimization models are provided. Finally
section 5 concludes the present analysis.
Please cite this article in press as: Asadi, A., et al., Wastewater treatmen
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2. Data description

The industrial data used to perform the analysis was obtained
from Detroit Water and Sewerage Department (DWSD), located in
Detroit, MI. DWSD is the largest single-site wastewater treatment
facility in the United States. It serves approximately 35% of the
population of the State of Michigan, providing treatment of
wastewater. DWSD distribute, treat and collects approximately 1.5
billion Gallons of water and wastewater per day (BGD) to be finally
discharged into Detroit River. A generic flow diagram of the
wastewater treatment process is shown in Fig. 1.

The collected wastewater enters the plant and passes through
bar screens. Large items, such as rags and sticks, are screened out
for later disposal. After screening, the influent wastewater enters a
wet well and then is pumped to primary clarifiers. After a retention
time of 1e2 h, scum floats to the surface where it is removed by a
skimmer. Then, the wastewater is delivered by intermediate pumps
to adjacent aeration tanks. In each aeration tank pure oxygen is
provided by centrifugal blowers through bottom of thank. During
normal operations, a required quantity of the sludge from the
secondary clarifiers, called Returned Activated Sludge (RSL), enters
the aeration tanks through sludge pumps. When the RSL and the
wastewater are mixed, microorganisms in the activated sludge use
oxygen provided by the fine bubble diffusers located on the bottom
of the aeration basins to break down the organic matter. The
remaining sludge from the secondary clarifiers and the sludge from
the primary clarifiers are either pumped to the anaerobic digesters
to produce biogas or fed to the incineration process and the final
remaining is transported to the land field. The wastewater then
enters cylindrical clarifiers for the secondary treatment. The settled
sludge is returned back to the aeration basins for continuous supply
of microorganisms. The water after being treated from secondary
clarifiers is disinfected through chlorination and then discharged
into the River.

The analysis presented here aims to improve the aeration pro-
cess of the DWSD and hence the corresponding three years' worth
of data is collected from the plant. The available data for the anal-
ysis was collected for the period of September 2012 to October 2014
(see Table 1). Data includes influent flow rate, influent pollutants,
effluent pollutants, and aeration process parameters. The data is
recorded at 1 h frequency, out of which two years of data is used for
building the models and the last year data is used for model testing
and validation. Despite the availability of advanced supervisory
control and data acquisitions systems, the archiving of numerous
parameters is done manually on a shift by shift basis. This poses
issues in data quality, including, missing, and invalid values. In this
study, the missing values are imputed based on the values recorded
in previous time-periods.

3. Solution methodology

In this section, DWSD data (described earlier) is used to model
the aeration process with an aim to optimize water quality and
energy consumption. In the analysis, the dissolved oxygen (DO) is
used as a controlled variable, whereas, influent flow rate, carbo-
naceous biochemical oxygen demand (CBOD), total suspended
solids (TSS), total dissolved phosphorous (TDP), total suspended
phosphorous (TSP) and air flow rate were uncontrollable. Due to
strong correlation between Chemical Oxygen Demand (COD) and
Biochemical Oxygen Demand (BOD) of municipal wastewater un-
der normal operating condition (excluding big storms and flood),
COD is not considered as an independent variable. DO is used as an
indicator of energy consumption as most of the energy consumed
and associated costs in the aeration process is derived from pro-
cesses which results in increase DO. These processes may include
t aeration process optimization: A data mining approach, Journal of
2016.07.047



Fig. 1. Wastewater treatment process flow diagram (adopted from (Wei and Kusiak, 2015)).

Table 1
Dataset used in the analysis.

No Description No. of instances Time period

1 Training dataset Hourly 4368 data points 2012 and 2013
2 Testing dataset Hourly 2544 data points 2014

Table 2
Description of the variables used in the analysis.

Variable Description Unit Type

u1 Influent flow rate (IFR) MGD uncontrollable
u2 Returned sludge flow MGD Controllable
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generation of oxygen or compressed air and blowing them into the
liquid mix therefore in this study DO is used as an indicator of
energy consumption. On the other hand, effluent CBOD, effluent
TSS, effluent TDP, and effluent TSP are used as an indicator of water
quality (a well-knownmetric). All five metrics (i.e. DO, effluent TSS,
effluent CBOD, effluent TDP, and effluent TSP) are minimized by
formulating a multi-objective model. Fig. 2 illustrated the salient
features of ourmodular approach. As described in Fig. 2, the process
starts with analyzing data and fixing outliers. The initial values are
then standardized (0 mean and 1 standard deviation) for algo-
rithms to treat the variables equally. The data mining models are
then built on transformed and cleaned data. A ranking approach is
used to identify best data-mining algorithm which is fed into the
optimization routine. The analysis of numerous energy saving
scenarios is then performed. Below sub-sections describes the
salient features of our approach in details.
u3 Temperature �C Uncontrollable
u4 pH e Uncontrollable
y1 Dissolved oxygen (DO) mg/L Target
x Airflow rate (AFR) scfm Controllable
y2 Effluent CBOD (ECBOD) mg/L Target
y3 Effluent TSS (ETSS) mg/L Target
y4 Effluent TDP (ETDP) mg/L Target
y5 Effluent TSP (ETSP) mg/L Target
3.1. Feature selection and parameter description

For the analysis, over 35 input parameters were available. In
order to reduce the computational load and get better generalized
model, only relevant parameters are selected in the modeling
Fig. 2. Overall framework of

Please cite this article in press as: Asadi, A., et al., Wastewater treatmen
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process. For the particular task, a boosting tree algorithm is used to
evaluate the relative importance of the process variables w.r.t.
target output variables. Influent flow rate, returned sludge flow
rate, DO concentration, and airflow rate, influent CBOD, effluent
TSS, temperature and pH in the aeration tank were among the
selected input variables to construct the models of the airflow rate
and effluent pollutant concentrations by a data-mining algorithm
(Table 2). Errors and outliers in the dataset were removed to
improve the accuracy of the model. The airflow rate essentially
provides a measure of the energy consumed, which is one of the
objectives of this study. With less air flowing into aeration tanks,
the quality of the effluent is degraded, which is a matter of concern
as it is desirable to maximize the quality of the effluent to meet
federal and state requirements. Since effluent CBOD, TSS, TSP, and
TDP reflect treatment quality, the objective can be transformed to
minimize their concentrations in the effluent. Temperature and pH
the developed approach.

t aeration process optimization: A data mining approach, Journal of
2016.07.047
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are uncontrollable variables which also affect the quality of the
effluent.
3.2. Model construction and prediction of effluents

A multi-objective model that minimizes the dissolved oxygen
(y1), effluent COBD (y2), effluent TSS (y3), effluent TSS (y4), effluent
TSS (y5) and is formulated in (1). Since the CBOD and TSS of the
effluent were daily data, the hourly data of influent flow rate,
returned sludge flow rate, and the concentration of DO was aver-
aged to daily values. A generic multi-objective formulation of the
model is given below. The description of the variables in provided
in Table 2.

F ¼ minðy1; y2; :::::y5Þ (1)

Where:

y1; y2; ::::y5 ¼ f
�
u1;u2;u3;u4;u1avg ; x; xavg

�
Due to lack of better physical models, the relationship between

input, controllable (u1, u2, …, x) and output variables (y1,y2, …y5)
is constructed by data mining algorithms. Four well-known algo-
rithms namely multi-adaptive regression spline (MARS), Artificial
Neural Networks (ANN), Random Forest (RF), K-nearest neighbor
(k-NN) are employed in the model construction phase. The selected
algorithms are known to map the highly non-linear relationship
among the input and output variables, such as in wastewater
treatment processes. MARS is a non-parametric approach that does
not rely on the underlying data distribution and hence suitable for
modeling highly non-linear processes such as wastewater treat-
ment process. MARS approximate the functional relationship be-
tween input and output from a set of coefficient and basis
functions, derived from the regression (Friedman, 1991; Kusiak
et al., 2013). Artificial Neural Networks (ANN) is a simple emula-
tion of brain. ANN's parameters are determined by maximum
likelihood estimation and minimization of the error function over
the training data. (Hsu et al., 1995; Kusiak and Wei, 2012). Random
Forest (RF) is an ensemble learning method. RF relies on generation
of many classification trees and concluding the result based on the
result of all generated classifiers (Liaw andWiener, 2002;Wei et al.,
2012). K-nearest neighbor (k-NN) with only one input parameter,
namely number of clusters (k) uses data directly to determine class
member ship of each data point (Denoeux,1995). Neighborhoods in
this model can provide more information about the reasoning and
DO1 ¼ 0:534� 0:919*maxð0;MLE1 � 0:469Þ þ 0:751*maxð0;0:469�MLE1Þ � 0:096*maxð0;O2A1 � 0:350Þ
�0:153*maxð0;0:351� O2A1Þ þ 0:143*maxð0; SVIG1Þ � 0:081*maxð0; IFR1 � 0:504Þ
�0:161*maxð0;0:504� IFR1Þ � 0:496*maxð0;0:780� RFR1Þ � 0:134*maxð0;CBODD:peas1Þ
�0:0738*maxð0; TPA:peasÞ � 0:549*maxð0;CBODD:Primary� 0:663Þ � 0:109
*maxð0;0:663� CBODD:PrimaryÞ � 0:584*maxð0;RTR1 � 0:253Þ þ 2:163*maxð0;0:253� RTR1Þ
þ0:164*maxð0; TSSD:peasÞ � 0:073*maxð0; TSSD:PrimaryÞ þ 0:509*maxð0;O2A1 � 0:743Þ
þ0:049*maxð0;MLSS1Þ þ 1:137*maxð0;RFR1 � 0:901Þ � 1:56*maxð0;RFR1 � 0:932Þ
þ0:632*maxð0;MLE1 � 0:769Þ � 0:5*maxð0;RFR1 � 0:556Þ þ 1:869*maxð0;RTR1 � 0:429Þ
�0:148*maxð0;O2A1 � 0:535Þ � 0:752*maxð0;CBODD:Primary� 0:699Þ � 0:045
*maxð0; Influent:PH:O� 0:338Þ � 0:112*maxð0;0:338� Influent:PH:OÞ þ 0:0473
*maxð0; Influent:PH:NIÞ � 0:1384*maxð0;DT1Þ þ 0:2394*maxð0;RFR1 � 0:72Þ

(4)
helps understanding the underling reasoning better than many
most of black box models. Most of ensemble learning methods lead
to black box model predictions which despite high accuracy are not
Please cite this article in press as: Asadi, A., et al., Wastewater treatmen
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interpretable with regard to input features; hence k-NN has the
advantage in terms of model interpretability comparing to most of
black box models. On the other hand, defining the parameter k the
hardest part of the modeling and usually is done by trial and error
(Wei and Kusiak, 2015). Figs. 3e4 display ECBOD, DO, values pre-
dicted using these four algorithms.

As it can be seen from Figs. 3e4, MARS algorithm was able to
approximate the trend very well when other algorithms tend to
over (NN) or under predict (RF). The four selected data mining al-
gorithms (described in section 3.2) developed predictive models on
training data with high correlation coefficient, i.e. 0.7e0.9. To get
better assessment of the models developed by four data mining
algorithms, Mean Absolute Error (MAE) and Coefficient of deter-
mination (R2) presented in Equations (2) and (3) are used. In
Equation (2), byi is the value of observation i predicted by themodel,
yi is the actual observed value, and n is the number of total ob-
servations in the dataset. Whereas, coefficient of determination
measures the proportion of the variance in the target variable that
is predictable from input variables (Equation (3)).

MAE ¼ 1
n

Xn
i¼1

jby � yij (2)

R2≡1� SSres
SStot

(3)

Table 3 displays the error values obtained by four data mining
algorithms when tested on hold out data set for estimating effluent
CBOD, TSS, DO, TSP, and TDP. The analyses indicate the performance
ofMARS is better than other algorithms. Predictions results indicate
that most of the time MARS followed by k-NN algorithms were able
to approximate the output values. Ranking of the algorithms based
on two evaluation criteria is also provided in Table 3.

In general, the models developed by the selected data mining
algorithms indicate a good approximation, but mostly fails to pre-
dict the peaks and valleys, resulting large error. The error could
have been improved by including more high frequency data points.
Overall, the models developed byMARS and k-NN found to bemore
accurate than RF and ANN. However, the models developed by
MARS algorithm are used for optimization as they are easy to
comprehend. A sample description of DO as a function of input
variables is shown in Equation (4). The subscript at the end of
variables explains tank 1.
Based on comparing the algorithms on training dataset, MARS
algorithm was selected to perform prediction. An hour (tþ1 h)
ahead time window is selected for prediction for model validation
t aeration process optimization: A data mining approach, Journal of
2016.07.047



Fig. 3. Data-mining algorithms performance on training dataset (normalized ECBOD).

Fig. 4. Data-mining algorithms performance on training dataset (normalized DO).

Table 3
Performance of data-mining algorithms on testing dataset.

Variable Criteria MARS RF ANN k-NN

ECBOD MAE 2.12% 8.42% 7.55% 3.57%
R2 93.67% 57.27% 47.4% 94.36%

ETSS MAE 2.05% 4.64% 4.21% 1.29%
R2 92.9% 59.9% 77.5% 98.6%

DO MAE 2.29% 7.36% 6.51% 4.12%
R2 91.9% 46.0% 68.1% 82.8%

ETDP MAE 2.03% 7.89% 6.50% 2.57%
R2 96.9% 29.9% 63.2% 93.3%

ETSP MAE 2.08% 8.04% 6.54% 2.49%
R2 94.8% 62.2% 79.6% 97.5%

Overall Rank I IV III II
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as it can provide time for maintenance operator to change control
set point as needed. In next section, the underlying optimization
model is formulated.

3.3. Aeration process optimization models

In the optimization models, the aim is to minimize the effluents
(i.e. CBOD, TSS, TSP, and TDP) concentration to account for water
quality, and to minimize the average dissolved oxygen (DO) as a
measure to minimize the process energy consumption. The opti-
mization models are subjected to constraints to ensure acceptable
water quality, blower capacity, and enough oxygen for mixing. Two
optimization scenarios are investigated, viz. (1) optimization w.r.t.
permit, and (2) optimization w.r.t. plant current operations. While,
the structure of the model stays same, the limits on the effluents
vary.
Please cite this article in press as: Asadi, A., et al., Wastewater treatmen
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3.3.1. Optimization model 1
Given below is the optimization model formulated with the

individual effluents and DO models approximated from MARS al-
gorithms. The constraint limits are obtained from the plant from
where the process data was obtained.

X ¼ minðw1 � y1 þw2 � y2þw3 � y3 þw4 � y4 þw5 � y5Þ
(5)

Subjected to:

0 � y1 � 6:5 (6)

0 � y2 � 25 (7)

0 � y3 � 30 (8)

0:2 � y4 � 1 (9)

0:2 � y5 � 1 (10)

In the equation above y1ey5 are the objective functions corre-
sponding to dissolved oxygen (DO), effluent CBOD, effluent TSS,
effluent TSP, and effluent TDP respectively, whereas, w1-w5 being
the weights associated with individual objectives, where
0 � w1,w2, …w5 � 1. The constraints mentioned in Equation
(5)e(9) set limits on underlying objectives. As, the data-points are
normalized for each objective, the corresponding constraints for
normalized objectives would be:-
t aeration process optimization: A data mining approach, Journal of
2016.07.047
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X ¼ minðw1 � y1 þw2 � y2þw3 � y3 þw4 � y4 þw5 � y5Þ
(11)

Subjected to:

0 � y1 � 0:21 (12)

0 � y2 � 1 (13)

0 � y3 � 0:39 (14)

0:2 � y4 � 1 (15)

0:2 � y5 � 1 (16)

3.3.2. Optimization model 2
This optimization model is intended to optimize the current

operating strategies being followed at the plant. The current
operating limits of the plants are obtained from 2 years of data that
is used in overall analysis. To be precise, the established water
quality limits are further narrowed down and replaced with the
plant's recent limits. Mathematically, the optimization model is
defined as

X ¼ minðw1 � y1 þw2 � y2 þw3 � y3 þw4 � y4 þw5 � y5Þ
(17)

Subjected to:

0 � y1 � 6:5 (18)

0 � y2 � d*
XN
i¼1

y2i

,
N (19)

0 � y3 � d*
XN
i¼1

y2i

,
N (20)

0:2 � y4 � d*
XN
i¼1

y2i

,
N (21)

0:2 � y5 � d*
XN
i¼1

y2i

,
N (22)

Equations (17)e(22) display the updated optimization model
based on the new limits onwater quality indicators. d is a sensitivity
parameter which is adjusted to show a tighter or loose bound on
water quality indicators. It basically explains if plant can consider
some deviation in their current delivery of water quality if savings
in energy is possible and vice-versa. d ¼ 0.8 (10% improvement in
current setting, and d ¼ 1.2 (20% deviation from current control
setting) were analyzed along with d ¼ 1.0 (current setting).

For both optimization models, i.e. model 1 and 2. Two optimi-
zation scenarios, namely (1) water quality oriented (referred asWQ
in subsequent figures), and (2) energy (referred as Energy in sub-
sequent figures) oriented were derived by adjusting the weights
associated with three objectives. In scenario 1, higher weights are
assigned to effluent CBOD, TSS, TDP, and TSP, while weight asso-
ciated with DO is kept low, i.e. w1 ¼ w2 ¼ 0.4 and w3 ¼ 0.2. In
scenario 2, lower weights are assigned to y1 and y2, i.e.
Please cite this article in press as: Asadi, A., et al., Wastewater treatmen
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w1 ¼ w2 ¼ 0.1, and w3 ¼ 0.8. The weight values shown here are
arbitrary selected and reflect the preference of one optimization
criteria over other. The objective functions developed in this work
are highly nonlinear (one suchmapping is provided in Equation (4))
and therefore exact programming approaches are not suitable. In
this work, the developed multi-objective function is optimized
using simulated annealing (SA) algorithms. SA optimization is a
point based evolutionary local search technique that explores the
search space iteratively based on a probability distribution pro-
portion to the temperature. In the developed research, SA explores
the search space until no change in the objective function is found
for consecutive 300 iterations (Kirkpatrick et al., 1983; Verma et al.,
2007). In next section, the results obtained on two scenarios are
presented.

4. Optimization results

The objective function developed in previous section is solved
for all three scenarios. Due to stochastic nature of simulated
annealing algorithm, the optimization routine was run 5 times and
the average optimized results are compared against the actual
values. Figs. 5e10 display the comparison of scenario 1 and 2 with
the observed values. Compared with the observed values, the
airflow rate is significantly lower in energy oriented optimization
than water quality oriented (Fig. 5). The water quality indicators
namely effluent CBOD, effluent TSS, effluent TDP, and effluent TSP
are not affected much while optimizing for energy (Figs. 6e9).
Average DO was however least affected (Fig. 10). Overall, the
reduction in airflow rate is clearly an indication of energy savings
(Fig. 5).

Table 4 Compares the optimized output against actual water
quality (ECBOD, ETSS, ETDP, and ETSP) and energy indicators (DO),
tested against actuals. As optimized-energy scenario focused on
minimizing energy consumption, it affects the water quality and
vice-versa for optimized-water quality scenario. On an average,
energy oriented optimization improves DO concentration (i.e. en-
ergy indicators) by 5.4% at the expense of 18% increase in effluent
quantity (i.e. water quality indicators). On the other hand,
optimized-water quality scenario improves effluents (i.e. water
quality indicators by) 16% at the expense of 9.6% increase in DO
concentration (i.e. energy indicators).

Results on Table 4 indicate a trade-off betweenwater quality and
energy consumption indicators, i.e. improving one indicator
reversely affects other. However, when optimizing for the best
water quality, it is possible to reduce air flow rate bymore than 30%
almost without sacrificing water quality which means none of the
indicators exceed the permit as defined in Equations (6)e(9). To
gain further insights into the operating procedure of the plant, their
current control scheme is analyzed for improvement (from opti-
mization model 2). To prove robustness of energy saving method-
ology as well as providing a guarantee that effluent quality would
not be effected under influent fluctuation a sensitivity analysis with
20% wastewater influent increase and decrease has been carried
out. The current operational limits obtained from 2 years of data for
water quality metrics which are fed to the mathematical formula-
tion and optimized. In this section, the current operating limit of
the plants are obtained and improved upon via optimization.
Figs.11 and 12 compares the results obtained using optimization on
different sensitivity settings.

Analysis above shows a 31.4% decrease in the energy con-
sumption in terms of aeration oxygen reduction with keeping the
effluent water quality almost the same and still better than the
standard requirements. A comprehensive sensitivity analysis both
reassure robustness of the solution under wastewater input
parameter fluctuation and also helps to apportioned effect of
t aeration process optimization: A data mining approach, Journal of
2016.07.047



Fig. 5. Comparisons of observed and optimized air flow rate.

Fig. 6. Comparisons of observed and optimized effluent CBOD.

Fig. 7. Comparisons of observed and optimized effluent TSS.
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different input variables. We have done sensitivity analysis for TSS,
CBOD, DO and Air flow rate. For all four scenarios parameters under
energy optimization procedure, and with 1.2 and 0.8 time energy
consumption is studied. By bringing the effluent permit down to
current operating strategy, a further 12.79% improvement in the
TSS quality is possible. Overall, at max15.7% energy improvement
could be achieved in 0.8 times energy consumption whereas still
minimum 4.46% TSS increase in effluent concentration can save
process energy consumption. Bringing the effluents permit down to
Please cite this article in press as: Asadi, A., et al., Wastewater treatmen
Environmental Management (2016), http://dx.doi.org/10.1016/j.jenvman.
current operating strategy improve effluent CBOD by 4% while a
maximum of 27.5% energy improvement could be achieved in low
energy consumption while it would have minimum 3.25% increase
in effluent concentration can save process energy consumption. DO
sensitivity analysis doesn't indicate big shifts in terms of effluent
quality or energy. By bringing the effluents permit down to current
operating strategy, only 1.6% improvement in the DO consumption
is possible. Maximum 5.4% improvement with developed optimi-
zation, whereas, minimum 7.32% increase in DO concentration if
t aeration process optimization: A data mining approach, Journal of
2016.07.047



Fig. 8. Comparisons of observed and optimized TDP.

Fig. 9. Comparisons of observed and optimized TSP.

Fig. 10. Comparisons of observed and optimized DO.

Table 4
Percentage improvement in water quality and energy consumption.

Scenario ETSS ECBOD ETDP ETSP DO AFR

Optimized-Energy �11.1% �13.7% �21.7% �25.8% 5.4% 31.5%
Optimized-Water Quality 9.7% 15.7% 21.1% �59.8% �9.6% �33.7%

A. Asadi et al. / Journal of Environmental Management xxx (2016) 1e108
water quality is given preference.
In nutshell, the analysis performs here provides an opportunity
Please cite this article in press as: Asadi, A., et al., Wastewater treatmen
Environmental Management (2016), http://dx.doi.org/10.1016/j.jenvman.
to plant owners and operators flexibility in selecting different
methods to save energywhilemaintainingwater quality. Moreover,
t aeration process optimization: A data mining approach, Journal of
2016.07.047



Fig. 11. Results of sensitivity analysis using water quality optimization scenario.

Fig. 12. Results of sensitivity analysis using energy optimization scenario.

A. Asadi et al. / Journal of Environmental Management xxx (2016) 1e10 9
the plant operations practice can be improved by optimizing the
overall control process.
5. Conclusions

The research performed in the present work was based on 3
Please cite this article in press as: Asadi, A., et al., Wastewater treatmen
Environmental Management (2016), http://dx.doi.org/10.1016/j.jenvman.
years of data collected form DWSD. Of four well known data mining
models selected, the models developed by MARS provided the best
t aeration process optimization: A data mining approach, Journal of
2016.07.047
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estimation of effluent CBOD, effluent TSS, average DO, effluent TDP,
and effluent TSP. Overall, two optimization models were formu-
lated with different set of control limits. The models were opti-
mized with due consideration of energy and water quality
improvements. Results obtained in energy oriented scenario yiel-
ded more than 31% reduction in the airflow rate while keeping the
water quality within acceptable range. Due to lack of high frequent
data such as CBOD, TSS, the optimized results had more noise. For
developing a better control system, more frequent sampling of
those influent variables is needed.
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