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In this paper, a chattering free adaptive sliding mode controller (SMC) is proposed for stabilizing a class

of multi-input multi-output (MIMO) systems affected by both matched and mismatched types of

uncertainties. The proposed controller uses a proportional plus integral sliding surface whose gain is

adaptively tuned to prevent overestimation. A vertical take-off and landing (VTOL) aircraft system is

simulated to demonstrate the effectiveness of the proposed control scheme.
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1. Introduction

Physical systems suffer from performance degradation and
instability due to uncertainties existing in nature which can be
broadly classified into matched and mismatched types. Uncer-
tainties acting on the system through the input channel are called
matched uncertainties, whereas perturbations in the system
parameters are termed as mismatched uncertainties. Classical
control techniques like adaptive control [1], optimal control [2],
sliding mode control [3] and intelligent control methods like
fuzzy logic control [4] have been extensively used in control
systems perturbed by matched uncertainty. Among these meth-
ods, sliding mode control has received wide acceptance owing to
its robustness and simplicity. However, designing sliding mode
controllers for systems perturbed by the mismatched type of
uncertainty still remains a challenge to the research community.
The difficulty lies in the fact that the dynamics of the uncertain
system are affected even after reaching the sliding mode.

Active research is continuing in the control community for
developing sliding mode controllers for multi-variable systems
affected by mismatched type of uncertainty [5–8]. One significant
research finding is that the stability of the system is guaranteed if
the system trajectory is driven to a bounded region [9–11]. Hence
to ensure asymptotic stability, restriction of keeping an upper
bound on uncertainties is imposed in most of the research works.
by Elsevier Ltd. All rights reserve
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By designing a sliding mode controller for certain states of the
system which are provided as inputs to a reduced order system can
take care of the mismatched uncertainties. However, limitation of
this method is that uncertainties should lie in the range space of
certain matrix of the nominal system [3]. A fuzzy logic-based
sliding mode controller proposed in [11] was successful in achiev-
ing quadratic stability for systems with mismatched uncertainty.
Even this method could handle mismatched uncertainty of a certain
form only provided its bound was known a priori [12–14]. By
introducing two sets of switching surfaces for the subsystems and
hence reducing the rank of the uncertainty, asymptotic stability
was achieved in [15]. Dynamic output feedback sliding mode
controllers were attempted in [16] and nonlinear integral type
sliding surface was used to deal with mismatched uncertainties in
[17]. All these works required prior knowledge about the upper
bound of the mismatched uncertainty which is in general difficult
to obtain. Hence, a strategy to obtain the upper bound of the system
uncertainty or a method that does not require this knowledge is
needed. The adaptive sliding mode controller proposed in [18–20]
provided a solution to this problem. However, this adaptive method
yielded gains which were overestimated in many cases giving rise
to large control efforts and high chattering [21,22].

Although the sliding mode controller guarantees robustness,
chattering is its main drawback. Chattering is the high frequency
bang-bang type of control action which leads to premature wear
and tear or even breakdown of the system being applied to.
Chattering is caused due to the fast dynamics which are usually
neglected in the ideal model utilizing digital controllers with
a finite sampling rate. This disadvantage of chattering could
be reduced by techniques such as nonlinear gains, dynamic
d.
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extensions or by using more recent strategies such as higher order
sliding mode control. In [23,24] an algorithm has been proposed
based on the block control and quasi-continuous higher order
sliding mode techniques for nonlinear systems subjected to mis-
matched uncertainty. The core idea that drives the higher order
sliding mode control is that it keeps the sliding surface as well as its
higher order derivatives to zero. The higher order sliding mode
controller ensures good tracking performance, robustness and finite
time stabilization of the controlled system. Past few decades
witnessed tremendous improvement in the second-order sliding
mode (SOSM) controller. Twisting and super twisting [25], subopti-
mal [26,27], drift algorithm [28–30] are the existing SOSM control
algorithms. Nonlinear sliding surface is mostly used to design a
second-order sliding mode controller for uncertain systems. Wen
and Cheng [19] proposed an adaptive variable structure controller
for a class of dynamic systems with matched and mismatched
perturbations. The controller proposed by Wen and Cheng [19]
achieved asymptotic stability without having prior knowledge about
the upper bounds of perturbations. However, this control scheme
suffered the drawback of severe chattering in the control input.
Similar kind of problem was cited in [20] too.

The major contributions of this paper are the following:
�
 An adaptive integral sliding mode controller (SMC) is proposed
for stabilization of a class of MIMO systems affected by both
matched and mismatched uncertainties.

�
 An adaptive tuning law is designed and by using that law the

mismatched perturbations are rejected during the sliding
mode while ensuring asymptotical stability of the overall
system.

�
 The adaptive tuning law ensures that there is no gain over-

estimation with respect to the unknown uncertainties.

�
 The proposed controller eliminates chattering in the control

input and hence is suitable for practical applications.

The design procedure can be divided into two steps. The first
step is to build the sliding surface using an adaptive technique
that eliminates the need of prior knowledge about the upper
bounds of system perturbations except for those at the input. In
the next step, a derivative control law is developed which
contains the discontinuous sign function. The actual control is
obtained by integrating the derivative control and thereby the
control becomes continuous, smooth and chattering free.

The outline of this paper is as follows. Section 2 describes the
system and the problem is formulated. The design procedure for
the proposed adaptive integral sliding mode controller (SMC) is
explained in Section 3. Effectiveness of the proposed controller is
demonstrated in Section 4 by performing simulation studies.
Conclusions are drawn in Section 5.
2. System description and problem formulation

Let us consider the following dynamic system:

_xðtÞ ¼ AxþB½uþxðt,xÞ�þpðt,xÞ ð1Þ

where xARn is the state vector and uARm is the control input.
Moreover, A and B are known matrices with proper dimension and B

has full rank. Furthermore, xðt,xÞ and pðt,xÞ represent the unknown
matched and mismatched uncertainties, respectively. The objective
of the proposed control scheme is to design an adaptive chattering
free sliding mode scheme for a class of MIMO systems with matched
and mismatched perturbations. The design of the sliding mode
controller involves two key steps, viz. (i) designing the sliding surface
and (ii) designing the control input which obeys the reaching law
property that the sliding manifold approaches zero in finite time.
The sliding surface s is designed as

s¼ Sx ð2Þ

where SARmnn is a constant matrix designed by selecting the
eigenvalues suitably (all negative) to make the system stable [31].
By using the coordinate transformation ½zs� ¼Mx, where the
transformation matrix M¼ ½Wg

Bg
�, Eq. (1) can be transformed to

_z ¼WgAWzþWgABsþWgpðt,xÞ

_s ¼ BgAWzþBgABsþuþxðt,xÞþSpðt,xÞ ð3Þ

here S¼ Bg and Wg, Bg satisfy BgB¼ Im, BgW ¼ 0, WgB¼ 0, and
WgW ¼ In�m. The matrix W is chosen in such a way that
J¼WgAW has the desired eigenvalues [32], where J is a sym-
metric matrix. It can be verified that

M�1
¼ ½W B� ð4Þ

and it can be observed that x¼WzþBs.
When the system is in the sliding mode, it satisfies the

conditions s¼ 0 and _s ¼ 0. Then, the perturbation term in Eq.
(3) becomes Wgpðt,xÞ ¼Wgpðt,WzÞ ¼ prðt,zÞ. Now the reduced
order equation becomes

_z ¼ Jzþprðt,zÞ ð5Þ

If the mismatched perturbation prðt,zÞ satisfies Jprðt,zÞJrfrJzJ,
where fr o�lmaxðJÞ, lmaxðJÞ being the maximum eigenvalue of the
J matrix, then by choosing the Lyapunov function V ¼ ð1=2ÞJzJ2, it
can be proved that [19,20]

_V ¼ zT JzþzT prðt,zÞrlmaxðJÞJzJ2
þfrJzJ2

¼ ½lmaxðJÞþfr �V o0 ð6Þ

The above condition means that the system will be asymptotically
stable once the sliding mode is reached. However, it is obvious
from the above discussion that the sliding surface design requires
the bounds of the uncertainties to be known a priori [33] which is
extremely difficult practically. Hence, the need arises for design-
ing the sliding surface in such a way that prior knowledge about
the bounds of the uncertainties is not required.

2.1. The adaptive sliding surface design

Let us consider the sliding surface

s¼ SðtÞx ð7Þ

The sliding coefficient matrix SðtÞARmnn can be designed as [19]

SðtÞ ¼ Bþ þNðtÞWg ð8Þ

where Bþ ¼ ðBT BÞ�1BT ARmnn is the Moore–Penrose pseudo-
inverse [34] of B and NðtÞARmnn is designed using an adaptive
technique to be explained later. Let us consider the transforma-
tion

z

s

� �
¼

Wg

SðtÞ

" #
x¼MðtÞx ð9Þ

Now defining WðtÞ ¼W þ
g �BNðtÞARnnðn�mÞ and W þ

g ¼WT
g

ðWgWT
g Þ
�1ARnnðn�mÞ, it can be verified that

MðtÞ�1
¼ ½WðtÞ B� ð10Þ

From (9) and (10), it can be observed that

x¼WðtÞzþBs ð11Þ

So, Eq. (1) gets transformed to

_z ¼WgAWðtÞzþWgABsþWgpðt,xÞ ð12Þ

_s ¼ SðtÞAWðtÞzþSðtÞABsþuþ _NðtÞzþxðt,xÞþSðtÞpðt,xÞ ð13Þ

When the system is in the sliding mode, it satisfies the conditions
s¼ 0 and _s ¼ 0. Then, the perturbation term in Eq. (12) becomes
Wgpðt,xÞ ¼Wgpðt,WðtÞzÞ ¼ pðt,zÞ and Eq. (12) transforms into a
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reduced order equation as

_z ¼ AzþBvðtÞþpðt,zÞ ð14Þ

where A ¼WgAW þ

g ARðn�mÞnðn�mÞ, B ¼WgABARðn�mÞnm and vðtÞ ¼

�NðtÞzARm.

Theorem 1. Let us consider the perturbed dynamic equation (14)
under the assumption that nr2 m. Suppose that B has full rank and

the mismatched perturbations in the domain of interest satisfy

Jpðt,zÞJrf2JzJ [35–37], where f2 is an unknown positive constant.

If the feedback gain N(t) of the controller is designed as [20]

NðtÞ ¼ K2þ½f̂2ðtÞþr�B
þ

ð15Þ

where r is a positive constant, K2 ¼ B
þ

A , B
þ
¼ B

T
ðBB

T
Þ
�1A

Rmnðn�mÞ and f̂2ðtÞ is an adaptive gain given by

f̂2ðtÞ ¼

Z t

t0

yJzJ2 dtþf̂2ðt0Þ ð16Þ

with y40 being a positive constant and f̂2ðt0Þ ¼ 0 being the initial

condition, f̂2ðtÞ is bounded and the trajectories z (14) and state x will

be asymptotically stable in the sliding mode.

Proof. Let us consider the Lyapunov function V2ðz, ~f2Þ ¼
1
2 ½JzJ2

þy�1 ~f2ðtÞ
2
�. Here ~f2ðtÞ is the estimation error of the adaptive

gain given by ~f2ðtÞ ¼ f̂2ðtÞ�f2ðtÞ, where f̂2ðtÞ is the estimated
adaptive gain and f2ðtÞ is the actual adaptive gain [19]. Then

_V 2ðz, ~f2Þ ¼ zT AzþzT BvþzT pþy�1 ~f2
_̂f2

rzT AzþzT BvþJzJJpJþy�1 ~f2
_̂f2

rzT AzþzT Bvþf2JzJ2
þðf̂2�f2ÞJzJ2

rzT AzþzT Bvþf̂2JzJ2r�rJzJ2r0 ð17Þ

It is obvious from the above discussion that zAL2 \ L1 and
~f2ðtÞAL1. Hence from Eqs. (14) and (15) and the fact that
Jpðt,zÞJrf2JzJ, it can be shown that _zAL1 as well as €V 2AL1.
From Barbalat’s lemma [3], it is found that z-0 as t-1. The bound
of the adaptation law is 0rf2ðtÞr ðJzðt0ÞJ

2
þf2

2Þ=r. Moreover, it
can be seen from Eq. (15) that N(t) is bounded since ~f2ðtÞAL1 and
hence the state xðtÞ ¼WðtÞz¼ ½W þ

g �BNðtÞ�z becomes asymptotically
stable as the system reaches the sliding mode. &

Remark 1. However in complex higher order systems it is often
observed that the sliding surface does not converge to zero in the
steady state but undergoes oscillations within a small bound.
Thus,

_̂f2 does not become exactly zero in finite time and thereby
increases the adaptive parameter f̂2 boundlessly. A simple way of
overcoming this disadvantage is to modify the adaptive tuning
law (16) by using the dead zone technique [3].

3. Design of adaptive integral sliding mode controller

In contrast with conventional sliding mode control, the system
motion under integral sliding mode has dimension equal to that
of the state space. In integral sliding mode control, the system
trajectory always starts from the sliding surface [38–40]. Accord-
ingly, the reaching phase is eliminated and robustness in the
whole state space is promised.

The sliding surface s0 is chosen as [18,34]

s0 ¼ SðtÞx�Bþ ðAþBKÞ

Z t

t0

x dt ð18Þ

where KARmnn is the design matrix and Bþ ¼ ðBT BÞ�1BT ARmnn is
the Moore–Penrose pseudo-inverse of B [34]. The sliding coeffi-
cient matrix S(t) is designed as explained in Section 2.1. The
design matrix KARmnn is chosen satisfying the inequality
condition

Re½lmaxðAþBKÞo0� ð19Þ

Taking the derivative of s0 and using Eqs. (7), (11) and (13) yields

_s 0 ¼ SðtÞAWðtÞzþSðtÞABsþu�Bþ ðAþBKÞðWðtÞzþBsÞþdðt,xÞ ð20Þ

where

dðt,xÞ ¼ _NðtÞzþxðt,xÞþSðtÞpðt,xÞ

¼ yJWgxJ2B
þ

Wgxþxðt,xÞþSðtÞpðt,xÞ ð21Þ

The second time derivative of s0 can be expressed as

€s 0 ¼ _SðtÞAWðtÞzþSðtÞA _W ðtÞzþSðtÞAWðtÞ_zþ _SðtÞABsþSðtÞAB _s
�Bþ ðAþBKÞð _W ðtÞzþWðtÞ_zþB _sÞþ _uþ _dðt,xÞ ð22Þ

In the above equation, _dðt,xÞ is considered as unknown distur-
bance or perturbation.

Remark 2. The above design procedure assumes that the dis-
turbance or perturbation is continuous, bounded and its
derivatives exist.

Assumption 1. The disturbance _dðt,xÞ in (22) is assumed to be
bounded and satisfy the following condition:

J _dðt,xÞJr
Xr

i ¼ 0

biJxJi
ð23Þ

here r is a positive integer determined by the designer in
accordance with the knowledge about the order of the perturba-
tions. For example, if the perturbations contain a term x3

1, then
one may choose r¼3. However, if x4

1 exists in the perturbation,
then the inequality might not be satisfied for certain domain of x

if one still chooses r¼3 [20]. The upper bound of the uncertainty
is termed as bi which cannot be determined easily in real
environment.

The main idea behind the second-order sliding mode is to act
on the second-order derivative of the sliding variable s0 rather
than the first derivative as in conventional sliding mode. The
second-order sliding mode is determined from the basic equality
condition s0 ¼ _s 0 ¼ 0 reaches in finite time, whereas the proposed
controller reaches the condition asymptotically.

Let us define the sliding manifold l(t) such that

lðtÞ ¼ _s 0 þks0
_lðtÞ ¼ €s 0 þk _s 0 ð24Þ

where kAdiagðk1,k2, . . . kn�mÞ is a diagonal matrix. Using the
above equations (22)–(24) yields

_lðtÞ ¼ _SðtÞAWðtÞzþSðtÞA _W ðtÞzþSðtÞAWðtÞ_zþ _SðtÞABsþSðtÞAB _s
�Bþ ðAþBKÞð _W ðtÞzþWðtÞ_zþB _sÞþ _uþ _dðt,xÞþk _s 0 ð25Þ

Assuming that the sliding surface (7) has a relative degree one
implies that the derivative of the sliding manifold l(t) can be
expressed as

_lðtÞ ¼Fðt,z,uÞþcðt,zÞ _u ð26Þ

where Fðt,z,uÞ ¼ _SðtÞAWðtÞzþSðtÞA _W ðtÞzþSðtÞAWðtÞ_zþ _SðtÞABsþS

ðtÞAB _s�Bþ ðAþBKÞð _W ðtÞzþWðtÞ_zþB _sÞþ _dðt,xÞþk _s 0 collects all the
uncertain terms not involving _u and cðt,zÞ ¼ 1. If it is possible to
bring s0 and _s 0 to zero by using a discontinuous control signal _u, then
the actual control u obtained by integrating _u becomes continuous.
The undesired high frequency oscillations which are always present
in the control input of the conventional first-order sliding mode
controllers are thus eliminated in the proposed controller.

From Eq. (25), the equivalent control _ueq for controlling the
nominal system can be designed as

_ueq ¼�½
_SðtÞAWðtÞzþSðtÞA _W ðtÞzþSðtÞAWðtÞ_zþ _SðtÞABs
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þSðtÞAB _s�Bþ ðAþBKÞð _W ðtÞzþWðtÞ_zþB _sÞþk _s 0� ð27Þ

In practice, the bounds of the system uncertainty are often
unknown in advance and hence it is difficult to find the error
term _dðt,xÞ in Eq. (22). So an adaptive tuning law is proposed to
estimate _dðt,xÞ. Now the proposed adaptive controller for tackling
the system uncertainty is designed as [41]

_uadp ¼�
Xr

i ¼ 0

b̂ iJxJi signðlðtÞÞ if lðtÞa0

¼ 0 otherwise ð28Þ

where b̂ i is the adaptive parameter which is tuned using the
following adaptive rule:

_̂b i ¼ yið�rib̂ iþJlðtÞJJxJi
Þ if lðtÞa0

¼ 0 otherwise ð29Þ

here ri and yi are positive constants, b̂ ið0Þ ¼ 0 is the initial
condition for 0r irr.

The switching control law _us can be designed as

_us ¼�tlðtÞ�Z signðlðtÞÞ if lðtÞa0

¼ 0 otherwise ð30Þ

where t and Z are positive constants.
Now the control law _u can be obtained as

_u ¼ _ueqþ _uadpþ _us ð31Þ

where _ueq is the equivalent control part, _uadp is the adaptive
control part and _us is the switching control.

Theorem 2. Let us consider the system (1) with the adaptive sliding

surface given by (8) and (15). The trajectory of the closed loop system

(1) can be driven onto the sliding manifold l(t) in finite time by using

the controller given by

_u ¼�½ _SðtÞAWðtÞzþSðtÞA _W ðtÞzþSðtÞAWðtÞ_zþ _SðtÞABs
þSðtÞAB _s�Bþ ðAþBKÞð _W ðtÞzþWðtÞ_zþB _sÞþk _s 0�

�
Xr

i ¼ 0

b̂iJxJi signðlðtÞÞ�tlðtÞ�Z signðlðtÞÞ if lðtÞa0

¼ 0 otherwise ð32Þ

Proof. Let us define a Lyapunov function V0 as follows [22,41]:

V0 ¼
1

2
lðtÞT lðtÞþ

1

2

Xr

i ¼ 0

y�1
i
~biðtÞ

2
ð33Þ

where ~biðtÞ ¼ b̂iðtÞ�biðtÞ are the estimation errors of the adaptive
gains. The time derivative of V0 is obtained as

_V 0 ¼ lðtÞT _lðtÞþ
Xr

i ¼ 0

y�1
i
~bi
_~b i

¼ lðtÞT ½ _SðtÞAWðtÞzþSðtÞA _W ðtÞzþSðtÞAWðtÞ_zþ _SðtÞABs
þSðtÞAB _s�Bþ ðAþBKÞð _W ðtÞzþWðtÞ_zþB _sÞ

þk _s 0 þ _uþ _dðt,xÞ�þ
Xr

i ¼ 0

y�1
i
~bi

¼ lðtÞT ½ _SðtÞAWðtÞzþSðtÞA _W ðtÞzþSðtÞAWðtÞ_zþ _SðtÞABs
þSðtÞAB _s�Bþ ðAþBKÞð _W ðtÞzþWðtÞ_zþB _sÞþk _s 0 þ _u

þ _dðt,xÞ�þ
Xr

i ¼ 0

y�1
i ðb̂iðtÞ�biÞyið�rib̂iþJlðtÞJJxJi

Þ

Using the relations from (27)–(32) yields

_V 0r �
Xr

i ¼ 0

b̂ iJxJiJlðtÞJ�
Xr

i ¼ 0

biJxJiJlðtÞJ�tJlðtÞJ�ZJlðtÞJ

"

þ
Xr

i ¼ 0

b̂iJxJiJlðtÞJþ
Xr

i ¼ 0

biJxJiJlðtÞJ

#
�riðb̂

2

i �b̂ ibiÞ

r�ZlðtÞ signðlðtÞÞ�tlðtÞ2�ri b̂i�
1

2
bi

� �2

þ
1

4
rib

2
i

r�ZJlðtÞJ�tlðtÞ2þ
1

4
rib

2
i

It is clear that _V 0o0 if lðtÞ4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d1=4tmin

p
or JlðtÞJ4d1=4Zmin, where

Z,t are positive design parameters and d1 ¼ rib
2
i . The decrease of

V0 eventually drives the trajectories of the closed loop system into
lðtÞo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d1=4tmin

p
and JlðtÞJod1=4Zmin [41]. Therefore, the trajec-

tories of the closed loop system are bounded ultimately as

lim
t-1

lðtÞA lðtÞo

ffiffiffiffiffiffiffiffiffiffiffiffi
d1

4tmin

s !\
JlðtÞJo

d1

4Zmin

� �
ð34Þ

which is a small set containing the origin of the closed loop
system. In order to guarantee bounded motion around the sliding
surface, the positive parameters Z and t are chosen to be large
enough such that _V 0o0 when V0 is out of the bounded region
which contains an equilibrium point [22]. It can be observed that
_V 0o0 is achievable which implies that the sliding manifold l(t)
will approach zero in finite time. Therefore, the control law given
by (32) guarantees that the sliding mode will be reached in finite
time and sustained thereafter [41]. &

Remark 3. Once sliding mode is established, the proposed gain
adaptation law (29) allows the gain b̂i to decrease. Thus, it is
observed that the proposed gain adaptation law, while maintaining
the sliding mode, keeps the gain b̂i at the smallest possible value to
ensure a given tracking accuracy in presence of uncertainties.

Thus, the adaptive gain tuning law is modified as

_̂b i ¼�yirib̂ iþyiJlðtÞ�YJJxJi if lðtÞa0

¼ 0 otherwise ð35Þ

where 0r irr, Y is a small positive number and r is a desired
positive integer.

Remark 4. The parameters t and Z in the controller (32) are very
crucial as these are some of the parameters responsible for
determining the convergence rate of the sliding surface. It is clear
that a large value of t and Z will force the system states to converge
to the origin at a high speed. Since high t and Z will require a very
high control input which is not desirable in reality, these para-
meters cannot be selected too large. Hence, a compromise has to be
made between the response speed and the control input.

Remark 5. The parameters r0 and r1 in (35) determine the
convergence rate of the estimated bounds B̂ 0 and B̂ 1. The design
parameters r0,r1 are used to determine the band of the bounded
region and we can choose r0 and r1 to be small enough in order
to guarantee the motion along the sliding surface. However, a
compromise is made between the band of the bounded region
and the convergence speed of the estimated bounds B̂ 0 and B̂ 1.
Too small r0 and r1 will lead to a very low convergence rate of
the estimated bounds B̂ 0 and B̂ 1. Thus, the parameters r0,r1

cannot be selected too small. Practically, any positive value of r0

and r1 can be used to estimate the uncertainty but a higher value
only is used for faster estimation of uncertainty.

4. Effectiveness

Let us compare the proposed controller with the adaptive
sliding mode controller (SMC) designed by Wen and Cheng [19]
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and given below:

u¼ uf þuadpþus ð36Þ

where

uf ¼�SðtÞAWðtÞz�SðtÞABs

uadp ¼�
Xr

i ¼ 0

b̂iJxJi s
JsJ if sa0

¼ 0 otherwise

us ¼�Z
s
JsJ

if sa0

¼ 0 otherwise ð37Þ

The adaptive parameter b̂i is tuned using the following adaptive
rule:

_̂b i ¼ yiJxJi if sa0

¼ 0 otherwise ð38Þ

where yi are positive constants, b̂ ið0Þ ¼ 0 is the initial condition
for 0r irr.

Implementation of the adaptive SMC (36) and (37) is limited
by the obvious drawback of the gain b̂i being susceptible to
overestimation and thereby increasing the chattering in the
system. Hence, this approach is not directly applicable but
requires modifications regarding the sign function which needs
replacement by a saturation function. However, the width of the
boundary layer in the saturation function affects the accuracy and
robustness of the SMC. Furthermore, no methodology for tuning
the boundary layer width is provided in [19].

The proposed chattering free adaptive integral sliding mode
control method offers the major advantage that no a priori
knowledge about the bounds of b̂i is required as it adaptively
estimates the bounds of b̂ i and also ensures that the adaptive gain
does not get overestimated. Another major benefit of the pro-
posed controller is that the discontinuous sign function is con-
tained in the derivative control input and the actual control is
obtained after integrating the discontinuous derivative control. As
such, the actual control is continuous, smooth and chatterless
which makes the proposed controller superior to the conventional
adaptive SMC proposed in [19].
4.1. Application

The vertical take-off and landing (VTOL) aircraft is a highly
nonlinear complex system whose aerodynamic parameters vary
considerably during the flight. Let us consider the typical load and
flight conditions for a VTOL aircraft at the nominal airspeed of 135
knots [19]. The linearized dynamics of this VTOL aircraft in the
vertical plane can be described as Eq. (1) with

x¼

x1

x2

x3

x4

2
66664

3
77775, u¼

u1

u2

" #

A¼

�0:0366 0:0271 0:0188 �0:4555

0:0482 �1:0100 0:0024 �4:0208

0:1002 0:3681 �0:7070 1:4200

0 0 1 0

2
6664

3
7775

B¼

�0:4422 0:1761

3:5446 �7:5922

�5:52 4:49

0 0

2
6664

3
7775xðt,xÞ ¼

�5 sinð0:5tÞþx3

2 cosð0:2x1Þx2þ3

" #
pðt,xÞ ¼

sinð0:1x2Þð0:1x3þ0:7x4Þ

�0:3x4 cosð0:3x4tÞ

�2x1�0:3x2

ð0:2x1þ0:4x4Þ sinð0:4x3Þ

2
66664

3
77775 ð39Þ

where x1 is the horizontal velocity (knots), x2 is the vertical
velocity (knots), x3 is the pitch rate (degrees per second) and x4 is
the pitch angle (degrees). Furthermore, u1 is the collective pitch
control which alters the pitch angle (angle of attack with respect to
air) of the main rotor blades collectively to provide the vertical
movement and u2 is the longitudinal cyclic pitch control which tilts
the main rotor disc by varying the pitch of the main rotor blades
individually to provide the horizontal movement. Moreover, u1 and
u2 have cross-coupling effects on the horizontal and vertical
velocities, respectively. The matched and mismatched perturba-
tions are represented by xðt,xÞ and pðt,xÞ, respectively [19].

4.2. Simulation results

The proposed adaptive integral sliding mode controller is
applied to the above VTOL aircraft (39) affected by both matched
and mismatched uncertainties. The simulation is carried out in
MATLAB Simulink platform by using the ODE 4 solver with a fixed
step size of 0.001 s.

4.3. Stabilization of the VTOL aircraft

The reference output is chosen as xd ¼ ½0 0 0 0�T since all the
states are to be driven to zero to stabilize the aircraft. For
comparison purpose, the associated design parameters of the
proposed adaptive integral sliding mode controller are chosen
following [19]. As such Wg is selected as

Wg ¼
0:0666 0:0076 0:0102 0:72

0:8879 0:1010 0:136 �0:028

� �
ð40Þ

Hence, WgB¼ 0 [32]. Next, the pseudo-control input, the adaptive
controller and the adaptive gains are designed in accordance with
Eqs. (15), (16), (29) and (35), where y¼ 0:1474, y0 ¼ 0:1271,
y1 ¼ 0:1251, r0 ¼ r1 ¼ 1:188, Z¼ 2, t¼ 10, k¼ diagð1:25,1:25Þ,
r¼ 0:1519 and K is so chosen that the eigenvalues are placed at
�0.5, �0.7, �15, �25 [34]. The initial state is assumed as
xð0Þ ¼ ½2 �2 1 1�T .

The adaptive tuning laws used for stabilization are given by

_̂f2 ¼ yJzJ2

_̂b1 ¼�0:151b̂1þy1JlðtÞ�YJJxJ

_̂b0 ¼�0:151b̂0þy0JlðtÞ�YJ

The initial values of f̂2, b̂1 and b̂0 are chosen as 0, 1 and 1,
respectively. The small positive constant Y is selected as Y¼ 0:01.

The adaptive first-order sliding mode controller proposed by
Wen and Cheng [19] (36)–(38) is next applied to the VTOL aircraft
system (39). The design parameters are chosen as y¼ 0:3,
y0 ¼ 0:21, y1 ¼ 0:27, Z¼ 4 and r¼ 1. The initial state is assumed
as xð0Þ ¼ ½2 �2 1 1�T . From simulation results obtained in
Figs. 1 and 2, it can be observed that although the system states
converge to the equilibrium, the control inputs are not smooth
and contain excessive chattering.

Simulation results obtained by using the proposed adaptive
integral sliding mode controller to the VTOL aircraft system are
shown in Figs. 3–6. It is observed from Fig. 3 that all the states
converge to the origin quickly. Moreover, comparison of Fig. 3
with Fig. 1 reveals that the states converge in lesser time in the
case of the proposed controller as compared to Wen and Cheng’s
controller [19]. From Figs. 2 and 4, it is evident that chattering
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Fig. 1. State responses with the method proposed by Wen and Cheng [19]: x1

(solid line), x2 (dash–dot line), x3 (dash line), and x4 (dot line).
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Fig. 2. Control inputs with the method proposed by Wen and Cheng [19]: u1 (solid
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Fig. 3. State responses using the proposed chattering free adaptive integral sliding

mode controller.
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mode controller.
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sliding mode controller.
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Fig. 6. Sliding surface and sliding manifold using the proposed chattering free

adaptive integral sliding mode controller.
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present in the control inputs obtained by using the proposed
adaptive integral sliding mode controller is significantly lesser as
compared to that in Wen and Cheng’s method [19]. The bounded
convergence of the adaptive gains b̂0, b̂1 and f̂2 is confirmed in
Fig. 5. From Fig. 6, it can be observed that the proportional plus
integral sliding surface s0 and the sliding manifold l(t) are smooth
and both approach zero quickly.
5. Conclusion

This paper proposes an adaptive integral sliding mode con-
troller for multi-input multi-output (MIMO) systems affected by
unknown uncertainties of any kind, matched or mismatched. The
proposed controller can effectively overcome perturbations to
achieve quick asymptotical stability. Moreover, the adaptive gain
tuning mechanism ensures that the gain is not overestimated
with respect to the actual unknown value of the uncertainty. The
proposed controller is applied for stabilization of the vertical
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take-off and landing (VTOL) aircraft system which is a highly
complex nonlinear and uncertain MIMO system. From simulation
results, the proposed controller is found to be superior in
mitigating chattering in the control input than the existing first-
order adaptive sliding mode controllers. Faster convergence of the
system states is a remarkable benefit of the proposed adaptive
integral sliding mode controller. For application to uncertain
systems affected by severe matched and mismatched uncertain-
ties, the proposed adaptive integral sliding mode controller
promises to be a suitable strategy. For future study, the case of
n42 m is worth considering.
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