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The prediction method plays crucial roles in accurate precipitation forecasts. Recently, machine learning
has been widely used for forecasting precipitation, and the K-nearest neighbor (KNN) algorithm, one of
machine learning techniques, showed good performance. In this paper, we propose an improved KNN
algorithm, which offers robustness against different choices of the neighborhood size k, particularly in
the case of the irregular class distribution of the precipitation dataset. Then, based our improved KNN
algorithm, a new precipitation forecast approach is put forward. Extensive experimental results demon-
strate that the effectiveness of our proposed precipitation forecast approach based on improved KNN
algorithm.
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1. Introduction

Precipitation plays crucial roles in climate because it not only is
vital for agriculture, forestry and the energy industry but also pro-
vides stable habitats for great varieties of species [1–4]. Neverthe-
less, heavy rains in a short time usually result in natural disasters
such as flash floods, mud-rock flows, urban waterlogging and land-
slides, which causes tremendous losses in lives and properties of
people [5,6]. And for this reason, reliable precipitation forecast is
highly important and essentially needed. Unfortunately, the pre-
cipitation forecast is a major challenge in meteorology due to for-
mation mechanism of precipitation, not completely understood so
far, involves a rather complex physics [7–9]. And currently the pre-
cipitation forecast is far from being satisfactory [10]. Accordingly,
the interest in precipitation forecasts has grown significantly in
recent years [11–14].

There exist two possible approaches to forecast precipitation in
the literature [6,15].The first is the physically-based approach,
which means that the underlying physical laws of precipitation
are modeled by studying the rainfall processes. The other approach
is the pattern recognition methodology based on the use of
machine learning techniques to implement which means that pre-
cipitation patterns are attempted to recognize based on their fea-
tures using machine learning techniques. However, it is a general
notion that the physically-based approach may not be feasible,
since significant variables to reason precipitation are intercon-
nected in an extremely complicated way, and the volume of pre-
cipitation calculations requires sophisticated mathematical tools
[16,17]. And the pattern recognition methodology based on the
use of machine learning techniques to implement has been proven
to be very effective in precipitation forecasting [18,19,17]. In recent
years, much effort has been invested in developing precipitation
forecasts using various machine learning techniques that yield
good forecast.

Ramírez et al. [10] established a nonlinear mapping between
meteorological variables and surface rainfall data to form an artifi-
cial neural network (ANN) model trained by the resilient propaga-
tion learning algorithm, which can generate specific quantitative
forecasts of daily rainfall in the São Paulo State, Brazil. Hong [17]
employed support vector machine (SVM) to implement rainfall
forecasting in Northern Taiwan and the empirical results revealed
that this approach yields well forecasting performance. Zeng et al.
[20] proposed an improved K-nearest neighbor (KNN) algorithm to
forecast precipitation, in which one optimal k is chosen according
to the number of exiting weather event k+ and the number of no
weather event k�, which are computed to match different weather
events owing diverse probability based on the crossing verification
method in searching k-nearest neighbor process. In addition, Chen
et al. [7] developed a novel weighted k-nearest neighbor algorithm
for forecasting precipitation in Nanjing city.
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It is worth noting that K-nearest neighbor algorithm [21], which
is one of the most well-known algorithms in pattern recognition
for supervised non-parametric classification, has been widely used
in precipitation forecasts. However, there exists one major out-
standing issue in the KNN algorithm that it is sensitive to the
choice of the neighborhood size k [22]. And the classification per-
formance of many KNN-based methods will degrade dramatically
due to the problem above, particularly in the small sample size
cases and the data with an uneven distribution [23,24]. Unfortu-
nately, historical rainfall data is imbalanced, which means that
the number of training samples in some classes is much larger than
that of the others. For example, the number of torrential rainfall
events, as compared to the number of dry days, is significantly
few because the torrential rainfall events rarely occurred in a year.
As a consequence, although the KNN algorithm has been proven to
be very effective in making forecast of rainfall, the forecast perfor-
mance is often limited by the influence of the sensitiveness to the
selection of the neighborhood k when the precipitation data with
an uneven distribution. To address the issue of sensitivity of differ-
ent choices of k, there exists one kind of main works, namely
distance-based vote weighting schemes for the KNN classifier
[25]. Dudani [26] proposed a weighted voting method named the
distance-weighted k-nearest neighbor (WKNN) rule, which is the
first distance-based vote weighting schemes. In this approach,
the farthest neighbor is weighted with 0, the closest with 1 and
the others are scaled between by a linear mapping. Gou et al.
[27] presented a dual weighted k-nearest neighbor (DWKNN) rule
that extended the linear mapping of Dudani, in which the closest
and the farthest neighbors are weighted the same way as the linear
mapping, but those between them are assigned smaller values.

In this paper, we propose an improved KNN algorithm, which
offers robustness against different choices of the neighborhood size
k, particularly in the case of the irregular class distribution of the
precipitation dataset. Then, based our improved KNN algorithm,
a new precipitation forecasting model is put forward. Extensive
experimental results show that the proposed precipitation fore-
casting paradigm achieves much better forecast performance.

The reminder of this paper is organized as follows. In Section 2,
we give a brief overview of many algorithms, including KNN,
WKNN and DWKNN. Section 3 presents details of our improved
KNN algorithm. The construction of our proposed precipitation
forecasting model is described in Section 4. Experiment results
are discussed in Section 5. Finally, we conclude this paper in
Section 6.

2. Related work

Before presenting in detail our improved KNN algorithm, we
briefly review of KNN, WKNN and DWKNN that form the basis
for our work.

2.1. KNN

The k-nearest neighbor algorithm is a powerful nonparametric
classifier which assigns an unclassified pattern to the class repre-
sented by a majority of its k nearest neighbors. In the general clas-

sification problem, let T ¼ fxn 2 RdgNn¼1 denote a training set withM
classes consisting of N training samples in d-dimensional feature
space, and the class label of one sample xn is cn. Given a query point
x, the KNN rule is carried out as follows.

� Find k nearest neighbors from the set T for the unknown query

point x, and let T ¼ xNNi ; cNNi
� �� �k

i¼1 indicate the set of k nearest
neighbors for x. The distance between x and the neighbor xNNi
is measured by the Euclidean distance metric
d x; xNNi
� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x� xNNi
� �T x� xNNi

� �q
ð1Þ

� The class label of the query point x is predicted by the major-
ity voting of its neighbors

c0 ¼ argmax
c

X
xNN
i

;cNN
ið Þ2T

d c ¼ cNNi
� � ð2Þ

where c is a class label and cNNi denotes the class label for the i-th
nearest neighbor among its k nearest neighbors. d c ¼ cNNi

� �
, an

indicator function, takes a value of one if the class cNNi of the
neighbor xNNi is the same as the class c and zero otherwise.
2.2. WKNN and DWKNN

To overcome the negative effect of the neighborhood k, the
WKNN assigning weights to the neighbors according to their dis-
tance from the unclassified sample. Formally, the weighted func-
tion of WKNN is represented as

xi ¼
dk�di
dk�d1

; dk – d1

1; dk ¼ d1

(

di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� xNNi
� �T x� xNNi

� �q ð3Þ

where xNNi denotes the i-th nearest neighbor among its k nearest

neighbors T ¼ xNNi ; cNNi
� �� �k

i¼1 sorted in an increasing order accord-
ing to their corresponding Euclidean distance to the query point x.

Accordingly, the class of the query object predicted by the
majority weighted voting defined as

c0 ¼ argmax
c

X
xNN
i

;cNN
ið Þ2T

xi � d c ¼ cNNi
� � ð4Þ

To further overcome the negative effect of the neighborhood k,
the dual distance-weighted function of DWKNN extends the linear
mapping of WKNN. The dual distance-weighted function of
DWKNN can be formulated as

xi ¼
dk�di
dk�d1

� dkþd1
dkþdi

; dk – d1

1; dk ¼ d1

(
ð5Þ
3. Our improved KNN algorithm

Although WKNN and DWKNN algorithms perform well in com-
parisons with the traditional KNN approach, the sensitivity of the
classification performance to the choices of the neighborhood size
k still exits, especially in the data imbalance situations. And we
noticed that the exponential of some distance, which is chosen as
the weighting scheme, exhibits better classification accuracy and
lower variance [28]. Inspired by the effectiveness of the exponen-
tial of some distance for classification, we believe that it should
be a better candidate which is chosen as the weighting scheme.
In this paper, we design an improved KNN algorithm in order to
further mainly conquer the influence of the neighborhood k in
the case of the precipitation dataset with an uneven distribution.

Suppose a training set T ¼ xn 2 Rd
n oN

n¼1
with M classes, where N

is the sample numbers of T, and d is the feature dimension. In
our proposed improved KNN algorithm, the class label of a query
point x is yielded by the following steps.
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� Find k nearest neighbors for the unknown query point x in the

training set T, and let T ¼ xNNi ; cNNi
� �� �k

i¼1 denote the set of k
nearest neighbors for x, and the k nearest neighbors
xNN1 ; xNN2 ; . . . ; xNNk are sorted in an increasing order according to
their corresponding Euclidean distance to x, described in Eq. (1).

� Allocate different weights to k nearest neighbors, and the
weight xj of the j-th nearest neighbor is determined as
xj ¼
exp � dk�dj

dk�d1

� �
� dkþd1

dkþdj

� �� �� �
; dk – d1

1 ; dk ¼ d1

(
ð6Þ

� Classify the query point x into the class �c by a majority
weighted voting of its neighbors.

�c ¼ argmax
c

X
xNN
j

;cNN
j

� �
2T

xj � d c ¼ cNNj
� �

ð7Þ

Note that our proposed improved KNN rule is equal to DWKNN,
WKNN and KNN rule when k = 1 because the nearest neighbor gets
weight of 1 when k = 1.

4. Improved KNN algorithm based precipitation forecast for
Beijing area

4.1. Precipitation data and predictors

The area considered herein is Beijing, located in the northeast of
China. There are four main seasons including spring (March-May),
summer (June-August), autumn (September-November) and win-
ter (December- February). About 75% of the annual precipitation
over this area (lat: 39:26� � 41:03�N, lon: 115:25� � 117:30�E)
occurs in summer which is from June to August. For the prediction
of the level of rainfall in a calendar day, daily precipitation data
from June to August, which are collected from twenty national
automatic weather stations in Beijing for the period from 1990 to
2012, have been obtained from the Beijing Meteorological Informa-
tion Center. Fig. 1 shows the Beijing area and the locations of
twenty national automatic weather stations. According to the par-
tition rule of grade of precipitation in flood protection depart-
ments, total rainfall amount for 24 h is divided into one of five
grades of precipitation which are no rain, light rain, moderate rain,
heavy rain and torrential rain respectively; while the five grades of
precipitation are labeled as 0, 1, 2, 3 and 4 respectively, as depicted
in Table 1.

All of the prognostic variables are chosen from the National
Centers for Environmental Prediction-National Center for Atmo-
spheric Research (NCEP-NCAR) reanalysis dataset with a spatial
resolution of 2:5� � 2:5� [29], which are commonly used to forecast
precipitation by meteorologists [18,30]. In our work, six prognostic
variables chosen from the NCEP-NCAR reanalysis dataset is taken
as predictors, as illustrated in Table 2. And the area between 35�

and 42:5�N, and 112:5� and 120�E (16 grid-points in the total) over
the study area is taken as the selection area for predictors, i.e. the
precipitation field. Thus the feature of each sample which is daily
precipitation data from June to August in the year of 1990–2012
is obtained by concatenating six predictors from the precipitation
field.

4.2. Normalization

Since the range of each predictor is significantly different and
the test results might rely on the values of a few predictors, they
are preprocessed using a normalization [14]. We calculated the
upper and lower bound of each predictor in the precipitation field
from June to August in the year of 1990–2012. The results are
shown in Table 3. The process for the used normalization is repre-
sented as

�yi ¼ yi � ymin

ymax � ymin

ymin ¼ min yf g ¼ min
j¼1;...;n

yj
� �

ymax ¼ max yf g ¼ max
j¼1;...;n

yj
� � ð8Þ

where y ¼ ðy1; y2; . . . ; ynÞ is each predictor. Accordingly, the value of
each predictor is normalized to between 0 and 1 based on the Eq.
(8).
4.3. Improved KNN algorithm based precipitation forecast

As a classification algorithm, our improved KNN algorithm
could be more robust to the change of k in the case of the precip-
itation dataset with an uneven distribution, and tends to yield
more reliable forecast performance. Therefore, we proposed to
use our improved KNN algorithm to make precipitation forecast.
Let X denote a set of precipitation sample, and suppose X is

X ¼ xn 2 Rd
n oN

n¼1
, where xi represents the feature of the i-th precip-

itation sample, N is the total number of features, and d is the fea-
ture dimension. Let ci 2 0;1;2;3;4f g; i ¼ 1;2; . . . ;N be the grade
of precipitation, which is the class attribute of each precipitation
sample xi ¼ ðxi1; xi2; . . . ; xidÞ; i ¼ 1;2; . . . ;N. Accordingly, the training
set can be formulated as follows

x1 c1
x2 c2

..

. ..
.

xN cN

2
66664

3
77775 ¼

x11 x12 � � � x1d c1
x21 x22 � � � x2d c2

..

. ..
. ..

. ..
. ..

.

xN1 xN2 � � � xNd cN

2
66664

3
77775 ð9Þ

Given the unknown precipitation sample x, we find k nearest

neighbors of x, T ¼ xNNi ; cNNi
� �� �k

i¼1, in the training set as shown in
Eq. (9) based on our improved KNN algorithm described in Sec-
tion 3. Then we sort the k nearest neighbors in an increasing order
according to their corresponding Euclidean distance with x,
d1; d2; . . . ; dk. Hence the unknown precipitation sample x is classi-
fied into the class �c by the precipitation forecast model which is
given in Eqs. (6) and (7), as depicted in Section 3.

In our precipitation forecast model, we use daily precipitation
data from June to August in the year of 1990–2008 and those in
the year of 2009–2012 as training samples and testing samples
respectively. Thus the training dataset contains 1748 samples
and testing set is 368.
5. Experiments and results

In this section, we will investigate our proposed precipitation
forecast approach based on improved KNN algorithm. Obviously,
the only difference in our precipitation forecast experiments is
the classification algorithm in our proposed precipitation forecast
model. So the final forecast performance only relies on the distinc-
tiveness of the classification algorithm. The following forecast
experiments will show whether our proposed improved KNN algo-
rithm will achieve better forecast performance. For the purpose of
comparison our proposed approach, we have also built other three
precipitation forecast approach including precipitation forecast
model based on KNN algorithm [21], precipitation forecast model
based on WKNN algorithm [26] and precipitation forecast model
based on DWKNN algorithm [27].



Fig. 1. Map of Beijing with positions of the stations (�).

Table 1
The grade of precipitation divided by flood protection departments (R denotes total
rainfall amount for 24 h in mm).

Precipitation grade R (mm) Label of precipitation grade

No rain R < 0:1 0
Light rain 0:1 6 R < 10 1
Moderate rain 10 6 R < 25 2
Heavy rain 25 6 R < 50 3
Torrential rain R P 50 4

Table 2
The names and descriptions of the prognostic variables.

Prognostic variables Description

hgt500 500hpa geopotential height
hgt1000 1000hpa geopotential height
air850 850hpa air temperature
rhum850 850hpa humidity
vwnd700 700hpa meridional wind
pr_wtr precipitable water

Table 3
The upper and lower bound ranges of predictors.

Predictors Unit Upper bound Lower bound

500hpa geopotential height m 5946.15 5404.40
1000hpa geopotential height m 185.13 �109.33
850hpa air temperature degK 307.15 275.03
850hpa humidity % 102.12 3.000001
700hpa meridional wind m/s 25.3 0.000002
precipitable water kg/m2 76.35 1.300001

92 M. Huang et al. / Advanced Engineering Informatics 33 (2017) 89–95
5.1. Criteria for evaluating precipitation forecast performance

Five different types of standard evaluation criteria, which
involves accuracy, threat score (TS), summary alarm rate (SAR),
missing alarm rate (MAR) and precision-recall (PR) curve, were
employed to evaluate the performance of various precipitation
forecast approaches developed in this paper. The accuracy, com-
puted based on the percentage of all test samples classified cor-
rectly, is used to evaluate the prediction performance of different
types of precipitation described in Section 4.1. Accuracy tells us
about the number of samples which are correctly forecasted. Fur-
thermore, the prediction performance of two different types of
weather events, rain and no-rain, is evaluated by four measures
including TS, SAR, MAR and PR curve. The measure for evaluating
precipitation forecast performance, accuracy, threat score (TS),
summary alarm rate (SAR), missing alarm rate (MAR) and
precision-recall (PR) curve, are defined as follows

Accuracy ¼ #test samples forecasted correctly
#test samples

ð10Þ

TS ¼ hit alarms
hit alarmsþmissing alarmsþ false alarms

ð11Þ

SAR ¼ hit alarms
#test samples

ð12Þ

MAR ¼ missing alarms
missing alarmsþ hit alarms

ð13Þ

Precision ¼ hit alarms
hit alarmsþ false alarms

ð14Þ



Table 4
Contingency table.

Event forecasted Event observed

Rain(yes) No-rain(no)

Rain(yes) Hit alarms False alarms
No-rain(no) Missing alarms Correct alarms

Table 5
Precipitation forecast results with different neighborhood sizes.

k Accuracy (%)

Our proposed DWKNN WKNN KNN

1 42.12 42.12 42.12 42.12
2 42.39 42.12 42.12 39.95
3 41.85 42.12 42.12 40.22
4 43.21 42.66 42.93 42.93
5 45.11 42.39 42.12 42.93
6 47.01 41.85 41.85 46.19
7 45.11 42.66 42.39 45.11
8 45.65 42.93 42.93 43.48
9 46.47 42.66 43.21 44.57
10 46.74 43.21 44.29 44.29
11 47.01 44.02 44.84 45.38
12 46.74 44.29 45.38 45.11
13 48.64 45.11 45.65 47.28
14 48.36 45.92 45.92 45.38
15 49.46 45.65 45.92 48.37

Table 6
Grade forecast results comparison of different approaches.

Algorithm Accuracy (%)

Our proposed 49.46
SVM
Linear 49.18
Radial basis function 49.45
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Recall ¼ hit alarms
hit alarmsþmissing alarms

ð15Þ

where the #test samples denotes the total number of test samples,
the #test samples forecasted correctly is the number of test samples
which is forecasted correctly, and the hit alarms, missing alarms
and false alarms are computed in Table 4.

5.2. Precipitation forecast

We evaluate our proposed precipitation forecast approach
based on improved KNN algorithm in two different applications:
grade forecast and rain and no-rain forecast. The first is grade fore-
cast, which means that we make a prediction about different
grades of precipitation. The other is rain and no-rain forecast,
which means that we make a prediction about two different types
of weather events which are rain and no-rain. The proposed
approach is compared with the other three popular methods using
DWKNN, WKNN and KNN algorithm respectively. In fact, the code
of DWKNN, WKNN and KNN algorithm in the other three popular
precipitation forecast methods are not given directly from the lit-
erature. Therefore, we implemented DWKNN, WKNN and KNN
algorithm by ourselves based on the literature. Moreover, we also
compare our proposed approach to the state-of-the-art precipita-
tion forecast approach using SVM algorithmwhich is with different
kernels, including linear kernel and radial basis function kernel, in
grade forecast experiments. The forecast approaches using
DWKNN, WKNN, KNN and SVM algorithm are abbreviated to
DWKNN, WKNN, KNN and SVM.

5.2.1. Grade forecast evaluation
In this section, we conducted extensive experiments on grade

forecast to evaluate the performance of our proposed approach.
In our grade forecast experiments, we use daily precipitation data
from June to August in the year of 1990–2008 and those in the year
of 2009–2012 as training samples and testing samples respec-
tively. Thus the training dataset contains 1748 samples and testing
set is 368. We are interested to see how the performance changes if
we modify the value of the neighborhood size k. Inspired by Ref.
[24] and taking into consideration the number of training samples
in which torrential rain events, one of five types of precipitation,
rarely occurred in a year, the parameter k is ranged from 1 to 15
with an interval of 1.

The experimental results are shown in Table 5. It can be found
that the accuracy of our proposed precipitation forecast approach
based on improved KNN algorithm is somewhat better than those
of DWKNN, WKNN and KNN in almost all the test cases. That is to
say, our proposed improved KNN algorithm almost gives an
improvement over the other three approaches with the increase
of the neighborhood size k. Consequently, it suggests that the pro-
posed improved KNN algorithm has the robustness to the sensitiv-
ity of different choices of the neighborhood size k with the
satisfactory forecast performance to some degree.

Furthermore, we also conducted experiments on grade forecast
to compare our proposed precipitation forecast approach based on
improved KNN algorithm with precipitation forecast approach
based on SVM algorithm. In this experiment, the neighborhood size
k is fixed as 15. Detailed comparison results are shown in Table 6.
As can be seen in Table 6, our proposed precipitation forecast
approach based on improved KNN algorithm obtains the perfor-
mance of 49.46%; while the precipitation forecast approach based
on SVM with linear kernel and radial basis function kernel achieve
a forecast accuracy of 49.18% and 49.45%, respectively. It can be
found that the performance of our proposed precipitation forecast
approach is somewhat better than SVMwith linear kernel and SVM
with radial basis function kernel.

To demonstrate intuitively the effectiveness of our proposed
method, we make a comparison between observed and predicted
rainfall grade at 31 samples, which are daily precipitation data
on July 2010 for testing samples, by four different forecast
approaches. Meantime, we choose daily precipitation data from
June to August in the year of 1990–2008 as training samples.
Detailed comparison results are shown in Fig. 2. From the experi-
mental results illustrated in Fig. 2, we can see that the output of
our proposed forecast approach, simulated with testing data,
shows a good agreement with the target. We can observe that
our proposed precipitation forecast approach based on improved
KNN algorithm has better results than the other three approaches
including DWKNN, WKNN and KNN in accuracy.

5.2.2. Rain and no-rain forecast evaluation
To further evaluate the performance of our proposed precipita-

tion forecast approach based on improved KNN algorithm, we also
conduct experiments to see the prediction performance for two
different types of weather events including rain and no-rain. The
threat score, summary alarm rate, missing alarm rate and
precision-recall curve are used as the evaluation criterion. And
the experimental comparisons in terms of threat score, summary
alarm rate, missing alarm rate and precision-recall curve with
varying the neighborhood size k are illustrated in Figs. 3–6. From
the results described in Fig. 3, we can obviously observe that the
threat score outperforms the other three methods for almost all
values of the neighborhood size k. Taken one value of the neighbor-
hood size k as an example, our proposed approach achieves a
threat score of 50.46% when the value of the neighborhood size k
is equal to 6. However, the other three algorithms, DWKNN, WKNN



(a) (b)

(c) (d)

Fig. 2. Comparison between observed and predicted of forecast approaches in testing samples.

Fig. 3. The threat score of different methods under various values of the
neighborhood size.

Fig. 4. The summary alarm rate of different methods under various values of the
neighborhood size.

Fig. 5. The missing alarm rate of different methods under various values of the
neighborhood size.

Fig. 6. The precision-recall curve of different methods under various values of the
neighborhood size.
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and KNN, only obtain a threat score of 48.32%, 48.62% and 46.88%
respectively.

As shown in Fig. 4, our proposed precipitation forecast approach
based on improved KNN algorithm almost achieves the best perfor-
mance among the interval of the neighborhood size k, compared to
the other three competing methods; while the proposed approach
always performs significantly better than KNN. And the summary
alarm rate of our proposed algorithm increases as the neighbor-
hood size grows further.

Fig. 5 has shown the missing alarm rate of our proposed precip-
itation forecast approach based on improved KNN algorithm. It
should be noted that the missing alarm rate is extremely crucial
in precipitation forecast. And the smaller the missing alarm rate
is, the better the forecast performance of our proposed approach
is. As can be seen in Fig. 5, our proposed approach almost always
performs significantly better than DWKNN, WKNN and KNN. Fur-
thermore, it is noticeable that our proposed precipitation forecast
approach based on improved KNN algorithm always outperforms
KNN. Taken one value of the neighborhood size k as an example,
our proposed approach obtains a missing alarm rate of 30.04%
when the neighborhood size is fixed as 2; while the other three
algorithms, DWKNN, WKNN and KNN, only obtain a missing alarm
rate of 50.64%, 50.64% and 50.64% respectively.

Fig. 6 has shown the precision-recall curve of our proposed pre-
cipitation forecast approach based on improved KNN algorithm.
The precision-recall curve can be obtained by changing the neigh-
borhood size k; and in PR space the goal is to be in the upper-right-
hand corner [31]. As shown in Fig. 6, we can observe that the per-
formance of our proposed precipitation forecast approach based on
improved KNN algorithm in rain and no-rain forecast is somewhat
better than the other three approaches including DWKNN, WKNN
and KNN.

6. Conclusions

In this article, an improved KNN algorithm has first been pro-
posed. It offers robustness against different choices of the neigh-
borhood size k particularly in the case of the precipitation
dataset with an uneven distribution. Then based on the improved
KNN algorithm, we introduce a new precipitation forecast
approach. Extensive experimental results for grade forecast and
rain and no-rain forecast demonstrate that the effectiveness of
our proposed precipitation forecast approach based on improved
KNN algorithm. In our future work, we are willing to design select-
ing methods of predictors to improve the performance of precipi-
tation forecast.
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