
ARTICLE IN PRESS 

JID: EOR [m5G; June 25, 2018;10:31 ] 

European Journal of Operational Research 0 0 0 (2018) 1–15 

Contents lists available at ScienceDirect 

European Journal of Operational Research 

journal homepage: www.elsevier.com/locate/ejor 

Innovative Applications of O.R. 

Solution methods for the tray optimization problem 

Twan Dollevoet a , ∗, J. Theresia van Essen 

b , Kristiaan M. Glorie 

c 

a Erasmus School of Economics, Erasmus University Rotterdam, P.O. Box 1738, 30 0 0DR Rotterdam, The Netherlands 
b Delft Institute of Applied Mathematics, Delft University of Technology, P.O. Box 5031, 2600GA Delft, The Netherlands 
c Erasmus Quantitative Intelligence, Erasmus University Rotterdam, P.O. Box 1738, 30 0 0DR Rotterdam, The Netherlands 

a r t i c l e i n f o 

Article history: 

Received 12 April 2017 

Accepted 28 May 2018 

Available online xxx 

Keywords: 

OR in health services 

Sterile inventory 

Integer Linear Programming 

Row & column generation 

Heuristics 

a b s t r a c t 

In order to perform medical surgeries, hospitals keep large inventories of surgical instruments. These in- 

struments need to be sterilized before each surgery. Typically the instruments are kept in trays. Multiple 

trays may be required for a single surgery, while a single tray may contain instruments that are required 

for multiple surgical procedures. The tray optimization problem (TOP) consists of three main decisions: 

(i) the assignment of instruments to trays, (ii) the assignment of trays to surgeries, and (iii) the num- 

ber of trays to keep in inventory. The TOP decisions have to be made such that total operating costs are 

minimized and such that for every surgery sufficient instruments are available. This paper presents and 

evaluates several exact and heuristic solution methods for the TOP. We compare solution methods on 

computation time and solution quality. Moreover, we conduct simulations to evaluate the performance of 

the solutions in the long run. The novel methods that are provided are the first methods that are capable 

of solving instances of realistic size. The most promising method consists of a highly scalable advanced 

greedy algorithm. Our results indicate that the outcomes of this method are, on average, very close to 

the outcomes of the other methods investigated, while it may be easily applied by (large) hospitals. The 

findings are robust with respect to fluctuations in long term OR schedules. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Throughout the developed world, health care costs have shown

 tremendous increase over the last decades. Since 1970 the in-

ation adjusted government spending on health care has risen by

early 5% per year ( Hagist & Kotlikoff, 2005 ), currently averaging

% of gross domestic product ( OECD, 2014 ). At the same time,

atient waiting lists have become longer and are nowadays a

ajor problem ( Worthington, 1991 ). Managerial effort s to control

he steeply rising health care costs and long patient waiting lists

ave not only placed attention on main health care processes,

ut have focused especially on efficiency management of various,

riorly neglected, side processes. One such side process which has

eceived recent attention is hospital sterilization logistics. 

Hospital sterilization logistics is a relatively large side process

n the hospital sector. Hospitals in developed countries typically

ave invested millions of euros in sterile instruments used for

urgeries and other procedures. Optimizing the logistic design of

he sterilization processes can free substantial amounts of money

nd working capital. It is estimated that in a small country such
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s the Netherlands, the saving potential is well over 100 million

uros ( van de Klundert, Muls, & Schadd, 2008 ). Moreover, the

ptimization of the sterilization logistics can lead to increased

hroughput, allowing more patients to be helped in a fixed time

rame. This can help reduce patient waiting lists and reduce

pportunity cost of health care which is currently not provided. 

In this paper, we focus on the inventory management of sterile

nstruments. These sterile instruments flow in a return cycle be-

ween the central sterilization department (CSD) and for instance

he operating theater. The sterile instruments are mostly grouped

n special trays. Such a tray can contain the items needed for a

articular surgery, but it can also happen that the content of a

ray is needed for several types of surgery, or that one type of

urgery requires multiple trays of different types. Hospitals face

hree questions regarding the management of instrument trays: (i)

ow many trays of each type should be obtained, (ii) how should

he tray types be composed, and (iii) how should the tray types

e assigned to surgeries? The problem of optimizing the tray

omposition is called the tray optimization problem (TOP). 

The first two questions of the TOP are interlinked: the number

f required trays and instruments depends largely on the com-

osition of the trays. Optimizing the composition of trays can

ead to substantial cost savings and to increased availability of

nstruments, see van de Klundert et al. (2008) . In this research,
he tray optimization problem, European Journal of Operational 
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costs for new tray type. 
we investigate ways for solving the TOP to minimize cost whilst

guaranteeing instrument availability. 

Substantial savings can already be achieved by removing un-

used instruments from the existing trays. The contents of a tray

develop historically as new surgeons place additional instruments

on a tray while the instruments used by retired surgeons remain

on the tray. In addition, surgeons may prefer different instruments

for the same surgery which increases the inventory and steriliza-

tion costs. By reaching consensus on which instruments to use for

each surgery type, substantial savings can be made. 

As mentioned, even higher cost savings can be achieved by

composing the trays from scratch by solving the TOP. Currently,

only few papers consider this tray optimization problem. Van de

Klundert et al. (2008) present an Integer Linear Program (ILP) to

solve the TOP. However, the authors also prove that the TOP is NP-

hard, and therefore, no solution is guaranteed within polynomial

time. 

Reymondon, Pellet, and Marcon (2008) introduce a Simulated

Annealing (SA) approach to solve the TOP. As the computation

time for the presented SA approach is still extremely long for

realistic instance sizes, they also introduce a simpler heuristic.

This heuristic starts with two extreme solutions, namely (i) one

tray for each instrument, and (ii) one tray for each surgery type.

For both extreme solutions, the cost per instrument is calculated.

If it is cheaper to individually wrap an instrument, this particular

instrument is removed from the trays in the second extreme

solution. A next step would be to distribute the individually

wrapped instruments over the created trays to further reduce

costs. However, this step is not yet implemented. 

The contribution of this paper is threefold. First, we give an

overview of the existing models and solution approaches for the

TOP. Second, we present three new solution methodologies. The

first one is based on delayed row & column generation ( Muter,

Birbil, & Bülbül, 2013 ), the second is a greedy heuristic, and the

third is a genetic algorithm. Third, we compare the new solution

methodologies to the existing approaches on several problem in-

stances derived from real-world data sets. We perform numerical

experiments to assess both the quality and the computation time

of the solution approaches. 

A key aspect of the TOP is that the composition of the trays and

the assignment of trays to surgeries is considered simultaneously.

A similar structure is observed in many other applications as well.

For example, consider a workforce consisting of employees with

different skill sets. A number of tasks is given that all require a

set of skills and have to be performed by a group of employees. In

order to be able to manage the workforce smoothly, the employees

are distributed over teams. Then, the teams are assigned to the

tasks. In this assignment, it must be ensured that the employees in

a team have the required skills for the tasks the team is assigned

to. The approaches described in this paper can be applied to this

problem as well. 

This paper is structured as follows. In Section 2 , we formally

introduce the problem. In addition, we describe several variants

for the objective function and capacity constraints. In Section 3 ,

several exact and heuristic solution approaches are described.

A simulation approach to compare the developed solution ap-

proaches in a realistic setting is introduced in Section 4 . In

Section 5 , we describe and analyze the computational results

for the introduced solution methods and their performance in

the simulation study. Section 6 presents conclusions and gives

recommendations for future research. 

2. Problem formulation 

The basis of the considered problem is creating instrument

trays and assigning these instrument trays to surgeries. The instru-
Please cite this article as: T. Dollevoet et al., Solution methods for t

Research (2018), https://doi.org/10.1016/j.ejor.2018.05.051 
ent trays are created by assigning several instruments to a tray

hile respecting some capacity constraints which are described in

ection 2.1 . The created instrument trays are assigned to surgeries

uch that for each surgery the required instruments are available

n the assigned instrument trays. The set of instruments is given

y set I , the set of surgeries by set J , and the set of instrument

rays by set K . Integer variable X ik denotes the amount of instru-

ents i ∈ I assigned to instrument tray k ∈ K . Integer variable Y jk 
ndicates how many instrument trays of type k ∈ K are assigned to

urgery j ∈ J . For each surgery j ∈ J , the number of instruments of

ype i ∈ I needed to perform this surgery is given by parameter d ij .

hen, the following constraint ensures that at least d ij instruments

f type i ∈ I are available in the instrument trays k ∈ K assigned to

urgery j ∈ J . 
 

k ∈ K 
X ik Y jk ≥ d i j , ∀ i ∈ I, j ∈ J. (1)

Note that this constraint is non-linear, however, it can be easily

inearized as shown in Section 3 . 

.1. Capacity restrictions 

As mentioned, the created instrument trays must respect some

apacity constraints. Normally, a tray has a restriction on the

eight and volume it can contain. To specify the restrictions on

he total weight and volume a tray can contain, we introduce αi 

nd β i as the volume and weight of instrument i ∈ I , respectively.

he maximum allowed weight and volume on a tray is given by r α
nd r β , respectively. This leads to the following two constraints. 

 

i ∈ I 
αi X ik ≤ r α, ∀ k ∈ K, (2)

 

i ∈ I 
βi X ik ≤ r β, ∀ k ∈ K. (3)

However, in practice, the weight and volume of the instruments

ay not be available. Therefore, an alternative is to limit the num-

er of instruments that can be placed on a certain tray. This can

e done with the following constraint, where r γ represents the

aximum number of instruments allowed on a tray. 
 

i ∈ I 
X ik ≤ r γ , ∀ k ∈ K. (4)

These three constraints can also be summarized into the

ollowing constraint: 
 

i ∈ I 
p n i X ik ≤ r n , ∀ k ∈ K, n ∈ N, (5)

here N = { 1 , 2 , 3 } is the set of characteristics of the instruments

nd trays. In particular, p 1 
i 

= αi , p 2 
i 

= βi , p 3 
i 

= 1 , r 1 = r α, r 2 = r β
nd r 3 = r γ . 

Note that it is preferred to consider the weight and volume of

he instruments when filling the instrument trays. This informa-

ion should in general be known by the manufacturer, but in case

his information is not available, Constraint (4) can be used. 

.2. Objective function 

The preferred assignment made by variables X ik and Y jk is the

ne that minimizes the total incurred costs. These costs can be

ivided into several parts, namely: 

• fixed periodic costs, 
• sterilization costs, 
• handling costs, 
•

he tray optimization problem, European Journal of Operational 
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.2.1. Fixed periodic costs 

The fixed periodic costs consist of several parts, namely acquir-

ng or depreciation costs and storage costs. These fixed periodic

osts can be specified for instrument i ∈ I by a i and for each tray

y c 1 . To determine the total fixed periodic costs, we need to

now how many trays of type k ∈ K should be acquired, which is

enoted by variable N k . Usually, a tray can only be used once a

ay due to the time needed to sterilize a tray and its instruments.

his means that when multiple surgeries needing tray k ∈ K are

cheduled on the same day, more trays of this type are needed.

o determine these costs correctly, we thus need the OR-schedule.

he OR-schedule is described by parameter s jt which indicates the

umber of times surgery j ∈ J is performed on day t ∈ T . Here, set T

ives the set of days in the considered planning horizon. Then, the

otal fixed periodic costs are given by 
 

k ∈ K 

∑ 

i ∈ I 
a i X ik N k + c 1 

∑ 

k ∈ K 
N k , (6) 

here the value of N k is determined by 
 

j∈ J 
s jt Y jk ≤ N k , ∀ k ∈ K, t ∈ T . (7) 

Note that cost function (6) is non-linear, however, it can be

asily linearized as shown in Section 3 . 

Unfortunately, the OR-schedule may change over time and may

ven not be available. Therefore, another way to determine the

xed periodic costs is to use parameter m j which indicates an esti-

ation of the maximum number of times surgery j ∈ J is scheduled

n the same day. Then, the variable N k can be determined by 

 j Y jk ≤ N k , ∀ k ∈ K, j ∈ J. (8) 

The downside of this approach is that we do not consider the

ase that two types of surgeries needing the same instrument tray

re scheduled on the same day. Thus, this approach gives a lower

ound on the realized fixed periodic costs. An upper bound on the

xed periodic costs is given when the value of N k is determined

y 
 

j∈ J 
m j Y jk ≤ N k , ∀ k ∈ K. (9) 

.2.2. Sterilization costs 

The sterilization costs are incurred whenever an instrument

ray is sterilized after it has been used for surgery. In practice, all

nstruments placed on a tray used for surgery are sterilized, even

hough they might not have been used during surgery. Similarly as

or the fixed periodic costs, the sterilization costs can be divided

nto sterilization cost b i for instrument i ∈ I and sterilization cost

 2 for an instrument tray. The number of times f j a tray and its

nstruments are sterilized in a given planning horizon can be de-

uced from the OR-schedule s jt and is given by f j = 

∑ 

t∈ T s jt if an

R-schedule is available. When no OR-schedule is available, often

n estimate of f j can be made which can be used to determine the

terilization costs as follows: 
 

k ∈ K 

∑ 

i ∈ I 

∑ 

j∈ J 
b i f j X ik Y jk + c 2 

∑ 

k ∈ K 

∑ 

j∈ J 
f j Y jk . (10) 

.2.3. Handling costs 

The third mentioned costs are the handling costs. These are

he costs for preparing instrument trays to be used during surgery.

hese costs are defined by the number of times f j a certain

nstrument tray is used during the planning horizon. The total

andling costs are given by the following formula, where c 3 gives

he handling costs for a tray: 

 3 

∑ ∑ 

f j Y jk . (11) 
k ∈ K j∈ J h

Please cite this article as: T. Dollevoet et al., Solution methods for t

Research (2018), https://doi.org/10.1016/j.ejor.2018.05.051 
.2.4. Costs for new tray type 

The costs mentioned last are the costs for creating a new tray

ype. These costs c 4 are incurred because creating a new tray

ype increases the amount of administrative work and inventory

ontrol. These costs thus depend on the number of tray types

hat are created. To determine this number, we introduce binary

ariable Z k which indicates whether tray type k ∈ K is used, i.e.,

hether one or more instruments are assigned to this tray type.

his leads to the following costs: 

 4 

∑ 

k ∈ K 
Z k , (12) 

here the value of Z k is determined by 

 k ≤ MZ k , ∀ k ∈ K, (13) 

ith M a sufficiently large number. 

If costs c 4 are not known, we can also put a limit r on the

umber of created tray types. This can be achieved with the

ollowing two constraints: 

 k ≤ MZ k , ∀ k ∈ K, (14) 

 

k ∈ K 
Z k ≤ r. (15) 

. Solution methodology 

In the previous section, we have introduced the TOP and

pecified the objective function and all the relevant constraints.

e noted that Constraint (1) and the cost contributions in (6) and

10) are non-linear in the decision variables. In this section,

e present several solution methods to solve the TOP. First, we

resent an exact formulation in which the quadratic terms are

inearized. Then, we present four heuristic approaches. The first

ne is based on row & column generation. The second one is a

reedy construction heuristic. The third heuristic applies simulated

nnealing and the fourth one a genetic algorithm. 

.1. Exact solution method 

In this section, we formulate the problem defined in

ection 2 as an Integer Linear Program (ILP). This ILP is based on

he model presented by van de Klundert et al. (2008) . Its main

eature is a linearization of the terms X ik Y jk and X ik N k . In order

o linearize these terms, the variable X ik is first written as a sum

f binary variables X̄ lk , where the index l ranges over a set of

nstruments specimen of type i : 

 ik = 

∑ 

l∈ L i 
X̄ lk . (16) 

ecall that the index i ∈ I indicates the instrument type . This means

hat if instruments of a certain type i ∈ I might appear more than

nce in a tray, there are several variables X̄ lk corresponding to

nstruments of type i . In order to determine the required size

f the set L i , define D i = max j∈ J d i j as the maximum number of

nstruments of type i needed for a surgery. Given that surgeries

equire at most D i instruments of type i , each tray will contain

t most D i instruments of type i as well. Therefore, we need D i 

lements in the set L i . Note that the set L i is pseudo-polynomial

n size. Second, we introduce variables Q 

1 
jkl 

and Q 

2 
kl 

that represent

he products Y jk ̄X lk and N k ̄X lk , respectively. By definition, it then

olds for all i ∈ I , j ∈ J and k ∈ K that 
he tray optimization problem, European Journal of Operational 
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F  

T  
∑ 

l∈ L i 
Q 

1 
jkl = 

∑ 

l∈ L i 
Y jk ̄X lk = Y jk 

∑ 

l∈ L i 
X̄ lk = Y jk X ik . 

Similarly, for all i ∈ I and k ∈ K , we have ∑ 

l∈ L i 
Q 

2 
kl = 

∑ 

l∈ L i 
N k ̄X lk = N k 

∑ 

l∈ L i 
X̄ lk = N k X ik . 

Using the equations above, the TOP can be formulated as follows: 

min c 1 
∑ 

k ∈ K 
N k + (c 2 + c 3 ) 

∑ 

k ∈ K 

∑ 

j∈ J 
f j Y jk + c 4 

∑ 

k ∈ K 
Z k 

+ 

∑ 

k ∈ K 

∑ 

i ∈ I 

∑ 

l∈ L i 

∑ 

j∈ J 
b i f j Q 

1 
jkl + 

∑ 

k ∈ K 

∑ 

i ∈ I 

∑ 

l∈ L i 
a i Q 

2 
kl (17)

such that 

Q 

1 
jkl ≤ Y jk , ∀ j ∈ J, k ∈ K, i ∈ I, l ∈ L i , (18)

Q 

1 
jkl ≤ M 1 ̄X lk , ∀ j ∈ J, k ∈ K, i ∈ I, l ∈ L i , (19)

Q 

1 
jkl ≥ M 1 ( ̄X lk − 1) + Y jk , ∀ j ∈ J, k ∈ K, i ∈ I, l ∈ L i , (20)

Q 

2 
kl ≤ N k , ∀ k ∈ K, i ∈ I, l ∈ L i , (21)

Q 

2 
kl ≤ M 2 ̄X lk , ∀ k ∈ K, i ∈ I, l ∈ L i , (22)

Q 

2 
kl ≥ M 2 ( ̄X lk − 1) + N k , ∀ k ∈ K, i ∈ I, l ∈ L i , (23)

∑ 

k ∈ K 

∑ 

l∈ L i 
Q 

1 
jkl ≥ d i j , ∀ i ∈ I, j ∈ J, (24)

∑ 

i ∈ I 
p n i 

∑ 

l∈ L i 
X̄ lk ≤ r n , ∀ k ∈ K, ∀ n ∈ N, (25)

∑ 

j∈ J 
s jt Y jk ≤ N k , ∀ k ∈ K, t ∈ T , (26)

N k ≤ MZ k , ∀ k ∈ K, (27)

Q 

1 
jkl ∈ N , ∀ j ∈ J, i ∈ I, l ∈ L i , k ∈ K, (28)

Q 

2 
kl ∈ N , ∀ i ∈ I, l ∈ L i , k ∈ K, (29)

 jk ∈ N , ∀ j ∈ J, k ∈ K, (30)

N k ∈ N , ∀ k ∈ K, (31)

X̄ kl ∈ { 0 , 1 } , ∀ k ∈ K, i ∈ I, l ∈ L i , (32)

Z k ∈ { 0 , 1 } , ∀ k ∈ K. (33)

The objective function contains all terms presented in Sections 2.2 .

It has been linearized by replacing the quadratics terms, X̄ lk Y jk and

X̄ lk N k , by Q 

1 
jkl 

and Q 

2 
kl 

, respectively. Constraints (18) –(20) make

sure that the variables Q 

1 
jkl 

obtain their correct value. Here, M 1 is
Please cite this article as: T. Dollevoet et al., Solution methods for t

Research (2018), https://doi.org/10.1016/j.ejor.2018.05.051 
n upper bound on the number of times a certain tray is used for

he same surgery. Similarly, Constraints (21) –(23) make sure that

he variables Q 

2 
lk 

obtain their correct value. The parameter M 2 is

n upper bound on the number of trays of a certain type that are

eeded. Constraints (24) ensure that the required instruments are

vailable for each surgery. Constraints (25) impose capacity restric-

ions for the trays. Constraints (26) compute the number of trays of

ach type that are needed. If the surgery schedule is not available,

his constraint can be replaced by (8) or (9) . Constraints (27) en-

ure that the number of different tray types is counted correctly.

he other constraints give the ranges of the decision variables. 

Note that the set K of instrument trays is assumed given. This

eans that the maximum number of trays to be formed is input

o the model and must be specified before the model can be

olved. In our computational experiments, the size of the set K is

ased on the solution of the greedy heuristic, which is described

n Section 3.2.2 . 

Note that the number of constraints in this formulation is

seudo-polynomial and that it requires many decision variables.

n particular, for every combination of j ∈ J , k ∈ K , i ∈ I and l ∈ L i ,

 decision variable Q 

1 
jkl 

and three constraints are introduced.

herefore, for real-life instances, this ILP might become huge.

urthermore, because of the big- M constraints that are needed

or the linearization, the LP-bounds might be relatively weak. In

rder to improve the quality of the LP-relaxation, we can add the

ollowing valid inequalities to the formulation. 
 

k ∈ K 
N k ≥

∑ 

j∈ J 
s jt , ∀ t ∈ T , (34)

 

k ∈ K 

∑ 

l∈ L i 
X̄ lk ≥ 1 , ∀ i ∈ I. (35)

onstraints (34) ensure that the number of trays that are acquired

s larger than the number of surgeries on each day. This holds

ecause for all surgeries on a given day, at least one tray must be

cquired. Constraints (35) make sure that at least one instrument

f every type is present in the collection of trays. 

Another concern with the formulation is the symmetry that is

resent. To give an example of this symmetry, consider two indices

 1 , k 2 ∈ K . If one would, for a given solution, replace the values of

ll decision variables with index k 1 for those with index k 2 and

ice versa, the same solution would be obtained. A consequence

f symmetries like these are a multitude of feasible solutions

ith exactly the same solution value. This might lengthen the

omputation time considerably. 

By introducing symmetry-breaking constraints into the model,

he number of solutions with exactly the same objective value

an be reduced. As stated by Sherali and Smith (2001) , such

ymmetry-breaking constraints might shorten the computation

ime. One way of breaking symmetry in the model is to ensure

hat the trays generated are ranked in a certain order. For example,

ne could make sure that the trays that are not used are those

ith higher indices k . In order to do so, denote K = { 1 , 2 , . . . , | K|} .
he following constraints can be added to the model. 

 1 ≥ Z 2 ≥ . . . ≥ Z | K| . (36)

ne other way to rank the trays would be to sort them by the

umber of instruments included in the trays. The number of

nstruments in a given tray k ∈ K can be found by summing over

he variables X̄ lk . This leads to the following symmetry-breaking

onstraints: 
 

i ∈ I 

∑ 

l∈ L i 
X̄ l1 ≥

∑ 

i ∈ I 

∑ 

l∈ L i 
X̄ l2 ≥ · · · ≥

∑ 

i ∈ I 

∑ 

l∈ L i 
X̄ l| K| . (37)

inally, we note that other linearizations than (16) are possible.

wo alternative linearizations, based on the unary and binary
he tray optimization problem, European Journal of Operational 
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xpansion of the integer variables to be multiplied, have been

roposed by Harjunkoski, Pörn, Westerlund, and Skrifvars (1997) .

hese linearizations can be applied to the TOP as well. 

.2. Heuristic solution methods 

In the previous section, we formulated the TOP as an ILP. This

LP contains many decision variables and big- M constraints. As a

onsequence, it might be impossible to find a solution for larger,

eal-world TOP instances. In this section, we develop four heuristic

pproaches to find a feasible solution to the TOP. 

.2.1. Delayed row & column generation 

In this section, we develop a row & column generation ap-

roach to solve the linear relaxation of the TOP. The theory on

ow & column generation has been introduced by Muter et al.

2013) and applied to time-constrained routing by Muter, Birbil,

nd Bülbül (2018) ; Muter, Birbil, Bülbül, and Ş ahin (2012) . 

The key aspect of this approach is that it considers a set of

iven instrument trays. As a consequence, for a tray k ∈ K , the

umber of instruments X ik is a parameter instead of a variable.

o emphasize this aspect, we denote for a given tray k ∈ K , the

arameter x ik as the number of instruments of type i in tray k . 

We start with a given set of trays K̄ ⊆ K. Then, we alternately

olve a master problem with this reduced set of trays and a

ricing problem where we generate new trays that can be added

o the set K̄ . When adding a newly generated tray k to the set K̄ ,

e also have to add constraints to the master problem. We have

o take this into account when solving the pricing problem. The

LP formulation of the TOP, with a given set of instrument trays K̄ ,

eads as follows: 

in 

∑ 

k ∈ ̄K 
c 4 Z k + 

∑ 

k ∈ ̄K 
c 1 k N k + 

∑ 

k ∈ ̄K 
c 2 k 

∑ 

j∈ J 
f j Y jk (38) 

uch that 
 

k ∈ ̄K 
Y jk x ik ≥ d i j , ∀ i ∈ I, j ∈ J, (39) 

 

j∈ J 
s jt Y jk ≤ N k , ∀ k ∈ K̄ , t ∈ T , (40) 

 k ≤ MZ k , ∀ k ∈ K̄ , (41) 

 k ∈ N , ∀ k ∈ K̄ , (42) 

 jk ∈ N , ∀ k ∈ K̄ , j ∈ J, (43) 

 k ∈ { 0 , 1 } , ∀ k ∈ K̄ . (44) 

ere, we define the cost parameters c 1 
k 

and c 2 
k 

as follows: 

 

1 
k = c 1 + 

∑ 

i ∈ I 
a i x ik , 

 

2 
k = c 2 + c 3 + 

∑ 

i ∈ I 
b i x ik . 

rom now on, we refer to this problem of assigning a given set of

rays to surgeries as the tray assignment problem . It is proven in

ppendix B that this problem is NP-complete as well. Note that

onstraints (39) are the only constraints coupling the different

rays. If we would dualize these constraints into the objective

unction, the problem would decompose over the tray types. This
Please cite this article as: T. Dollevoet et al., Solution methods for t
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bservation is key for our row & column generation framework. 

As is common for a column generation approach, we solve

he LP-relaxation of the above ILP for a given set K̄ of tray types.

iven the dual solution to this problem, we generate new tray

ypes in a pricing problem and add these to the set K̄ . We repeat

his procedure until no tray types with negative reduced costs

an be found. When solving the pricing problem, we generate

omplete tray types: we simultaneously add the variables Z k ,

 k , and Y jk and Constraints (40) to the LP. When solving the

ricing problem, we therefore have to anticipate the dual values

f the constraints currently missing from the master problem. It is

roven in Appendix A that the reduced costs of a given tray k ∈ K

re given by the following linear program: 

 k (λ) = min 
c 4 
M 

+ c 1 + 

∑ 

i ∈ I 
a i x ik + 

∑ 

j∈ J 

( 

(c 2 + c 3 ) f j + 

∑ 

i ∈ I 
(b i f j − λi j ) x ik 

) 

Y jk 

uch that 
 

j∈ J 
s jt Y jk ≤ 1 , ∀ t ∈ T , 

Y jk ≥ 0 , ∀ j ∈ J. 
ere, the variables λij are the dual multipliers corresponding to

onstraints (39) . If there does not exist a new tray k ∈ K \ K̄ with

egative reduced costs, we obtained the optimal solution to the

P-relaxation of the TOP. (The proof is given in the appendix.)

therwise, if a tray k ∈ K \ K̄ with negative reduced costs exists,

e add it to the set K̄ and repeat the procedure. 

In order to determine whether z k ( λ) is positive for all k ∈ K \ K̄ ,

e solve the following non-linear pricing problem. Note that we

ave omitted the index k from the X - and Y -variables for brevity

urposes. 

 PP (λ) = min 
c 4 
M 

+ c 1 + 

∑ 

i ∈ I 
a i X i + 

∑ 

j∈ J 

( 

(c 2 + c 3 ) f j + 

∑ 

i ∈ I 
(b i f j − λi j ) X i 

) 

Y j 

uch that 
 

i ∈ I 
p n i X i ≤ r n , ∀ n ∈ N, 

 

j∈ J 
s jt Y j ≤ 1 , ∀ t ∈ T , 

X i ∈ N , ∀ i ∈ I, 
Y j ≥ 0 , ∀ j ∈ J. 

n order to solve this non-linear program, we first linearize it and

hen solve it as an ILP using a commercial solver. For complete-

ess, the linearization is given in the appendix. The solution of

his pricing problem is a new tray that should be added to the set
¯
 . By iterating this process, the linear relaxation of the TOP can

e solved. The next step is to find an integer solution. In order to

o so, we apply a commercial solver to the ILP (38) –(44) using all

rays that are generated when solving the linear relaxation. 

.2.2. Greedy heuristic 

In Section 3.2.1 , the quadratic terms in the model were dealt

ith by decomposing the TOP into a pricing problem of composing

he trays and a master problem of assigning the trays to surgeries.

or a given set of trays, the master problem is to decide which

rays to use and which trays to assign to each surgery. We now

escribe an alternative approach to decide on the tray composi-

ion. In this approach, the composition of the trays is generated

ia a greedy heuristic. 

For this greedy heuristic, we generate a set of trays and de-

ermine the optimal selection of the trays to be used and the

ssignment of trays to surgeries by (38) –(44) . 
he tray optimization problem, European Journal of Operational 
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A tray is specified by how many instruments of each instru-

ment type i ∈ I are placed on this tray. The set of trays used in

solving the ILP given by (38) –(44) is determined by the greedy

heuristic. We include nine options for constructing trays which

guarantee a feasible solution to our original problem. 

1. Create trays for each surgery type j ∈ J . For each instrument i ∈ I ,

we add d ij instruments to the tray until the tray is full, i.e., if

the next instrument type would be added, Constraint (5) would

be violated. In this case, we open a new tray and continue the

process. 

2. Sort the surgeries in decreasing order of �i ∈ I d ij . For each

surgery j ∈ J , add an instrument type to the tray if this instru-

ment is used for surgery j ∈ J and if this instrument is not yet

added to another tray in this step. For this instrument type

i ∈ I , we add max j ∈ J d ij instruments to the tray. If Constraint

(5) is violated, we open a new tray. 

3. Sort the instrument types in decreasing order of the number of

surgeries that use this instrument type. Then, fill the tray with

max j ∈ J d ij instruments of this type. If Constraint (5) is violated,

we open a new tray. 

4. Same as 3. except that we add 

⌈ ∑ 

j∈ J d i j 

| J| 
⌉ 

instruments of type

i ∈ I to the tray. 

5. Same as 3. except that we add one instrument of type i ∈ I to

the tray. 

6. Create trays with instruments needed for all surgeries. For each

instrument i ∈ I that is used for all surgeries, add max j ∈ J d i j 
instruments of this type to the tray. If Constraint (5) is violated,

we open a new tray. 

7. Same as 6. except that we add 

⌈ ∑ 

j∈ J d i j 

| J| 
⌉ 

instruments of type

i ∈ I to the tray. 

8. Same as 6. except that we add one instrument of type i ∈ I to

the tray. 

9. Create trays with instruments needed for only one surgery. For

each surgery j ∈ J , add d ij instruments of type i ∈ I to the tray if

this instrument is only used for this surgery. If Constraint (5) is

violated, we open a new tray. 

After these instrument trays are generated, we solve the ILP

given by (38) –(44) to determine which trays will be used and to

determine the assignment of the chosen trays to the surgeries. 

3.2.3. Simulated annealing 

The approach described in this section is similar to the greedy

heuristic described in Section 3.2.2 , however, the initial set of

trays found by the greedy heuristic is further improved by using

simulated annealing as proposed by Reymondon et al. (2008) .

Simulated annealing has proven to be very effective for solving

large-scale combinatorial optimization problems (see Kirkpatrick,

Gelatt, & Vecchi, 1983 ). In this section, we develop a simulated

annealing algorithm for the TOP. 

Simulated annealing is a local search heuristic specially de-

signed to escape from local minima. In every iteration, a feasible

solution is slightly modified and evaluated. If the solution quality

has improved, the new solution is accepted. In plain local search

approaches, the new solution is rejected if the solution quality

deteriorates. By doing so, the algorithm might get stuck in a local

minimum. In simulated annealing, a solution with a worse quality

is therefore accepted with a certain probability. This probability

depends on the quality decrease and on a parameter called the

temperature. By decreasing the temperature during the execution

of the algorithm, the algorithm rejects more solutions with a

worse quality in later iterations. In contrast, in early stages of the

algorithm, when the temperature is higher, the method is able

to escape from local minima. In what follows, we describe how

to evaluate a given solution, which modifications of the current
Please cite this article as: T. Dollevoet et al., Solution methods for t

Research (2018), https://doi.org/10.1016/j.ejor.2018.05.051 
olution are allowed, and which cooling scheme we employ. The

nitial solution for SA is determined by the greedy heuristic. 

In the simulated annealing algorithm, a solution s is repre-

ented by a set of trays. For a given set of trays, the used ILP solver

s given a fixed amount of time to determine the assignment of

rays to surgeries using the ILP given by (38) –(44) . The value of

he objective function given by (38) represents the solution value

f s which is denoted by f ( s ). Note that the costs of composing the

rays are included in (38) . 

For a given solution s 1 , we apply one of the following modifi-

ations with equal probability to obtain a neighbour solution s 2 . 

1. Exchange of instruments: randomly select two trays. Randomly

select one instrument from the first tray and place it on the

second tray. Then, randomly select one instrument from the

second tray and place it on the first tray. 

2. Adding instruments: randomly select a tray. Then, randomly

select one instrument type and add a random number of

instruments of this type to the selected tray. 

3. Removing instruments: randomly select a tray. Then, randomly

select one instrument type and remove a random number of

instruments of this type from the selected tray. 

4. Exchange for one instrument type: randomly select two trays.

Then, randomly select one instrument type and exchange all

instruments of this type between the two selected trays. 

5. Exchange for multiple instrument types: randomly select

two trays. Next, randomly select two different instrument

types from the ordered set of instrument types, where the

instruments are ordered by their index. Then, exchange all

instruments of the instrument types that are in between the

two selected instrument types between the two selected trays.

More specifically, for each instrument type between the two

selected instrument types, the total number of instruments of

this type is exchanged between the two trays. 

If the modification applied to s 1 leads to trays violating

onstraint (5) , we reset the solution to s 1 and apply another mod-

fication. This step is repeated until a new solution s 2 is obtained

or which none of the trays violate (5) . 

After a new solution s 2 is obtained, we determine the objective

unction value f ( s 2 ). If f ( s 2 ) ≤ f ( s 1 ), we always accept s 2 as the

urrent solution. Otherwise, if f ( s 2 ) > f ( s 1 ), we accept the new

olution with a probability 

p(s 1 , s 2 ) = exp 

(
f (s 1 ) − f (s 2 ) 

T 

)
, 

here T is the current temperature. The temperature T equals T at

nitialization and decreases during the execution of the algorithm.

n our implementation, the temperature is multiplied by a factor

< 1 every N iterations. The algorithm terminates if T < T . The

arameters T , T , α and N are control parameters of the algorithm

nd are specified in Section 5 . 

.2.4. Genetic algorithm 

In this section, we describe a Genetic Algorithm (GA) to im-

rove the initial set of instrument trays found by the greedy

euristic described in Section 3.2.2 . GA is a probabilistic search

lgorithm, which imitates the process of natural selection and

volution. The process starts with an initial population of solu-

ions, where solutions are treated as individuals, also denoted

y chromosomes. The fitness of each individual is based on the

orresponding objective function value. Pairs of individuals of a

iven population are selected to act as parents and reproduce

he next population of better individuals through a structured yet

andomized information exchange, known as crossover. Diversity

s added to the population by mutation. Unfit individuals in the
he tray optimization problem, European Journal of Operational 
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opulation are replaced using the concept of survival of the fittest.

his evaluation-selection-reproduction cycle is repeated until a

atisfactory solution is found or other stopping criteria are met. 

In our implementation of GA, an individual or chromosome

epresents a tray, where the tray is encoded by how many instru-

ents of each instrument type i ∈ I are placed on this tray. Our

mplementation of GA differs from the way we implemented SA

s we consider the trays to be the individuals in our population

nstead of a feasible combination of trays. This is because gen-

rating a feasible combination of trays from two other feasible

ombinations of trays is not trivial. In contrast, generating a single

ew tray from two other feasible trays is much easier to imple-

ent. Thus, our approach for GA is slightly different from standard

A, as multiple individuals are needed to provide a solution to

ur original problem. As in the other described heuristic solution

ethods, our set K̄ consists of the trays in our population, which

eans that x ik is an input parameter instead of a variable. Given a

ertain population, the ILP given by (38) –(44) has to be solved to

nd a solution to our original problem. 

As previously stated, the initial population is given by the set

f instrument trays generated by the greedy heuristic. In the next

ections, we describe how we determine the fitness value of each

ndividual and our reproduction scheme. 

Fitness function. As we need several trays to form a feasible

olution, it is hard to define a fitness value for each individual. We

ave chosen to determine the fitness value by solving | ̄K | + 1 ILPs.

he used ILP solver is given a fixed amount of time to solve each

f these | ̄K | + 1 ILPs. The first ILP to be solved is the ILP given by

38) –(44) . This ILP determines a solution for our given population

epresented by set K̄ . After this, we solve another ILP for each

ray. If tray k ∈ K̄ is chosen in the solution to (38) –(44) , we solve

he ILP again without tray k ∈ K̄ . If tray k ∈ K̄ is not chosen in the

olution for (38) –(44) , we solve the ILP again with the additional

onstraint that tray k ∈ K̄ should be chosen. Then, we define the

tness value based on the following four criteria: 

1. Number of times T k that tray k ∈ K̄ is chosen in a solution of

one of the | ̄K | + 1 ILPs. 

2. Total number of trays NT k of type k ∈ K̄ chosen in the solutions

of the | ̄K | + 1 ILPs. 

3. The objective function if tray k ∈ K̄ is used in the solution, O k . 

4. The objective function if tray k ∈ K̄ is not used in the solution,

NO k . 

Using this information, the fitness value of tray k ∈ K̄ is given

y 

max 
k ′ ∈ ̄K 

O k ′ − O k 

)
+ 

(
(NO k − O k ) − min 

k ′ ∈ ̄K 
(NO k ′ − O k ′ ) 

)
+ ( T k + NT k ) . 

(45) 

The first part of the fitness value describes the relative advan-

age of using tray k ∈ K̄ in the solution compared to the other

rays in K̄ . In the second part of the fitness value, we consider the

ifference in the objective function when tray k ∈ K̄ is used or not.

or each tray k ∈ K̄ , we compare this to the minimum difference

ver all trays, which again gives the relative advantage. The third

art of the fitness value counts the number of times T k that a tray

f type k ∈ K̄ is selected in the solution of one of the | ̄K | + 1 ILPs

nd the total number of trays NT k of type k ∈ K̄ that are selected

n the solutions of the | ̄K | + 1 ILPs. Note that the scale of the

alues of the various terms differs, however, this results exactly in

he scaling we want. 

Reproduction. In each iteration, we replace either a fixed num-

er of individuals by children or we replace all individuals that

ave not been selected in all but one ILP solved to determine

he fitness function. Therefore, the size of the population does

ot change throughout the execution of the genetic algorithm. To
Please cite this article as: T. Dollevoet et al., Solution methods for t

Research (2018), https://doi.org/10.1016/j.ejor.2018.05.051 
eproduce children, we first have to select parents. In order to

o this, we first translate the fitness value to a probability such

hat the probabilities of all individuals together sum up to one. To

ctually reproduce a child, we consider four different methods. 

1. 1-point crossover: we randomly select two parents according

to their selection probability. Then, we randomly select an

instrument type from the ordered set of instrument types. For

the reproduced child, the number of instruments of the types

up till this instrument type are a copy of the first parent and

the number of instruments from this type on are a copy of the

second parent. 

2. 2-point crossover: we randomly select two parents according

to their selection probability. Then, we randomly select two

instrument types from the ordered set of instrument types.

Up till the first selected instrument type and from the second

instrument type on, the child is a copy of the first parent, and

from the first selected instrument type until the second se-

lected instrument type, the child is a copy of the second parent.

3. Uniform crossover: we randomly select two parents according

to their selection probability. Then, for each instrument type,

we randomly choose one of the parents to determine how

many instruments of that type will be placed on the tray for

the child. 

4. Cloning: we randomly select one individual to be cloned. 

After the reproduction process, we apply mutation. This means

hat the number of instruments of type i ∈ I placed on the tray

an be modified. For each instrument type i ∈ I , we apply mutation

ith a fixed mutation probability. If we apply mutation for instru-

ent type i ∈ I , the number of instruments of this type placed on

he tray is randomly generated and lies between 0 and max j ∈ J d ij . 
After a child is reproduced, we have to check if this child fulfills

he capacity constraints (5) . If not, we repeat the reproduction

rocess. 

The process ends after a fixed number of iterations V or if after

 fixed number of iterations W no improved solution is found with

 < V . 

. Simulation design 

To compare the performance of the algorithms, we use a

ealistic simulator based on actual data from Dutch hospitals. The

imulator is described in detail in van der Kooij (2015) . In this

ection, we briefly explain the main aspects of the simulation

rocedures and the data sets they are based on. We distinguish

etween instance generation, in which we use a simulator to gen-

rate instances to evaluate the performance at the planning stage,

nd dynamic simulations, in which we evaluate the performance

ver a longer time horizon. The former is useful for comparing

omputation times and optimality gaps of the various algorithms.

he latter is useful for comparing long term costs. 

.1. Data 

Our simulations are based on actual CSD data from two large

utch hospitals. We indicate these data sets as hospital 1 (H1) and

ospital 2 (H2). Table 1 gives an overview of the characteristics of

ach data set. In this table, ‘OR schedule’ refers to the availability

f a daily schedule of all surgeries, ‘Surgery frequencies’ refers

o the availability of surgery specific scheduling frequencies (the

verall number of times surgeries are performed in the data

et), ‘instrument demand’ refers to the instruments required per

urgery, and ‘current tray composition’ refers to a description of

he composition of the current trays and the quantities in which

hey are available. The other fields concern statistics regarding the

umber of surgeries in the data set, the number of instruments,
he tray optimization problem, European Journal of Operational 
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Table 1 

Characteristics of the two data sets. 

H1 H2 

OR schedule Yes Yes 

Surgery frequencies Yes Yes 

Instrument demand Yes Yes 

Current tray composition Yes –

# Surgeries 16 174 

# Instruments 87 1125 

# Days 365 337 

Annual tray depreciation 475 500 

Max # instruments per tray 60 65 

Sterilization costs 1 1 

Handling costs 20 20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Number of surgeries requiring an instrument for different categories of 

instruments. 

1: Rarely used 2: Moderately used 3: Frequently used 

instruments instruments instruments 

H1 0–5 6–8 8–16 

H2 0–40 40–100 101–152 
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the number of days in the OR schedule, the annual tray depre-

ciation costs, the maximum number of instruments per tray, the

sterilization costs, and the handling costs. 

As we do not have data on the weight and volume of the instru-

ments, each instrument is assigned a unit volume and unit weight.

4.2. Instance generation 

Instance generation is needed to evaluate how well algorithms

perform in the planning stage. The data sets themselves can be

used directly as instances. However, we also want to randomly

generate instances. Such random instance generation allows for a

larger variety of instances and for instances of larger size. 

An instance for the TOP consists of instrument demand, an

OR schedule, cost parameters and maximum tray sizes. The cost

parameters and maximum tray sizes will be directly inherited

from the hospital data set the new instance is based on. Therefore,

it remains to randomly generate instrument demand and an OR

schedule. 

In order to generate instrument demand and an OR schedule

for instances of arbitrary size, we make two assumptions. The first

assumption concerns the generation of instrument demand and

entails that the number of different instrument types required per

surgery does not change when the ratio between instrument types

and surgery types changes. In other words, we assume an individ-

ual surgery always requires about the same number of different

instrument types, irrespective of how many instrument types there

are in total. The second assumption concerns the generation of an

OR schedule and entails that the number of performed surgeries

increases linearly with the number of surgery types. 

In our instance generator, we randomly generate instances

based on one of the original data sets. This means that each gen-

erated instance is derived from either the H1 or the H2 data set. 

4.2.1. Generation of instrument demand 

In order to randomly generate instrument demand, we generate

instruments as well as surgeries that are not included in the orig-

inal data sets. The idea behind generating new instruments is that

each instrument is based on a random instrument from the orig-

inal instance (hospital data set). In our instance generator, a newly

generated instrument inherits the demand frequency (percentage

of surgeries demanding it) and the distribution of the demanded

amount per surgery of a randomly selected instrument in the

original data set. For each surgery requiring the new instrument,

we randomly generate the demanded amount from the empirical

distribution of the parent instrument. 

As with instrument generation, new surgeries are also based

on random surgeries from the original instance. Each surgery

requires a different set of instruments. Some surgeries may require

many specialized tools, while others may only require basic tools.

Based on data analysis, van der Kooij (2015) concludes that for H1
Please cite this article as: T. Dollevoet et al., Solution methods for t

Research (2018), https://doi.org/10.1016/j.ejor.2018.05.051 
nd H2, instruments can be categorized into three groups with a

ifferent demand frequency (number of surgeries for which the

nstrument is required): rarely used instruments, moderately used

nstruments and frequently used instruments. Table 2 shows the

emand frequencies for the different groups. A sur gery can be

haracterized by the number of instruments it needs from each of

he three instrument groups. When generating a new surgery, a

andom ‘parent’ surgery is selected from the original instance and

he new surgery inherits the number of instruments used from

ach instrument group. 

Formally, the process of instrument demand generation can

e described as follows. Let I and I ′ denote the set of all orig-

nal instrument types and the set of all new instrument types,

espectively, and let n I denote the number of new instruments

hat need to be generated. Similarly, let J and J ′ denote the set

f all original and all new surgery types, respectively, and let n J 
enote the number of surgeries that need to be generated. Let

 g ⊂ I and I ′ g ⊂ I ′ be the collections of all instruments belonging

o group g ∈ G = { 1 , 2 , 3 } . These groups represent the categories

f (1) rarely used instruments, (2) moderately used instruments,

nd (3) frequently used instruments, respectively. Let g i denote

he group of instrument i ∈ I and let f j , g and f ′ 
j,g 

be the number

f instrument types from group g ∈ G required by surgery j ∈ J and

 ∈ J ′ , respectively. Let p i and p ′ 
i 

denote the percentage of surgeries

emanding instrument i ∈ I and i ∈ I ′ , respectively, and let d i and

 

′ 
i 

denote the empirical distribution of the demanded amount

er surgery for instrument i ∈ I and i ∈ I ′ , respectively. Finally, let

 = { D i j } be the new instrument demand, with D ij ∈ N the number

f times instrument i ∈ I ′ is needed for surgery j ∈ J ′ . The new

nstrument demand can then be created using Algorithm 1 . 

.2.2. Generation of an OR schedule 

The OR schedule is a matrix with the surgeries as rows and the

ays as columns. The elements of the matrix indicate the number

f times that a particular surgery is performed on a particular day.

hen generating a new OR schedule based on an existing one, we

ant to preserve some characteristics of the original plan. There

re two different characteristics we want to maintain. The first

haracteristic is the week pattern for individual surgeries and the

econd characteristic is whether the plan for a particular surgery

an be modeled by a Poisson distribution. 

If, for a particular surgery, a Poisson distribution provides a

ignificant fit for the planning distribution, the parameter of the

oisson distribution has to be determined. In order to preserve

he week pattern in the new surgery plan, seven different λ’s

re computed, one for every day of the week. As estimator for

hese parameters, the Maximum Likelihood Estimator (MLE) for

he Poisson distribution, is used. This MLE is equal to the sample

ean for the respective day of the week. 

If, for a particular surgery, a Poisson distribution does not

rovide a significant fit for the planning distribution, the empirical

lanning distribution is used. In order to also preserve the week

attern in this case, the number of times a surgery is performed

n a given weekday in the new surgery plan is set equal to a

andom value in the past on the same weekday. 
he tray optimization problem, European Journal of Operational 
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Algorithm 1 Generation of instrument demand. 

1: procedure Demand–Generation 

2: set D ← 0 , I ′ ← 0 , J ′ ← 0 

3: for k = 1 . . . n I do 

4: draw a random instrument i from I 

5: set I ′ ← I ′ ∪ { i } , p ′ 
i 
← p i , d 

′ 
i 
← d i , I 

′ 
g i 

← I ′ g i ∪ { i } 
6: end for 

7: for k = 1 . . . n J do 

8: draw a random surgery j from J 

9: set J ′ ← J ′ ∪ { j} , f ′ 
j,g 

← f j,g ∀ g ∈ G 

10: end for 

11: for each j ∈ J ′ do 

12: for each g ∈ G do 

13: set S ← I ′ g 
14: for k = 1 . . . f ′ 

j,g 
do 

15: for each i ∈ S do 

16: compute π ′ 
i 

= p ′ 
i 
/ ( 

∑ 

i ′ ∈ S p ′ i ′ ) 
17: end for 

18: draw a random instrument i from S (every instru- 

ment a has a probability π ′ 
a of being selected) 

19: draw D i j from d ′ 
i 

20: set S ← S \ { i } 
21: end for 

22: end for 

23: end for 

24: end procedure 
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.3. Dynamic simulation 

Dynamic simulations are intended to evaluate the long term

osts associated with the tray compositions generated by the

lgorithms. As all algorithms optimize with respect to either

urgery frequencies or a fixed OR schedule, they are essentially

euristics to the dynamic setting in which the surgery plan is

ubject to change. At the very best, the frequencies with respect

o which is optimized can be considered as estimates of the actual

uture frequencies. Similarly, the fixed OR schedule with respect to

hich is optimized can only be considered to be a proxy of the OR

chedule over the entire time horizon. Of particular importance

o cost assessment is that optimal tray combinations may depend

n patterns of typical day combinations of surgeries. These factors

ake it important to assess long term costs in addition to the

osts determined in the static simulation procedures. 

For each algorithm, we use the following procedure to assess

ong term costs. First, an algorithm is used to construct a tray

omposition based on an instance generated by the static simu-

ation procedure described in Section 4.2 . Next, a realization of

he OR schedule is generated for a longer time period. This time

eriod contains twenty times the number of days of the original

R schedule. The tray composition is then evaluated based on this

ealization of the OR schedule. Outcome measures of interest are

he total sterilization and handling costs over the longer time pe-

iod, and the percentage of surgeries for which not all instruments

re available in time. 

We consider four methods for simulating an OR schedule: 

1. historical frequencies; 

2. perturbed historical frequencies; 

3. historical sampling; 

4. perturbed historical sampling. 

All methods rely on Monte Carlo simulation using 10 0 0

terations. 
Please cite this article as: T. Dollevoet et al., Solution methods for t
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.3.1. Historical frequencies 

The first method, ‘historical frequencies’, randomly allocates

urgeries to planning days based on relative historical frequencies

f surgery types. The number of surgeries scheduled on a day is

qual to the number of surgeries of a random day in the original

R schedule. 

.3.2. Perturbed historical frequencies 

The second method, ‘perturbed historical frequencies’, is similar

o the first method except that now the surgery type frequencies

re ex-ante perturbed by a perturbation factor. We consider a

erturbation factor of 10%. This means that if for a certain surgery

ype the historical frequency is, for example, 8%, then the per-

urbed frequency used to determine the actual planning is within

he range 7.2–8.8%. 

.3.3. Historical sampling 

The third method, ‘historical sampling’, uses sampling with

eplacement to assign to each planning day a surgery schedule

dentical to the schedule on a randomly selected historical plan-

ing day. This method preserves the day combinations of surgeries

n the planning stage, and therefore, none of the solutions should

ave a canceled surgery. 

.3.4. Perturbed historical sampling 

The last method, ‘perturbed historical sampling’, is similar to

he previous method except that now there is a 10% perturbation

or each assignment of a surgery to a planning day compared to

he historical planning day. To be more specific, each surgery that

s scheduled on a given historical planning day has a probability of

0% to be replaced by another surgery on the same day. The idea

ehind this method is to test what happens when small changes

ccur in the schedule. 

. Computational results 

In this section, we evaluate the performance of the TOP so-

ution methods presented in Section 3 . First, we consider the

erformance of each solution method on randomly generated in-

tances ( Section 5.1 ). Next, we consider how the solutions perform

ver a simulated longer time horizon ( Section 5.2 ). The latter is

articularly relevant as the solution methods optimize with re-

pect to a small planning horizon and, therefore, it is worthwhile

o know how the solution performance metrics, e.g., costs, over

he optimization horizon correspond to the performance metrics

ver a longer time horizon. 

We specifically test the following TOP solution methods:

reedy (GR), Column Generation with Greedy initial solution

CGG), Column Generation with Greedy trays (CG), Simulated

nnealing (SA), Genetic Algorithm (GA), Integer Linear Program

ith Greedy initial solution (ILPG), and Integer Linear Program

ithout Greedy initial solution (ILP) (see Section 3 for a descrip-

ion of all methods). Note that both CG and CGG first consider

he LP-relaxation of (38) –(44) . Here, both solution methods start

ith the trays generated by GR. Then, in order to find an integer

olution, an ILP including only the generated trays is solved. In

his step, CGG starts from the assignments of trays that is obtained

n GR whereas CG optimizes the tray assignment from scratch.

inally, ILP does not use any trays from GR at all to start with. 

Some of the algorithms require parameters to be set. We list

he values of the parameters used in our experiments for each

lgorithm below. 

• For GR, the tray assignment problem is solved to optimality. 
• For GA, 10 minutes of computation time is allowed each time

the tray assignment problem is solved in order to find the
he tray optimization problem, European Journal of Operational 
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Table 3 

Average computation time (in seconds) and standard deviation over 75 ran- 

domly generated instances based on the H1 and H2 datasets. 

GR CGG CG SA GA ILPG ILP 

Average H1 165 2842 2853 1907 807 3179 3107 

Std H1 636 1101 1111 1426 1240 1149 1227 

Average H2 4 2649 2646 1217 460 2773 2870 

Std H2 5 1132 1145 1239 891 1487 1430 
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costs of a solution. Most instances take only a few seconds to

solve, but for some of the instances, this implies that the costs

of a solution are not proven to be minimal. The population size

of GA is set to 40. 
• For SA, also 10 minutes of computation time is allowed when-

ever the tray assignment problem is solved. The number of

trays is set to 30. 
• For ILP and ILPG, the maximum number of instrument trays

that can be used is set two higher than the number of trays

in the solution obtained by GR. We have implemented three

approaches to linearize the integer program for the TOP. Here,

we report only the results that are obtained by using (16) .

Using the other linearizations, we obtained similar results.

We did not include any symmetry breaking constraints and

added only the valid inequalities (35) . With other settings we

obtained similar, but slightly worse results. 
• In CG and CGG, a maximum of 50 minutes of computation

time is reserved for generating new trays, while 10 minutes

are reserved for solving the tray assignment problem. In every

column generation iteration, the pricing problem is truncated

after 10 0 0 seconds. 

All tests are performed with an Intel Xeon E5-1620 v3 processor

and 16 gigabytes of RAM. We used Cplex 12.6.0 to solve the ILPs. 

5.1. Performance evaluation on randomly generated instances 

In order to compare the performance of the TOP solution meth-

ods presented in Section 3 , we randomly generate 150 instances

using the instance generator described in Section 4.2 . Half of the

instances (75) are generated based on the H1 data set, and half

(75) are generated based on the H2 data set (see Section 4.1 for

a description of the data sets). The instances vary with respect to

the number of instruments (25, 50, 75, or 100), the number of

surgeries (10, 15, 20, 30, or 50) and the number of days in the

planning horizon (10, 20, or 40). For each instance and method,

we allow a maximum computation time of 3600 seconds in order

to make a fair comparison between solution methods. 

Table 3 displays the average computation time and the standard

deviation of the computation time over all instances (nota bene:

computation time is capped at 3600 seconds). The greedy algo-

rithm has the overall shortest computation time, followed by the

genetic algorithm and then simulated annealing. The substantial

difference in computation time for the greedy algorithm between

the H1 and H2 based instances is caused by five instances in the

H1 set for which the ILP solver used by the greedy algorithm has

difficulty solving the underlying ILP. For all solution methods, the

standard deviation of the computation time is substantial. In order

to better analyze the relationship between the size of the instances

and the computation time, we next study the computation times

in more detail. 

Fig. 1 displays a plot of the average computation time versus

instance size (the number of variables in the problem formulation

of Section 2 ) for GR, CGG, SA, GA, and ILPG. We have excluded

ILP and CG from these plots, because they are outperformed by

their counterparts ILPG and CGG. The plots are based on both H1

and H2 instances. GR has a reasonably low computation time for
Please cite this article as: T. Dollevoet et al., Solution methods for t

Research (2018), https://doi.org/10.1016/j.ejor.2018.05.051 
ost instances. For ILPG and CGG, the computation time quickly

ncreases with the instance size. For SA and GA, the computation

ime shows a more moderate growth pattern. 

Table 4 displays the average objective function value over all

nstances for which a feasible solution can be found, as well as the

ercentage of instances for which a feasible solution was found.

ith the exception of the ILP solution method, all methods find

 feasible solution for all instances (nota bene: as the ILP solution

ethod could not find a feasible solution for all instances, the av-

rage for the ILP solution method is computed over less instances

han the average for the other methods). If we consider only the

olution methods that could solve all instances, SA achieves the

ighest average objective function value and ILPG the lowest for

he H1 based instances (the relative difference is 1.7%). For the

2 based instances, GR achieves the highest average objective

unction value and, again, ILPG the lowest. 

The effect of starting with a greedy solution (compare columns

GG and CG, and ILPG and ILP) is clearly visible. Although SA and

A also start with a greedy solution, sometimes the number of

rays used in the greedy solution exceeds the limit on the number

f trays used for SA and GA, and therefore, the greedy solution can

nly be partially used. Also, for two instances, the 10 minutes time

imit imposed for solving the ILP subproblems in SA and GA is

oo short for computing optimal tray assignments. This negatively

mpacts the performance of SA and GA. The average objective

unction value of GR is only 0.8% (H1) and 7.7% (H2) worse than

he average objective function value of ILPG. 

Table 5 shows statistics on the relative performance, in terms

f performance ranking on the objective function value, of the

arious TOP solution methods. The rank of each solution method

s defined as 1 plus the number of solution methods ranked above

t. Consequently, ranks range from 1 to 7 (1 being best, 7 being

orst) and ties are possible. The table shows for each base data

et the average rank, the number of instances for which a TOP

olution method ranked first (possibly tied), and the average and

aximum ratio of the objective function value and the objective

unction value of the best ranked solution method. ILPG has the

owest average rank (and thus the best performance) for both H1

nd H2 based instances. When ILPG is not the best performing

olution method, the ratio to the best performing solution method

s at most 1.03 for H1 based instances and 1.19 for H2 based

nstances. On the other hand, a simple technique such as GR

eturns solutions that are, on average, only 2% (H1) or 12% (H2)

orse than those computed by the best solution method. 

Table 6 displays the number of solutions for which optimality

as been proven. Interestingly, for the H1 based instances, when-

ver ILP or ILPG could prove that a particular solution is optimal,

hat solution is also achieved by all of the other methods. For H2

ased instances this is not the case. There, ILPG finds provably

ptimal solutions in 23 out of 75 of the instances, but the heuristic

ethods find provably optimal solutions in at most 7 out of 75

nstances. 

Fig. 2 displays the optimality gap of ILPG versus instance

ize (again measured by the number of variables in the problem

ormulation of Section 2 ). The gap clearly increases with instance

ize and the relationship appears to be concave. For instances with

 size up to 250 variables, ILPG could always solve the problem

o optimality. For instances with a size exceeding 10 0 0 variables,

LPG was never able to prove optimality. 

To conclude, the computational results clearly show that ILPG

erforms best when computation time is not an issue. Using this

pproach, a significant amount of money can be saved when com-

ared to the other solution methods. However, when computation

ime is limited, GR is preferred. The computation time needed for

R is significantly less compared to the other solutions methods,

hereas the results are similar (except for ILPG and ILP). 
he tray optimization problem, European Journal of Operational 
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Fig. 1. Average computation time versus instance size (the number of variables in the problem formulation of Section 2 ) for (a) GR, (b) CGG, (c) SA , (d) GA , and (e) ILPG. 

Table 4 

Average objective function value (if a feasible solution is found), and percentage of in- 

stances for which a feasible solution is found, over 75 randomly generated instances. 

GR CGG CG SA GA ILPG ILP 

Average H1 29139 29136 29258 29391 29239 28908 29886 

% feasible H1 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 86.67 

Average H2 10934 10883 10876 10854 10892 10156 19998 

% feasible H2 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 98.67 

Please cite this article as: T. Dollevoet et al., Solution methods for the tray optimization problem, European Journal of Operational 
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Fig. 2. Optimality gap versus instance size (the number of variables in the problem formulation of Section 2 ) for ILPG. 

Table 5 

Statistics on performance ranking over 75 randomly generated instances. Ranks are 

based on objective function value and range from 1 to 7 (1 is best, 7 is worst). 

In addition to average rank, the table displays the number of instances for which 

a TOP solution method ranked first (possibly tied), the average ratio to the best 

ranked solution, and the maximum ratio to the best ranked solution. 

GR CGG CG SA GA ILPG ILP 

Average rank H1 2.45 2.31 2.57 2.29 2.35 1.16 4.32 

# rank 1 H1 18 20 16 21 17 63 24 

Avg ratio to best H1 1.02 1.02 1.02 1.02 1.02 1.00 1.10 

Max ratio to best H1 1.19 1.19 1.19 1.19 1.19 1.03 2.33 

Average rank H2 4.04 3.39 3.28 3.51 3.43 1.37 1.92 

# rank 1 H2 6 7 7 7 10 54 46 

Avg ratio to best H2 1.12 1.11 1.11 1.11 1.11 1.01 1.35 

Max ratio to best H2 1.60 1.42 1.42 1.53 1.52 1.19 22.90 

Table 6 

Number of solutions for which optimality has been 

proven (out of 75 randomly generated instances). 

GR CGG CG SA GA ILPG ILP 

H1 11 11 11 11 11 11 11 

H2 5 6 6 5 7 23 23 
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5.2. Performance evaluation over a longer time horizon 

In this subsection, we evaluate the performance of the solu-

tions generated by the various TOP solution methods over a longer

time horizon. We do this using the dynamic simulation procedure

described in Section 4.3 . 

Table 7 displays cost and failure rate metrics of the solutions

generated by the TOP solution methods over a longer time horizon.

The upper part of the table shows the deviation (in percentage) of

realized total costs from expected total costs. The expected total

costs are calculated by multiplying the computed periodic costs

of the static solution with the number of periods in the horizon.

The lower part of the table shows the percentage of surgeries for

which not all instruments are available in time (i.e., at the start of

the surgery). Both averages and standard deviations are reported. 

The performance of the TOP solution methods appears to be

quite similar. This is likely because of the structure of the problem

and the fact that the static solutions where relatively close (see

Table 4 ). The static solutions, in general, appear to perform quite

well in the dynamic setting. The long term costs are very close
Please cite this article as: T. Dollevoet et al., Solution methods for t

Research (2018), https://doi.org/10.1016/j.ejor.2018.05.051 
o what can be expected based on an extrapolation of the static

olution. In fact, the costs are often slightly lower than the expec-

ation, mainly because the percentage of surgeries for which not

ll instruments are available in time is likely to be higher than in

he static solution (because the static solution is not necessarily

easible in the dynamic setting) and no costs are incurred for

urgeries for which not all instruments are available in time. Of

ourse, in reality there may be costs associated to this percentage

f ‘missed’ surgeries, but as we do not have a measure of these

osts we only report the percentage of missed surgeries. 

Out of the four investigated dynamic simulation policies, the

urgery schedule based on historical sampling is closest to the

urgery schedule used in the static solution approach. Perturbed

istorical frequencies on the other hand is expected to generate

 surgery schedule that is substantially more different. In general,

he closer the long term surgery plan is to the surgery plan

sed in the static solution approach, the better the availability of

nstruments can be guaranteed. 

. Conclusions and recommendations 

In this paper, we have developed several solution methods

or the tray optimization problem (TOP). In the TOP, one simul-

aneously determines the composition of instrument trays, the

ssignment of these trays to surgeries, and the number of trays

f a certain type to acquire. In particular, we have considered

n exact ILP formulation, a row & column generation approach,

 greedy heuristic, and some metaheuristics. In an extensive

omputational study, we have compared these solution methods

n several instances that are inspired by practice. Furthermore,

e have tested the performance of the solutions on a longer time

orizon using simulation. 

The greedy heuristic constructs several tray types and then

olves the ILP model for the tray assignment problem optimally.

ur computational results indicate that this method performs

urprisingly well, especially considering the short computation

imes. The greedy heuristic gives solutions that are on average

oughly 7% worse than the best solutions we found. 

The exact ILP formulation, the row & column generation ap-

roach, and the metaheuristics can all make use of the solution

btained by the greedy heuristic. Among these solution methods,

olving the ILP model gives the best performance. Next to that,
he tray optimization problem, European Journal of Operational 
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Table 7 

Long run performance metrics: average and standard deviation (in brackets). 

Deviation of total costs from expectation based on static solution 

Hist. freq. Pert. hist. freq. Hist. sampling Pert. hist. 

sampling 

H1 GR −1.68% (1.81%) −1.69% (1.81%) 0.00% (0.05%) −1.04% (0.76%) 

CGG −1.71% (1.83%) −1.72% (1.83%) −0.01% (0.06%) −1.07% (0.78%) 

SA −1.65% (1.76%) −1.66% (1.76%) 0.00% (0.06%) −0.97% (0.73%) 

GA −1.83% (1.89%) −1.84% (1.89%) 0.00% (0.05%) −1.03% (0.77%) 

ILPG −1.69% (1.79%) −1.70% (1.79%) 0.00% (0.05%) −1.22% (0.79%) 

H2 GR −3.60% (4.25%) −3.61% (4.23%) 1.71% (2.56%) 1.18% (2.59%) 

CGG −4.16% (5.31%) −4.17% (5.32%) 1.20% (3.87%) 0.42% (3.99%) 

SA −3.81% (4.40%) −3.82% (4.38%) 1.74% (2.57%) 1.40% (2.42%) 

GA −3.58% (4.27%) −3.59% (4.26%) 1.68% (2.52%) 0.96% (2.49%) 

ILPG −4.17% (4.64%) −4.18% (4.64%) 1.42% (3.25%) −0.04% (3.2% ) 

Percentage of surgeries for which instruments are not available in time 

Hist. freq. Pert. hist. freq. Hist. sampling Pert. hist. 

sampling 

H1 GR 6.12% (4.00%) 6.13% (4.00%) 0.0 0% (0.0 0%) 1.73% (1.03%) 

CGG 6.12% (4.01%) 6.14% (4.01%) 0.0 0% (0.0 0%) 1.68% (0.99%) 

SA 6.04% (3.84%) 6.06% (3.84%) 0.0 0% (0.0 0%) 1.79% (1.10%) 

GA 6.35% (4.28%) 6.37% (4.29%) 0.0 0% (0.0 0%) 1.86% (1.20%) 

ILPG 6.17% (4.00%) 6.17% (4.00%) 0.0 0% (0.0 0%) 1.61% (0.96%) 

H2 GR 7.97% (4.94%) 8.02% (4.94%) 0.0 0% (0.0 0%) 1.61% (1.15%) 

CGG 8.03% (5.19%) 8.08% (5.20%) 0.0 0% (0.0 0%) 1.52% (1.01%) 

SA 8.14% (5.16%) 8.19% (5.16%) 0.0 0% (0.0 0%) 2.21% (1.53%) 

GA 7.91% (4.95%) 7.96% (4.95%) 0.0 0% (0.0 0%) 1.74% (1.33%) 

ILPG 7.98% (5.52%) 8.02% (5.52%) 0.0 0% (0.0 0%) 1.42% (0.92%) 
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I  
t is the only exact method we considered, which means that is

ble to prove optimality for some of the instances. However, this

oes not hold for the larger instances, where the improvement in

omparison to the greedy heuristic is small. 

Summarizing the above, the greedy heuristic is a good method

f solutions have to be found quickly. If more time is available,

nd if the instances are small- to medium-sized, solving the ILP

odel can improve this greedy solution considerably. For the other

ethods, the improvements in comparison to the greedy approach

re limited. 

We have also tested the solutions in a dynamic setting. Here,

e first obtained the tray composition and the number of trays

o be acquired by solving a static instance. Then, we generated

 surgery schedule for a longer time horizon and evaluated the

terilization costs and the number of times an instrument was not

vailable. The results show that all solutions of the static problem

erform well in the dynamic setting. First, the average costs are

lightly lower than in the static simulation. Second, only for a

mall percentage of the surgeries an instrument is missing. 

For our experiments, we have generated the instances based

n data of two different hospitals and considered instances of

arious sizes. Nonetheless, some simplifying assumptions had to

e made. For example, we have not considered the weight and

ize restrictions of the trays due to a lack of reliable data, but have

ssumed that every combination of a fixed number of instruments

ts in a tray. Similarly, we have omitted instrument depreciation

osts. Note, though, that our algorithms are capable to deal with

hese parameters if they would be available. 

To summarize, we have presented and evaluated multiple

olution methods for the TOP and are the first to provide TOP

olution methods that can actually be used to solve instances of

ealistic size. The most promising method that we presented is,

erhaps, the greedy method as it is highly scalable. Moreover,

ur results indicate that the outcomes of the greedy method are,

n average, very close to the other methods investigated. We

ope our findings may contribute to health care management

ractice by making it possible to achieve substantial cost savings

n inventory of medical instruments. 
Please cite this article as: T. Dollevoet et al., Solution methods for t
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ppendix A. Column & row generation: proofs and derivations 

In this section, we derive an optimality criterion for the row

 column generation approach presented in Section 3.2.1 . Our

nalysis is based on a Lagrangian relaxation, in a similar fashion

s in Muter et al. (2012) . Consider therefore the linear relaxation

f (38) –(44) . In any optimal solution, it holds that Z k = 

1 
M 

N k . We

an therefore replace Z k by 1 
M 

N k in the objective and discard

onstraints (41) and (44) . The costs c 4 
1 
M 

N k can be absorbed in

he term c 1 
k 

N k . From now on, we assume that this has been

one. For a given subset K̄ ⊆ K of tray types, we then denote this

inear relaxation and its objective by z LP ( ̄K ) . Now relax constraints

39) with Lagrangian multipliers λ≥ 0. We then get the following

agrangian subproblem. 

(λ; K̄ ) = min 
∑ 

k ∈ ̄K 

( 

c 1 k N k + c 2 k 

∑ 

j∈ J 
f j Y jk 

) 

+ 

∑ 

i ∈ I 

∑ 

j∈ J 
λi j 

( 

d i j −
∑ 

k ∈ ̄K 
x ik Y jk 

) 

= min 
∑ 

i ∈ I 

∑ 

j∈ J 
λi j d i j + 

∑ 

k ∈ ̄K 

( 

c 1 k N k + 

∑ 

j∈ J 

( 

c 2 k f j −
∑ 

i ∈ I 
λi j x ik 

) 

Y jk 

) 

uch that 

N k ≥
∑ 

j∈ J 
s jt Y jk , ∀ k ∈ K̄ , t ∈ T , 

 jk ≥ 0 , ∀ k ∈ K̄ , j ∈ J, 
N k ≥ 0 , ∀ k ∈ K̄ . 

e define a Lagrangian dual problem z LR ( ̄K ) = max { z(λ; K̄ ) : λ ≥ 0 } .
n order to solve the Lagrangian subproblem for given λ, we
he tray optimization problem, European Journal of Operational 
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can consider the trays k ∈ K̄ individually, because all constraints

that couple different trays have been dualized into the objective

function. For given k ∈ K̄ , we have to solve 

z̄ k (λ) = min c 1 k N k + 

∑ 

j∈ J 

( 

c 2 k f j −
∑ 

i ∈ I 
λi j x ik 

) 

Y jk 

such that 

N k ≥
∑ 

j∈ J 
s jt Y jk , ∀ t ∈ T , (A.1)

 jk ≥ 0 , ∀ j ∈ J, (A.2)

N k ≥ 0 . (A.3)

Substituting N k = 0 and Y jk = 0 for all j yields a feasible solution

with an objective value of zero to the Lagrangian supbroblem for

k ∈ K̄ , and we therefore conclude that z̄ k (λ) ≤ 0 . Furthermore, the

feasible region of the Lagrangian subproblem is a cone: If ( N k , Y jk )

is feasible, then ( cN k , cY jk ) is feasible, too, for all c ≥ 0. We can

therefore restrict attention to the case N k = 1 . Then, the problem

reduces to 

z k (λ) = c 1 k + min 
∑ 

j∈ J 

( 

c 2 k f j −
∑ 

i ∈ I 
λi j x ik 

) 

Y jk 

such that ∑ 

j∈ J 
s jt Y jk ≤ 1 , ∀ t ∈ T , 

Y jk ≥ 0 , ∀ j ∈ J. 
Whenever this value z k ( λ) < 0, then the problem z̄ k (λ) is un-

bounded. If z k ( λ) ≥ 0, N k = 0 and Y jk = 0 is an optimal solution. We

are now ready to derive the reduced cost criterion. 

Theorem. Let λ∗ be the optimal dual multipliers for a given set

K̄ ⊆ K of trays and define z LP ( ̄K ) as the objective value for the

corresponding linear problem. If 

z k (λ
∗) ≥ 0 

for all k ∈ K \ K̄ , then z LP ( ̄K ) is also the optimal solution if all trays

are considered. As a consequence, we can interpret z k ( λ
∗) as the

reduced cost of tray k ∈ K . 
Proof. Recall that z LP ( ̄K ) is the optimal solution of the LP-relaxation

of (38) –(44) when only the subset K̄ of trays is considered. As-

sume that we have solved this linear program and obtained dual

multipliers λ∗ and μ∗. The variables λ∗ are also optimal Lagrangian

multipliers, if we consider the same subset of trays in the La-

grangian relaxation ( Fisher, 2004 ). It holds that z LP ( ̄K ) = z(λ∗; K̄ ) .

As z̄ k (λ
∗) ≥ 0 for all k ∈ K \ K̄ , the objective of the Lagrangian sub-

problem does not change if we include any of the trays k ∈ K \ K̄ .
Hence, z(λ∗; K) = z(λ∗; K̄ ) . We then obtain 

z LP (K) ≤ z LP ( ̄K ) = z(λ∗; K̄ ) = z(λ∗; K) ≤ z LR (K) = z LP (K) . 

It follows that all inequalities in the formula above are actually

equalities. Hence, z(λ∗, K̄ ) = z LR (K) . This shows that the columns

in K̄ solve the Lagrangian relaxation optimally. Furthermore, this

shows that z LP ( ̄K ) equals z LP ( K ). Thus, the linear problem is solved

to optimality, too. This suggests to define z k ( λ
∗) as the reduced

costs of tray k ∈ K . �

In order to linearize the pricing problem, we first introduce D i 

binary decision variables X̄ il for every instrument type i . Here, D i 

is the upper bound on the number of instruments of type i in a

tray that is defined in Section 3.1 . We then substitute X i = 

∑ D i 
l=1 

X̄ il .

It holds that 

X i Y j = 

( 

D i ∑ 

l=1 

X̄ il 

) 

Y j = 

D i ∑ 

l=1 

X̄ il Y j = 

D i ∑ 

l=1 

Q i jl . 
Please cite this article as: T. Dollevoet et al., Solution methods for t
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e obtain the following Integer Linear Program for the pricing

roblem. 

 PP (λ) = min 

c 4 
M 

+ c 1 + 

∑ 

i ∈ I 

D i ∑ 

l=1 

a i ̄X il 

+ 

∑ 

j∈ J 

( 

(c 2 + c 3 ) f j Y j + 

∑ 

i ∈ I 

D i ∑ 

l=1 

(b i f j − λi j ) Q i jl 

) 

uch that 

 

i ∈ I 
p n i 

D i ∑ 

l=1 

X̄ il ≤ r n , ∀ n ∈ N, 

∑ 

j∈ J 
s jt Y j ≤ 1 , ∀ t ∈ T , 

Q i jl ≤ X̄ il , ∀ i ∈ I, j ∈ J, l ∈ { 1 , . . . , D i } , 
Q i jl ≤ Y j , ∀ i ∈ I, j ∈ J, l ∈ { 1 , . . . , D i } , 
Q i jl ≥ Y j + X̄ il − 1 , ∀ i ∈ I, j ∈ J, l ∈ { 1 , . . . , D i } , 
X̄ il ∈ { 0 , 1 } , ∀ i ∈ I, l ∈ { 1 , . . . , D i } , 
Y j ∈ [0 , 1] , ∀ j ∈ J, 

Q i jl ∈ [0 , 1] , ∀ i ∈ I, j ∈ J, l ∈ { 1 , . . . , D i } . 

e obtained a MILP formulation for the pricing problem that can

e solved by a standard solver. Note that we have restricted Y j to

he bounded interval [0,1], which is allowed if �t ∈ T s jt > 0. If this is

ot the case, surgery j is not scheduled at all and can be removed

rom the problem. 

ppendix B. Tray assignment problem is NP-hard 

In this section, we will show that the tray assignment problem

TAP), as defined by (38) –(44) in Section 3.2.1 , is NP-hard. We first

how that the decision version of TAP is in NP. Then, in order to

how NP-completeness, we reduce the (decision version of the)

et-covering problem to this decision version. 

In the decision version of the TAP, an additional value q is given.

he decision version of TAP asks whether a feasible solution exists

ith an objective function value of at most q . For a given solution

o the TAP, both its feasibility and its objective function value can

e determined in polynomial time. Hence, the TAP is in NP. 

Let now a set-covering instance be given. Such an instance is

pecified by a so-called universe U = { 1 , . . . , n } , a set S contain-

ng subsets of U , and a value q ′ . A cover is defined as a subset

 ⊆ S, whose union is U . The question is whether a cover C of

ardinality at most q ′ exists. For a given set-covering instance, we

efine an instance of the TAP by I = U , J = { 1 } , K̄ = S, T = { 1 } ,
nd q = q ′ . (Thus, we consider only one surgery and the planning

orizon consists of only one day.) We set s 11 = 1 , d i 1 = 1 for all

 ∈ U , and define the cost coefficients as c 1 = 1 , c 2 = c 3 = c 4 = 0 ,

nd a i = b i = 0 for all i ∈ U . It follows that c 1 
k 

= 1 and c 2 
k 

= 0 .

inally, for i ∈ U and k ∈ S, we define x ik = 1 if i ∈ k . The ILP for

he tray assignment problem can then be written as 
he tray optimization problem, European Journal of Operational 
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∑ 

k ∈S 
N k 

uch that 
 

k ∈S 
Y 1 k x ik ≥ 1 , ∀ i ∈ U , 

Y 1 k ≤ N k , ∀ k ∈ S, 

N k ≤ MZ k , ∀ k ∈ S, 

N k ∈ N , ∀ k ∈ S, 

Y 1 k ∈ { 0 , 1 } , ∀ k ∈ S, 

Z k ∈ { 0 , 1 } , ∀ k ∈ S. 

t follows easily from the above that N k = Y 1 k for all k ∈ S in any

ptimal solution. Furthermore, setting Z k = 1 for all k ∈ S changes

either the feasibility nor the objective function value of a solu-

ion. We can thus restrict the range of N k to {0, 1} and remove the

 k variables for all k ∈ S . This yields the following ILP: 

in 

∑ 

k ∈S 
N k 

uch that 
 

k ∈S 
N k x ik ≥ 1 , ∀ i ∈ U , 

N k ∈ { 0 , 1 } , ∀ k ∈ S. 

his is precisely the ILP formulation of the set-covering problem

 Wolsey, 1998 ): A set k ∈ S is included in the cover if and only if

 k = 1 . Given that x ik = 1 if and only if i ∈ k for all i ∈ U and k ∈ S
nsures that the union of all selected subsets contains every i ∈ U .

t follows that a cover of cardinality at most q ′ for this set-covering

nstance exists if and only if this instance of the TAP has a solution

ith objective at most q . Given that the decision version of the set-

overing problem is NP-complete ( Karp, 1972 ), it follows that the

ecision version of the tray assignment problem is NP-complete

s well. Therefore, we conclude that the TAP is NP-hard. 
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uter, I. , Birbil, S. İ. , & Bülbül, K. (2013). Simultaneous column-and-row generation

for large-scale linear programs with column-dependent-rows. Mathematical Pro-
gramming, 142 (1–2), 1–36 . 
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