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In the real world practice, software systems are often built without developing any explicit 
upfront model. This can cause serious problems that may hinder the almost inevitable 
future evolution, since at best the only documentation about the software is in the form of 
source code comments. To address this problem, research has been focusing on automatic 
inference of models by applying machine learning algorithms to execution logs. However, 
the logs generated by a real software system may be very large and the inference algorithm 
can exceed the processing capacity of a single computer.
This paper proposes a scalable, general approach to the inference of behavior models that 
can handle large execution logs via parallel and distributed algorithms implemented using 
the MapReduce programming model and executed on a cluster of interconnected execution 
nodes. The approach consists of two distributed phases that perform trace slicing and model 
synthesis. For each phase, a distributed algorithm using MapReduce is developed. With the 
parallel data processing capacity of MapReduce, the problem of inferring behavior models 
from large logs can be efficiently solved. The technique is implemented on top of Hadoop. 
Experiments on Amazon clusters show efficiency and scalability of our approach.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Software behavior models play an important role in the whole life cycle of software systems. Through models, software 
engineers may gain a deep understanding of how a system behaves without dealing with the intricacies of the implemen-
tation. Although good software engineering practices suggest that models should be developed upfront, before deriving an 
implementation, reality shows that often models do not exist, or they are inconsistent with the implementation. In fact, 
building a proper model is costly, hard, and requires both mathematical skills and ingenuity. Moreover, even if models are 
developed, they are often not updated with the changes in the implementation and therefore the models and the imple-
mentation progressively diverge.

Model inference is a promising approach to tackle this problem by using machine learning to infer software behavior 
models automatically from execution logs [1–3]. Many model inference algorithms [4–6] have been proposed by recent 
research. To infer accurate models, the logs should contain as much detail information as possible. However, a log with 
more information also increases the difficulty of model inference task. The logs generated by real systems are usually very 
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large. For example, Prospex [7] infers state machines from network logs for vulnerability analysis of network applications. In 
practice, network logs collected passively can be enormous, while models need to be inferred quickly to ensure timeliness 
of subsequent analyses.

A serious problem with existing model inference methods [1–3,8,5,6] is that they do not scale up to very large logs, since 
they are all centralized. Recent work [9] has shown that many existing model inference algorithms run out of memory or 
take hours to complete when processing large logs. It is thus desirable to parallelize the processing of massive logs in model 
inference tasks. Many existing model inference methods share a similar workflow. They first slice the input log into a set of 
log pieces based on some criteria, each of which constitutes a run of the system. The system model is then synthesized from 
the sliced log pieces together. Thus an interesting research question is to devise a generalized scalable approach to model 
inference exploiting the potential benefits of state-of-the-art distributed processing infrastructures.

Previous work by Lee et al. [8] proposes a general algorithm to slice logs by parametric events, which is a useful but 
expensive step in model inference. A natural idea to parallelize this algorithm is to divide the log into multiple segments, 
slice each segment on one node, and then merge the sliced results. However, this naive solution could lead to incorrect 
results since events in different segments may be correlated and should be processed together (Section 4.2). To handle this, 
we propose a distributed slicing algorithm. Using the MapReduce model [10], we can effectively distribute the slicing of 
massive logs to numerous computing nodes, meanwhile ensuring that the correlated events are always properly processed.

With the set of traces obtained by slicing the log, many off-the-shelf model synthesis algorithms [1,2,11] can be applied 
to infer the system model. However, since these are centralized algorithms and the traces can be very large, we further 
propose a distributed model synthesis algorithm based on k-tail [1] to improve scalability. With the powerful data processing 
capacity of MapReduce, the problem of inferring behavior models from large logs can be efficiently solved.

In a nutshell, our approach consists of two phases: trace slicing and model synthesis. The first phase parses and slices the 
log into a set of trace slices and constructs a prefix tree acceptor (PTA) [4], which is a compact structure to store a set 
of traces. The second phase then reads the PTA and synthesizes the behavior model. We develop a distributed algorithm 
for the trace slicing and model synthesis phases, respectively. With these two algorithms, we propose a novel framework 
for inferring software behavior models with MapReduce. Note that the two phases in our framework are designed to be 
decoupled. This design scheme allows users to plug existing centralized model synthesis algorithms into our framework to 
infer more accurate models (Section 8.2).

The main contributions are summarized as follows:

• We propose a distributed trace slicing algorithm using MapReduce;
• We propose a distributed model synthesis algorithm using MapReduce;
• With above algorithms, we developed an inference approach that, to the best of our knowledge, represents a novel 

attempt to infer software behavior models with MapReduce;
• We implemented a prototype of our technique. The experimental results show the promising performance of our ap-

proach.

This paper is based on our previous work [12] and presents several extensions. First, we describe several practical 
optimizations to further improve our approach. Secondly, we formally prove correctness of our distributed trace slicing 
and distributed model synthesis algorithms respectively. Finally, we provide more complete experimental assessment of our 
approach under various settings.

The rest of the paper is organized as follows: Section 2 provides an overview of our approach. Section 3 introduces 
preliminary concepts. Section 5 and Section 6 introduce our distributed algorithms for trace slicing and model synthesis, 
respectively. Section 7 reports the experimental results. Section 8 describes some possible extensions. Section 9 discusses 
the related work and Section 10 concludes this paper.

2. Overview

2.1. MapReduce

MapReduce [10] is a large-scale parallel data processing framework supported by a distributed architecture. It hides the 
details of data distribution, load balancing, replication, and also scheduling, while provides simple yet powerful interfaces to 
users. Due to its simplicity, MapReduce has become one of the most popular distributed computing frameworks. Hadoop2

is a popular open-source implementation of MapReduce.
In MapReduce, the data is stored in a distributed file system (DFS). The computation is based on key–value pairs and 

expressed via the following two functions:

Map : (k1, v1) → list(k2, v2)

Reduce : (k2, list(v2)) → list(k3, v3)

2 http :/ /hadoop .apache .org/.

http://hadoop.apache.org/
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Fig. 1. MapReduce overview.

Fig. 2. Behavioral model inference overview.

The processing of a dataset, i.e., the execution of a map and reduce function, is expressed as a MapReduce job, whose 
main flow is illustrated in Fig. 1. The job consists of three phases, i.e., map, shuffle, and reduce. In the map phase, the input 
data is partitioned and distributed to a number of mappers. At each mapper, a user-defined Map function is invoked to 
handle the input data and produce intermediate results (in the form of key–value pairs). These intermediate results are 
then partitioned and sorted by their keys in the shuffle phase. Each partition is processed by a reducer in the reduce phase. 
At each reducer, a user-defined Reduce function is invoked to handle that partition. Note that the MapReduce framework 
ensures the values for the same key are passed to a single reduce call. The output of a reducer is written to the DFS.

Besides the Map and Reduce functions, the user can optionally define the Combine function. This function works as 
a local reducer in each mapper by reducing the amount of intermediate key–value pairs sent across the network. The 
MapReduce framework also allows users to provide Initialization and Teardown functions for each mapper and reducer, 
and to customize the Partition and Comparison functions used for partitioning and sorting the key–value pairs during the 
shuffle phase. These mechanisms provide more flexibility for users designing algorithms with MapReduce.

When solving a problem on top of MapReduce, one major concern is to design the distributed algorithm with the Map

and Reduce functions. Once the algorithm is well encoded, one can leverage clusters and parallel computing to speed up 
the computation. The interested reader may refer to [10,13] for more information.

2.2. Behavioral model inference

The workflow of a typical model inference approach is shown in Fig. 2, which consists of three steps: log parsing, trace 
slicing, and model synthesis. In the first step, we rely on a parser to extract relevant events from the log files. The relevant 
events are defined by the event specification. The events are usually associated with some parameters, called parametric 
events. After parsing, we get a sequence of parametric events, called a parametric trace.

In general, the parametric trace cannot be used as it is to synthesize the system model directly as it contains many 
independent and interleaved runs. Thus, a trace slicer is called to slice the parametric trace into slices. Each parametric 
trace has the same combination of parameters, and corresponds to a run of the system. Finally, a synthesis algorithm is 
called to infer the behavior model from the set of trace slices. Typically, a synthesis algorithm first represents the trace 
slices as a prefix tree acceptor (PTA) [4] as the initial model, which accepts the set of trace slices exactly. Then, the initial 
model is generalized by iteratively merging equivalent states based on certain criteria to produce a more compact but 
general one.
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Fig. 3. An online shopping system example.

2.3. Running example

As a running example, consider the on-line shopping system shown in Fig. 3. The relevant events and their corresponding 
parameters are shown in Fig. 3a. Briefly, we are interested in the following events:

• the user userid logs in in the system,
• the user userid creates an order with the ID of orderid,
• the item itemid is added to the order orderid,
• the item itemid is removed from the order orderid,
• the user userid pays the order orderid, and
• the user userid cancels the order orderid.

Note that there may be more parameters for each event than the ones we listed. For example, to create an order, more 
information (like the creation time, etc.) may be recorded in the log file, but only the userid and orderid are assumed to be 
relevant in our case.

The behavior model of the online shopping system is depicted in Fig. 3c. Notice, however, that we assume that the model 
is initially unknown to us. Our goal is exactly to infer the behavior model from lots of log files generated by the system. 
Note that these logs may contain a lot of information, such as events and parameters, which is irrelevant to the model 
inference task. Thus we need a parser to extract relevant events and parameters from a log file. A parametric trace excerpt 
is shown in Fig. 3b. Since multiple users can operate in the shopping system at the same time, the events corresponding to 
their operations are interleaved in the log file.

2.4. Our approach

The log file may be too large to be managed by existing model inference algorithms on a single machine. To deal with 
this problem, we propose to apply MapReduce to parallelize the model inference task.

As shown in Fig. 4, our approach consists of two phases, i.e., the distributed trace slicing phase and the distributed 
model synthesis phase, both of which are realized using MapReduce. The first phase takes as input a log file, performs 
the log parsing and trace slicing, and outputs a prefix tree acceptor (PTA). The log parsing task is performed by mappers, 
while the trace slicing task is executed by reducers. Both tasks are distributed (implicitly by the MapReduce architecture) 
to a number of computing nodes. The second phase takes as input the PTA generated in the former phase, and outputs the 
behavior model by a distributed model synthesis algorithm.

Although the basic algorithms for trace slicing [8] and model synthesis [1] exist, our contribution is to show how they 
can be cast and integrated into a novel scalable distributed framework based on MapReduce.
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Fig. 4. Model inference with MapReduce.

3. Formal definitions

This section introduces the formal definitions needed in our framework. Some of these definitions originate from [8].

Definition 1. An event specification is a pair 〈E, X〉, where E is a set of base events, and X is a set of parameters.

An event specification specifies the events and the parameters of interest. For example, the event specification in Fig. 3a 
is E = {login, create_order, add_item, remove_item, pay_order, cancel_order}, X = {userid, orderid, itemid}.

Let [A → B] (or [A ⇁ B]) be the set of total (or partial) functions from A to B . For any partial function θ ∈ [A ⇁ B], 
Dom(θ) = {x ∈ A | θ(x) is defined}. Let ⊥ be the partial function for which Dom(⊥) = ∅.

Definition 2. A parameter instance θ is a partial function from X to V X , i.e., θ ∈ [X ⇁ V X ], where V X is a set of parameter 
values for the parameter set X . A parameter instance θ is said to be complete if Dom(θ) = X . Let Y ⊆ Dom(θ), a restriction 
θ �Y of θ to Y is a parameter instance such that Dom(θ �Y ) = Y and for any y ∈ Y , θ �Y (y) = θ(y).

To simplify the notation, we often ignore X and use V X to represent the parameter instance, if X and the mapping 
from X to V X is clear from the context. For example, the partial function 〈userid 
→ user1, orderid 
→ order1〉 is a parameter 
instance for the running example, which can be abbreviated as 〈user1, order1〉.

Definition 3. The parametric event definition De is a function from E to 2X , i.e., De ∈ [E → 2X ]. A parametric event is e〈θ〉, 
where e is a base event, θ is a parameter instance such that Dom(θ) =De(e).

A parametric event definition provides parameter information for each base event e ∈ E , and we assume a base event 
must have same parameters (not necessarily same values) in every position of the log where it occurs [8].

Definition 4. A parameter instance θ ′ is said to be less or equal informative than another parameter instance θ (written 
θ ′ � θ ), if for any x ∈ X , θ ′(x) is defined implies θ(x) is also defined and θ ′(x) = θ(x).

Consider the running example (Fig. 3b). The parameter instance 〈user1〉 is less or equal informative than 〈user1, order1〉, 
and 〈user1, order1〉 is less or equal informative than itself.

Definition 5. A trace is a finite sequence of base events. A parametric trace is a finite sequence of parametric events. We 
write e ∈ τ (or e〈θ〉 ∈ τ ) if the base event e (or the parametric event e〈θ〉) appears in the trace (or the parametric trace) τ .

For example, each line in Fig. 3b represents a parametric event, and the sequence of all parametric events in Fig. 3b 
represents a parametric trace.

Definition 6. Let τ be a parametric trace, and θ be a parameter instance, the θ -trace slice τ �θ of τ is a non-parametric trace 
recursively defined as:

• ε �θ= ε , where ε is the empty trace, and

• (τe〈θ ′〉)�θ=
{

(τ �θ )e, if θ ′ � θ

τ �θ , otherwise
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Intuitively, τ �θ filters out irrelevant parametric events in τ with respect to θ . Specially, the θ -trace slice of an empty 
trace ε is empty. If the trace to be sliced is not empty, denoting as τe〈θ ′〉, where e〈θ ′〉 is the ending parametric event of 
this trace, the base event e is kept in the slice only if θ ′ � θ . The leading part τ is then sliced in a recursive way.

For example, let τ1 be the parametric trace in Fig. 3b. For parameter instance θ1 = 〈user1, order1〉, τ1�θ1 is the sequence 
of: login, create_order, pay_order. For another parameter instance θ2 = 〈user1, order1, item1〉, τ1 �θ2 is the sequence of: login, 
create_order, add_item, pay_order.

A trace slice corresponds to a parameter instance. However, as we can see, all parameter instances appearing in τ1 are 
incomplete. With the following operators, some incomplete parameter instances can be combined to form a complete one.

Definition 7. Two parameter instances θ and θ ′ are compatible if for any x ∈ Dom(θ) ∩ Dom(θ ′), θ(x) = θ ′(x). If θ and θ ′ are 
compatible, we define their combination (written θ � θ ′) as:

(θ � θ ′)(x) =

⎧⎪⎨
⎪⎩

θ(x) if θ(x) is defined

θ ′(x) if θ ′(x) is defined

undef ined otherwise

Consider the running example (Fig. 3b). The parameter instances 〈user1, order1〉 and 〈order1, item1〉 are compatible, 
while their combination gives 〈user1, order1, item1〉, and their intersection gives 〈order1〉. However, the parameter instances 
〈user1〉 and 〈user2, order2〉 are incompatible.

The combination of parameter instances may lead to meaningless results. For example, the parameter instance 〈user1〉
and 〈order2, item2〉 are compatible, but their combination 〈user1, order2, item2〉 is meaningless since user1 and order2 do 
not interact in any event. To avoid such meaningless combinations, we require only connected parameter instances to be 
combined.

Definition 8. Given two parameter instances θ1 and θ2, we say θ1 and θ2 are strongly compatible (written θ1 �� θ2), if θ1 and 
θ2 are compatible, and Dom(θ1) ∩ Dom(θ2) �= ∅.

Definition 9. Given a parametric trace τ and a parameter instance θ , we say θ is τ -connected (or connected if τ is clear 
from the context), if

• there exists e such that e〈θ〉 ∈ τ , or
• there exist θ1 and θ2 such that both θ1 and θ2 are τ -connected, θ1 �� θ2, and θ = θ1 � θ2.

Consider the running example (Fig. 3b). The parameter instances 〈user1, order1〉 and 〈order1, item1〉 satisfy the first 
condition in the above definition, and are thus connected. By Definition 8, these two parameter instances are strongly com-
patible. Moreover, 〈user1,order1〉 � 〈order1, item1〉 = 〈user1, order1, item1〉, the parameter instance 〈user1,order1, item1〉 is 
thus also connected.

In the remainder of this paper, we consider only trace slices for complete and connected parameter instances to avoid 
meaningless results, as in [8].

4. Sequential trace slicing

In this section we briefly review the sequential trace slicing algorithm proposed by Lee et al. [8]. Then we discuss a naive 
parallelization strategy based on this algorithm.

4.1. The algorithm

The pseudo code of the sequential trace slicing algorithm is shown in Fig. 5, where the function Slice takes as input a 
parametric trace τ , and produces a set of trace slices as output.

At lines 2 to 5, the algorithm sorts the parametric events in τ into several lists. Let � be the set of these event lists. 
Each list �(θ) corresponds to a parametric instance θ and contains all base events e such that e〈θ〉 occurs in τ . Dom(�)

thus represents the set of parametric instances occurring in τ , i.e., Dom(�) = {θ |∃e.e〈θ〉 ∈ τ }. Assume that each event is 
associated with a timestamp. At line 5, the base event e is inserted in a proper way such that all events in �(θ) are in 
ascending order of their timestamps.

At line 6, the algorithm initializes the set � to Dom(�). At line 7, the algorithm tries to find any two parametric instances 
in �, such that they are strongly compatible and their combination is not currently in �. If such two parametric instances 
exist, their combination is added (at line 8) to �, and the above process is iterated (since the set � has been changed). With 
the operation at line 6 and the operations at lines 7 to 8, the connected parametric instances satisfying the first and the 
second condition of Definition 9 are added to �, respectively. Finally, the set � contains (and exactly contains) all connected 
parametric instances.
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1: function Slice(τ )
2: for e〈θ〉 ∈ τ do
3: if θ /∈ Dom(�) then
4: Initialize �(θ) as an empty list;

5: Insert e into �(θ);
6: � ← Dom(�);
7: while ∃θ1, θ2 ∈ � s.t. θ1 �� θ2, (θ1 � θ2 /∈ �) do
8: � ← � ∪ {θ1 � θ2};

9: for complete θ ∈ � do
10: � ← {�(θ ′)|θ ′ � θ , θ ′ ∈ Dom(�)};
11: τ �θ ← merging event lists in �;
12: Output τ �θ

Fig. 5. Sequential trace slicing algorithm.

At lines 9 to 12, the algorithm constructs a trace slice τ �θ for each complete parametric instance θ in �. Let θ ′ be any 
parametric instance that occurs in τ and is less or equal informative than θ . The τ �θ is constructed by merging all �(θ ′)’s. 
The merge operation is required to keep the ascending order of events on their timestamps.

For example, let us apply the slice function to the parametric trace τ1 in Fig. 3b. After the first for loop (lines 2 to 5), �
is set to:

�(〈user1〉) = login

�(〈user1,order1〉) = create_order, pay_order

�(〈user2〉) = login

�(〈user2,order2〉) = create_order, cancel_order

�(〈order1, item1〉) = add_item

�(〈order2, item2〉) = add_item, remove_item

At line 6 � is assigned the set Dom(�) = {〈user1〉, 〈user1, order1〉, 〈user2〉, 〈user2, order2〉, 〈order1, item1〉, 〈order2, item2〉}. 
The while loop at lines 7 to 8 adds new parametric instances θ1 = 〈user1, order1, item1〉 and θ2 = 〈user2, order2, item2〉 to 
�. Note that only θ1 and θ2 in � are complete. The final for loop (lines 9 to 12) constructs the trace slices for θ1 and θ2:

τ1�θ1= login, create_order,add_item, pay_order

τ1�θ2= login, create_order,add_item, remove_item, cancel_order

4.2. A naive parallelization strategy

As mentioned before, a naive strategy to parallelize the trace slicing task divides the trace into multiple segments, 
processes each segment with the above sequential slicing algorithm, and then merges the sliced results together. However, 
this strategy could lead to incorrect results.

For example, suppose the trace τ1 in Fig. 3b is divided into two segments τ 1
1 and τ 2

1 , where τ 1
1 contains the events from 

1 to 4, while τ 2
1 contains the rest. We first process τ 1

1 using the slice function. At line 9, � for τ 1
1 is

�1
1 = {〈user1〉, 〈user1,order1〉, 〈user2〉, 〈user2,order2〉}.

According to Definition 9, there is no complete and connected parametric instance in �1
1. Thus no slice is generated for τ 1

1 .
Then we process τ 2

1 . At line 9 of the slice function, � for τ 2
1 is

�2
1 = {〈order1, item1〉, 〈order2, item2〉, 〈user1,order1〉, 〈user2,order2〉,

〈user1,order1, item1〉, 〈user2,order2, item2〉}.
The last two parametric instances in �2

1 (named as θ1 and θ2, respectively) are complete. The trace slices of τ 2
1 for θ1 and 

θ2 are:

τ 2
1 �θ1= add_item, pay_order

τ 2
1 �θ2= add_item, remove_item, cancel_order

Merging trace slices of τ 1
1 and τ 2

1 also gives τ 2
1 �θ1 and τ 2

1 �θ2 . These results are clearly incorrect.
The naive solution could lead to incorrect results since the parametric events in different segments (for example, 

create_order(user1, order1) in τ 1 and add_item(order1, item1) in τ 2) may be correlated and should be processed together.
1 1
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5. Distributed trace slicing with MapReduce

In this section, we introduce our distributed trace slicing approach with MapReduce. We first propose a data encoding 
mechanism, and then introduce the Map and Reduce functions. We also discuss several practical optimizations to our 
approach.

5.1. Data encoding

In MapReduce, the transmitted data between mappers and reducers are organized as key–value pairs. The transmitted 
data for our problem are basically parametric events. We thus need a mechanism to set a key for each parametric event to 
distribute them to reducers.

The basic idea is to first choose a subset X of X , and for each parametric event e〈θ〉, we report the values of X on 
parametric instance θ as its key. The key is then used by MapReduce to determine the reducer to which the parametric 
event should be passed.

Definition 10. A parameter window X is a subset of X , such that for all e ∈ E , either X ⊆ De(e) or X ∩ De(e) = ∅. A 
parameter window X is nontrivial if X �= ∅.

Note that any singleton parameter set is always a well-formed and nontrivial parameter window. For the running exam-
ple, a nontrivial parameter window can be X = {orderid}.

Definition 11. The key of a parametric event e〈θ〉 (written key(e〈θ〉)) with respect to the parameter window X is

• the restriction of θ to X , i.e., θ �X , if X ⊆De(e), or
• ⊥, if X ∩De(e) = ∅.

For example, with the parameter window X = {orderid}, the key of the first parametric event login〈user1〉 in Fig. 3b 
is ⊥. And the keys of the remaining parametric events in Fig. 3b are: 〈order1〉, ⊥, 〈order2〉, 〈order1〉, 〈order2〉, 〈order2〉, 
〈order1〉 and 〈order2〉, respectively.

With a parameter window X , we divide all parametric events in a trace into two disjoint sets: T1 = {e〈θ〉|X ⊆ De(e)}
and T2 = {e〈θ〉|X ∩De(e) = ∅}. Continuing the previous example, the parametric events labeled 2, 4, 5, 6, 7, 8, and 9 belong 
to T1, and the remaining parametric events belong to T2.

Lemma 1. Let e1〈θ1〉 and e2〈θ2〉 be two parametric events in T1 such that key(e1〈θ1〉) �= key(e2〈θ2〉), then e1〈θ1〉 and e2〈θ2〉 must 
be incompatible.

Proof. Since the two parametric events belong to T1, X ⊆ De(e1) ∩ De(e2). Moreover, as key(e1〈θ1〉) �= key(e2〈θ2〉), there 
must exist x ∈X ⊆De(e1) ∩De(e2) such that θ1(x) �= θ2(x). Thus the statement holds. �

Let hash() be a hash function that takes a key as input and returns the ID of a reducer. For a parametric event e1〈θ1〉 ∈ T1, 
let k1 = key(e1〈θ1〉), we pass the key–value pair (k1, e1〈θ1〉) to the reducer whose ID is hash(k1). However, parametric events 
in T2 may be combined with any parametric events in T1. Thus, for any parametric event e2〈θ2〉 ∈ T2, we pass the key–value 
pair (⊥, e2〈θ2〉) to all reducers.

Consider the running example (Fig. 3b) with X = {order}, and assume hash(〈order1〉) = 1 and hash(〈order2〉) = 2. Then 
the parametric events labeled 2, 5 and 8 in T1 are passed to Reducer1, the parametric events labeled 4, 6 7 and 9 in T1 are 
passed to Reducer2. The parametric events labeled 1 and 3 in T2 are passed to both reducers.

5.1.1. Choosing the parameter window
We now discuss how to choose the parameter window X automatically. Since parametric events in T2 need to be passed 

to all reducers, X should be chosen such that T2 is as small as possible. However, the optimal X cannot be determined un-
less we have processed the entire log. To handle this, we define the non-parametric version of T2 as T̂2 = {e|X ∩De(e) = ∅}, 
and relax the criteria as follows:

Heuristics 1. The set X should be chosen such that T̂2 is as small as possible.

This heuristics is an approximation, since minimizing T̂2 does not necessarily mean that T2 is minimized. However, one 
advantage is that T̂2 can be computed with the event definitions, which is known a priori. Thus, the parameter window X
can be decided before MapReduce computations.

Consider the running example in Fig. 3. According to Definition 10, all non-trivial parameter windows are {userid}, 
{orderid} and {itemid}. T̂2 with respect to a parameter window can be computed by looking at the Parameters column of 
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1: function Map(line)
2: e〈θ〉 ← Parse(line);
3: if e〈θ〉 = NU LL then
4: return ;
5: if X ⊆ De(e) then
6: Output(θ �X , e〈θ〉);
7: else
8: Output(⊥, e〈θ〉);

Fig. 6. Trace slicing: Map function.

Fig. 3a, and finding out the events whose parameters are disjoint with this window. As a result, T̂2 with respect to {userid}, 
{orderid} and {itemid} are {add_item, remove_item}, {login} and {login, create_order, pay_order, cancel_order}, respectively. 
According to Heuristics 1, we would choose the parameter window {orderid}.

Moreover, for parametric events in T1, we want them to be distributed evenly to reducers. In other words, we want 
keys in T1 to be as many as possible. Notice that the number of different keys is influenced by |X |, we thus have another 
heuristics.

Heuristics 2. The set X should be as large as possible.

With above heuristics, the parameter window X can be decided with a brute-force search as follows. We first find 
all non-trivial parameter windows according to Definition 10, then apply the first to minimize T̂2. If there are multiple 
candidates X , we then apply the second heuristics to select the one with the largest size.

5.2. Mapper

The log is split (implicitly by the MapReduce) into blocks, each of which is passed to a mapper. We call each line in the 
log a log entry. A log entry records a parametric event, and the time when it happens. In the remainder of the paper, we 
assume each event to be associated with a timestamp. However, for simplicity, we will consider them only when we need 
to sort the parametric events.

Fig. 6 shows the pseudocode of the Map function, which takes as input a log entry and outputs a key–value pair. Note 
that the parameter window X is provided a priori to all mappers. For each log entry, the Parse function is called (line 2) 
to get the parametric event e〈θ〉. If the event is not in E , the Parse function returns NULL and this log entry is simply 
skipped (line 4). Otherwise, the mapper outputs a key–value pair (lines 5–8) based on Definition 11, where the key is θ �X
if X ⊆De(e) and ⊥ otherwise, and the value is the parametric event itself.

Consider the running example (Fig. 3b) with X = {orderid}, and assume there are two mappers. Then the parametric 
events labeled from 1 to 5 in Fig. 3b are handled by Mapper1, and the parametric events labeled from 6 to 9 in Fig. 3b are 
handled by Mapper2. After processing the parametric events, Mapper1 outputs the following key–value pairs:

1 : ( ⊥, login〈user1〉)
2 : (〈order1〉, create_order〈user1,order1〉)
3 : ( ⊥, login〈user2〉)
4 : (〈order2〉, create_order〈user2,order2〉)
5 : (〈order1〉,add_item〈order1, item1〉)

Mapper2 outputs the following key–value pairs:

6 : (〈order2〉,add_item〈order2, item2〉)
7 : (〈order2〉, remove_item〈order2, item2〉)
8 : (〈order1〉, pay_order〈user1,order1〉)
9 : (〈order2〉, cancel_order〈user2,order2〉)

For convenience of the representation, we label above key–value pairs with the same label as the parametric events. Assume 
hash(〈order1〉) = 1 and hash(〈order2〉) = 2. The distribution of Mappers’ outputs to reducers is shown in Fig. 7. For example, 
the key–value pairs labeled 2 and 5 belong to T1, and thus are passed to Reducer1; the key–value pairs labeled 1 and 3 
belong to T2, and are passed to both reducers.

5.3. Reducer

Recall that in the shuffle phase, MapReduce partitions and sorts key–value pairs to ensure that values correspond-
ing to the same key are organized into the same list. Specifically, the parametric events in T1 are sorted into multiple 



22 C. Luo et al. / Science of Computer Programming 145 (2017) 13–36
Fig. 7. Trace slicing: the running example.

1: function Reduce(key, values[])
2: if key =⊥ then
3: �⊥ ←Restore(values[]);
4: return ;
5: � ←Restore(values[]);
6: while ∃θ⊥ ∈ Dom(�⊥), ∃θ ∈ Dom(�)

7: s.t. θ⊥ /∈ Dom(�) ∧ θ⊥ �� θ do
8: �(θ⊥) ← �⊥(θ⊥);
9: Construct(�);

10: function Restore(values[])
11: � ← ∅;
12: for e〈θ〉 ∈ values[] do
13: if θ /∈ Dom(�) then
14: Initialize �(θ) as an empty list;
15: Insert e into �(θ);
16: return �;

17: function Construct(�)
18: � ← Dom(�);
19: while ∃θ1, θ2 ∈ �

20: s.t. θ1 �� θ2, (θ1 � θ2 /∈ �) do
21: � ← � ∪ {θ1 � θ2};
22: for complete θ ∈ � do
23: � ← {�(θ ′)|θ ′ � θ , θ ′ ∈ Dom(�)};
24: τ �θ← merging event lists in �;
25: Update P T A using τ �θ ;

Fig. 8. Distributed trace slicing: Reduce function.

key–value pairs, each with a distinct key; and the parametric events in T2 are sorted into the same key–value pair 
with key =⊥. Let values[] denote the list of parametric events with the key key. The Reduce function is called for 
each pair (key, values[]). Consider Reducer1 in Fig. 7, and let key = 〈order1〉. Then values[] = create_order〈user1, order1〉,
add_item〈order1, item〉, pay_order〈user1, order1〉.

The Reduce function is shown in Fig. 8. To ease the possible combinations of parametric events between T1 and T2, 
the MapReduce framework is configured such that the key–value pair corresponding to T2 always come first. The Restore

function acts in the same way as the lines 2 to 5 of the slice function (Fig. 5). The parametric events in values[] are sorted 
into several lists. Each list �(θ) corresponds to a parametric instance θ . Since the key–value pair with key =⊥ always 
comes first at each reducer, when the Reduce function proceeds to line 5, �⊥ must have already been initialized. The while
loop at line 6 tries to copy the list �⊥(θ⊥) in �⊥ to �, if the parametric instance θ⊥ does not exist in Dom(�) and is 
strong compatible with some parametric instance θ in Dom(�). Note that θ⊥ may again be strongly compatible with other 
parametric instances in T2, this process is thus iterative. At line 9, the Construct function is called to compute trace slices 
and update the intermediate structure P T A. The Construct function acts almost identical to the corresponding part (lines 6 
to 12 in Fig. 5) of the sequential slicing algorithm, except for the last statement.

To illustrate the algorithm, consider Reducer1 of our running example. After line 5 of the Reduce function, �⊥ and �
are as follows:

�⊥(〈user1〉) = login

�⊥(〈user2〉) = login

�(〈user1,order1〉) = create_order, pay_order

�(〈order1, item1〉) = add_item

At line 6, since 〈user1〉 is strongly compatible with 〈user1, order1〉, the list �⊥(〈user1〉) is added to �. Then after the while
loop at line 19, � = {〈user1〉, 〈user1, order1〉, 〈order1, item1〉, 〈user1, order1, item1〉}. Note that the last instance in � is a 
combined instance and is also complete. Let θ = 〈user1, order1, item1〉, then τ �θ= login, create_order, add_item, pay_order.



C. Luo et al. / Science of Computer Programming 145 (2017) 13–36 23
Fig. 9. PTA for the running example.

We take the prefix tree acceptor (PTA) as the intermediate structure. Each reducer keeps a PTA. The generated trace 
slices (at line 25) are used to iteratively update the PTA. Note that the PTA maintained at each reducer is partial, i.e., it only 
accepts trace slices generated at the reducer. However, since the model inference algorithm (see Section 6) takes as input 
a complete PTA, we then merge the PTAs in each reducer to form a complete one after the reduce process terminates. The 
complete PTA accepts all trace slices generated on all reducers. The PTA for the running example is shown in Fig. 9.

Correctness. The correctness of our distributed trace slicing algorithm is ensured by the following theorem.3

Theorem 1. Given a parametric trace τ , the following statements hold for the distributed trace slicing job:

1. for any τ �θ constructed at line 24, the parametric instance θ is complete and connected, and
2. for any complete and connected parametric instance θ , θ -trace slice of τ is constructed at line 24.

Intuitively, the first statement ensures that only trace slices for those complete and connected parametric instances are 
generated, while the second statement guarantees that trace slices for all complete and connected parametric instances are 
generated. The two statements ensure soundness and completeness of our algorithm, respectively.

5.4. Optimizations

We have developed several optimizations to improve our distributed trace slicing algorithm.
COMBINE function for mappers. We implemented a Combine function, which performs local reduce operations to reduce 

the intermediate key–value pairs output by each mapper. Before passing the key–value pairs to reducers, the MapReduce 
framework calls the Combine function to merge the set of base events with the same parametric instance into a list. Thus, 
the Combine function helps to reduce the size of intermediate key–value pairs, which in turn lowers the time of the shuffling 
phase.

Partitioning parametric instances. Let θ1 and θ2 be two parametric instances such that Dom(θ1) ⊆ Dom(θ2), either 
θ1 and θ2 are not compatible, or their combination generates no new parametric instance. For example, the parameter 
instances 〈user1〉 and 〈user2〉 are not compatible; the parameter instances 〈user1〉 and 〈user1, order1〉 are compatible, but 
their combination gives 〈user1, order1〉, same as one of the existing parametric instances.

At each reducer, we thus partition the parametric instances into groups based on their domains. In other words, θ1
and θ2 are in the same group if and only if Dom(θ1) = Dom(θ2). Then we can safely skip the combinations of parametric 
instances in the same group, and the combinations of parametric instances between two groups where one group’s domain 
subsumes another’s.

Inverted index optimization. Since �⊥ is unchanged after being initialized, we build an inverted index for each para-
metric instance group in �⊥ . For each value vx of a parameter x, we record the set of parametric instances θ⊥ in this group 
such that θ⊥(x) = vx . During the while loop at line 6 of the Reduce function, the effort for finding strongly compatible 
parametric instances in �⊥ for a given parametric instance θ can be reduced using this inverted index. For each parametric 
instance group in �⊥ , we first calculate the shared parameters with θ . For each shared parameter x, we lookup the index 
for vx = θ(x) to get the set of parametric instances, each of which shares the same parameter value with θ on the parame-
ter x. Thus, the set of strongly compatible instances for θ in this group is obtained by intersecting these sets of parametric 
instances for all shared parameters.

For example, suppose �⊥ contains the following parametric instances: 〈user1〉, 〈user3〉, 〈user1, order1〉 and
〈user3, order1〉. These parametric instances can be divided into two groups based on their domains, where one group 
has the domain of {userid}, and another group has the domain of {userid, orderid}. The inverted index built for the first 
group is:

“user1” : 〈user1〉
“user3” : 〈user3〉

3 Detailed proof can be found in Appendix A.
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And the inverted index for the second group is:

“user1” : 〈user1,order1〉
“user3” : 〈user3,order1〉
“order1” : 〈user1,order1〉, 〈user3,order1〉

Let θt = 〈user1, order1, item1〉 be a parametric instance, now consider to find in �⊥ all compatible parametric instances 
to θt . Note that the only parameter shared by θt and the first group is userid, and its value in θt is user1. We thus need only 
to consider the list indexed by “user1”, which gives the only parameter instance 〈user1〉. Thus the compatible parametric 
instance for θt in the first group is 〈user1〉. Moreover, note that the set of shared parameters between θt and the second 
group includes userid and orderid, and their values in θt are user1 and order1, respectively. We then retrieve in the second 
group the lists of parametric instances indexed by “user1” and “order1”, respectively. Their intersection gives 〈user1, order1〉. 
Thus 〈user1, order1〉 is the compatible parametric instance for θt in the second group.

6. Distributed model synthesis with MapReduce

Once the complete PTA has been generated, as previously shown, many off-the-shelf model synthesis algorithms [1,2,
11] can be applied to infer the system model. However, since these are centralized algorithms and the PTA can be a very 
large data structure, we propose a distributed model synthesis algorithm based on k-tail [1] with MapReduce to improve 
efficiency.

Many existing model synthesis algorithms can be viewed as variants of k-tail [1,2,4,11,14], which take as input a PTA, 
then repeatedly merge states of the PTA based on some criteria to get the final model. However, the complex criteria in 
these algorithms make them difficult to parallelize. Thus, we decide to parallelize the k-tail algorithm as the first step, 
leaving the parallelization of more complex yet accurate algorithms as a future work.

The most expensive operation here is to decide which states can be merged. Our idea is to distribute the most expensive 
operations to a number of mappers. With the intermediate results computed by the mappers, the model construction is 
comparatively simple, and is performed by a single reducer.

6.1. Data encoding

To realize the distributed model synthesis algorithm with MapReduce, the intermediate results should be in the form of 
key–value pairs. Since the “value” here is a state, we need a mechanism to set a key for each state. Moreover, as states with 
the same key are grouped together by MapReduce, the key should convey information about the merged states.

Before discussing how to encode states, we first introduce some notations of the behavior model [1]. A behavior model 
M is defined as a finite-state automaton M = (	, S, s0, σ , F ), where:

• 	 is the input alphabet, which is also the set of base events (Definition 1).
• S is a finite, non-empty set of states.
• s0 ∈ S is an initial state.
• σ is the state-transition function: σ : S × 	 → 2S .
• F ⊆ S is the set of final states.

Let σ ∗ : S ×	∗ → 2S be the extended transition function, i.e., σ ∗(s, ε) = {s} and σ ∗(s, eω) = ⋃
s′∈σ(s,e) σ

∗(s′, ω). Denote the 
input PTA model as M P T A , and the target finite-state model as M F S M .

Let k be a predefined integer. Let ω ∈ 	∗ be a word, i.e. a trace of base events. Let 	≤k = 	0 ∪	1 · · ·∪	k , then ω ∈ 	≤k

is a word of maximum length k, called a k-word. Given an automaton M , let f be a function from S × 	∗ → B such that 
for any state s ∈ S and any word ω ∈ 	∗ , f (s, ω) = T iff starting from s, the word ω is accepted by σ ∗ .4

Definition 12. Let s1, s2 be two states in M , we say s1 and s2 are k-equivalent, if for any k-word ω ∈ 	≤k , f (s1, ω) = T iff 
f (s2, ω) = T .

The k-equivalence class that contains s is

[s] = {t ∈ S | s and t are k-equivalent}.
All states in a k-equivalent class accept the same set of k-words, and can be merged. A k-equivalent class in M P T A corre-
sponds to a state in M F S M . The function f can be lifted to a equivalent class: ∀ω ∈ 	≤k , f ([s], ω) = f (s′, ω), where s′ can 
be any state in [s].

4 We do not require that a word ends in a final state, as in [15].
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1: function Map(state)
2: compute signature sig of state by Definition 13;
3: Output(sig, state);

4: function Reduce(sig , states[])
5: Create a new state ssig in M F SM w.r.t. sig;
6: if ∃s ∈ states[].s is an initial state then
7: set ssig as a initial state in M F SM ;

8: if ∃s ∈ states[].s is a final state then
9: set ssig as a final state in M F SM ;

10: function PostReduce

11: for each transition (s1, e, s2) in M P T A do
12: add a transition ([s1], e, [s2]) in M F SM ;

Fig. 10. Distributed model synthesis.

Lemma 2. For any two distinct k-equivalent classes [s] and [t], there must exist a k-word ω ∈ 	≤k, such that f ([s], ω) �= f ([t], ω).

Proof. Assume the statement does not hold. Then ∀s′ ∈ [s], ∀t′ ∈ [t], and ∀ω ∈ 	≤k , f (s′, ω) = f (t′, ω), which means s′ and 
t′ are k-equivalent. Thus [s] and [t] should be the same k-equivalent class, which is a contradiction. �

We can use the valuations of f ([s], ω) for all ω ∈ 	≤k to characterize [s]. Assume words in 	≤k to be indexed from 1
to |	≤k|. We use following definition to compute the signature of a state.

Definition 13. Let s be a state in S , the signature sig of s is a Boolean vector of length |	≤k|, such that sig[i] = T iff with 
the i-th k-word ω in 	≤k , f (s, ω) = T for 1 ≤ i ≤ |	≤k|.

By Lemma 2, the signatures of s and t are identical, if and only if they are in the same k-equivalent class. We thus 
choose the signature of a given state as its key.

6.2. Mapper and reducer

The pseudocode of distributed model synthesis is shown in Fig. 10. Let Si be the set of states distributed to Mapperi . For 
each state s ∈ Si , Mapperi computes the signature sig for s, and outputs the signature–state pair.

When all states signatures have been computed, the synthesis of M F S M is simple, and can be performed by a single 
reducer. MapReduce sorts all signature–state pairs and puts the states with the same signature into one list. Let states[] be 
the list of states with the same signature sig . The Reduce function is called for each pair of sig and states[], and simply 
creates a new state ssig in M F S M for the given signature. If there exists a state s ∈ states[] such that s is an initial state or a 
final state, then ssig is set as an initial state or a final state in M F S M correspondingly.

After all signatures have been processed, the PostReduce function is invoked, which adds transitions to M F S M . For each 
transition in M P T A from s to t due to the event e, a transition from [s] to [t] labeled e is added into M F S M . The PostReduce

function is called once and returns the synthesized model M F S M .
We also implemented a Combine function to reduce the number of intermediate results. This function is called at each 

mapper, and simply merges the states corresponding to the same signature into a list. Since the Combine function is fairly 
simple, its pseudocode is omitted.

Note that the value of k can influence the performance of the k-tail algorithm. Intuitively, for larger k, it takes more time 
to compute each state signature from Definition 13. However, the impact of k on our distributed k-tail algorithm is often 
marginal since the state signatures are computed by mappers in parallel and k is often chosen as 2 or 3 in practice [4].

Correctness. Hereafter we discuss the correctness of our model synthesis algorithm, i.e., the model generated by our 
distributed algorithm is isomorphic to the one output by the original k-tail algorithm. Note that given an input PTA, the 
original k-tail algorithm always produce a same (non-deterministic) automaton as output [1]. Since we merge k-equivalent 
states in parallel, we only need to show that the order of state merging has no influence on the output model. In other 
words, merging two k-equivalent states in the input model does not influence the k-words accepted by all other states.

Given an automaton M , denote wordk
M(s) = {ω|ω ∈ 	≤k ∧ f (s, ω) = T }, i.e., the set of k-words accepted by the state s

of M . Then we have the following theorem.5

Theorem 2. Given an automaton M and two k-equivalent states s1 and s2 , let M ′ be the automaton obtained by merging s1 and s2
into s′ . The following statements hold:

• wordk
M(s1) = wordk

M(s2) = wordk
M′ (s′), and

• for any state s ∈ S ′ \ {s′}, wordk
M(s) = wordk

M′ (s).

5 Detailed proof can be found in Appendix B.
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1: model ← RandomModel(numState, maxT rans)
2: � ← {}
3: while sum(�) < threshold do
4: t ←Simulate(minSteps, maxSteps)
5: � ← � ∪ {t}
6: τ ←Interleave(�)
7: τ ←AddIrrelevant(τ )

Fig. 11. Pseudocode for synthesizing logs.

Intuitively, the first statement tells that the k-words accepted by s1 and s2 remain unchanged for the merged state s′ , 
while the second statement shows that the merging process has no influence on k-words accepted by other states. Thus, 
the order of state merging does not influence the output model, which directly implies the states can be merged in parallel 
and the model output by our approach is identical to the one generated by the original algorithm. However, states often 
accept more words longer than k during the state merging process such that the output model is a generalization of the 
original PTA.

7. Experimental evaluation

We implemented our approach on top of Hadoop 1.2.1,6 and conducted experiments on Amazon Elastic MapReduce 
clusters.7 Each computing node in the cluster has a dual-core CPU and 7.5 GB of memory. We configured each node to run 
two mappers and one reducer simultaneously. The running time spent on both MapReduce jobs (trace slicing and model 
synthesis) is measured separately. Each experiment has been performed 3 times, and the average value is reported.

We performed two groups of experiments to evaluate the performance of our approach. The first group of experiments 
are conducted on synthetic logs. This experiment group evaluates our approach under various settings. The second group of 
experiments are conducted on real logs from the DaCapo-9.12 suite [16]. This experiment group is to evaluate the practical-
ity of our approach.

7.1. Experiments on synthetic logs

The pseudocode for synthesizing logs are given in Fig. 11. Firstly, an automaton is randomly generated (at line 1) as the 
target model to be inferred. This automaton is fixed to contain 50 states (i.e., numState = 50). The number of transitions 
exiting any state is between 1 to 5 (i.e., maxT rans = 5). Moreover, the model is generated to be connected, i.e., there exists 
a path between any two states. The parametric traces are randomly generated by simulations on the automaton (line 4). 
Each simulation starts from the initial state, and walks through the automaton by randomly taking the next transition. The 
minimal steps minSteps and the maximal steps maxSteps of each simulation are set to 10 and 100, respectively. As a result, 
the length of the generated trace is between 10 to 100. The generation of traces continues until the total length sum(�)

of all generated traces exceeds a predefined threshold (line 3). At line 6, all generated parametric traces are randomly 
interleaved. At line 7, irrelevant entries are randomly added to the log as noise.

The default values for other parameters are: |E | = 15, |X | = 4 and k = 2. Recall that |E | is the number of base events, 
|X | the number of parameters, and k controls the merging criteria of the k-tail algorithm. The event definition function De

is randomly determined, and its parameter values are randomly chosen from the integer domain. The size of the largest log 
file used in our experiments exceeds 10 GB.

We performed several experiments to evaluate our approach under different settings, including basic performance, 
speed-up, scalability and the impact of some parameters. Note that our model synthesis algorithm is just a distributed 
implementation of k-tail. Given the same PTA, both algorithms infer the equal model (Theorem 2). In other words, our 
model synthesis algorithm has the same accuracy as the k-tail. Giving that the accuracy of the k-tail algorithm has been 
well studied in [17], we do not measure the accuracy of the inferred model in this paper.

Basic performance. The first experiment tests the running time of our approach for logs with increasing size, where size 
refers to the number of events in the log. All logs were generated by our random log synthesizer. Log size ranges from 20 
to 100 million events. The computing cluster is fixed to have 10 machines.

The experimental results are plotted in Fig. 12a. Each column in the graph contains two parts, representing the run-
ning time of trace slicing and model synthesis, respectively. The performance of our approach is very promising. The total 
processing time for the largest log (the file size exceeds 10 GB) is less than 7 minutes. One may observe that trace slicing 
needs more execution time than model synthesis. This is reasonable since trace slicing has to process the original log file 
and its complexity is inherently higher than model synthesis.

Speed-up. In the second experiment, we test the speed-up of our approach with increasing number of computing nodes. 
The log size is fixed to 40 million events, while the computing cluster’s size varies from 1 node to 10 nodes.

6 http :/ /hadoop .apache .org/.
7 http :/ /aws .amazon .com /elasticmapreduce/.

http://hadoop.apache.org/
http://aws.amazon.com/elasticmapreduce/
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Fig. 12. Experimental results on synthetic logs.

The experimental results are plotted in Fig. 12b. We observed that the total running time of our approach decreases 
considerably when given more computing nodes. This is well understandable. Moreover, along with the increase of comput-
ing nodes, the speed-up ratio goes down slowly. This is also reasonable, since the communication cost increases and there 
are some operations (for example, the Reduce and PostReduce functions in model synthesis) that cannot be parallelized or 
completely parallelized.

We also implemented a centralized version of the k-tail algorithm. This centralized algorithm takes 124 seconds to 
complete the model synthesis task in the same experiment. In contrast, our distributed k-tail algorithm needs 114 seconds 
or less for running on two or more computing nodes.

Scalability. The third experiment tests the scalability of our approach. We increase the log size (from 20 million to 100 
million events) and the cluster size (from 2 to 10 nodes) by the same factor, and then observe the running time of our 
approach. Note that the ratio between log size and cluster size remains unchanged.

The experimental results are shown in Fig. 12c. When both log size and cluster size increase, the total running time 
increases a little. This phenomenon is very encouraging, which means our approach scales well.
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Fig. 13. Running time of model synthesis with varying k.

Impact of irrelevant events. The fourth experiment tests the impact of irrelevant events on the performance of our 
approach. The cluster size is fixed to 10 nodes. Among the tested logs, the number of relevant events is fixed to 10 million, 
while the number of irrelevant events varies from 10 million to 50 million.

The running time of our approach is shown in Fig. 12d. We can observe that the total running time almost does not 
change when the number of irrelevant events increases. This phenomenon explains that the irrelevant events have little 
impact on the running time of our approach. This feature is important since in real cases the percentage of irrelevant events 
may be very high.

Impact of the parameter window X . This experiment is to evaluate the impact of X on the running time of trace slicing 
and the effectiveness of our heuristics for determining X . In this experiment, X is fixed to contain four parameters p1, p2, 
p3 and p4; and X can be any singleton set of these four parameters. The parametric event definition is generated such that 
X = {p1} corresponds to the biggest T̂2, and X = {p2} corresponds to the smallest T̂2 (thus chosen by our heuristics in 
Section 5.1.1). The cluster size is fixed to 10 nodes, and the log size ranges from 20 million to 100 million events.

The running time is shown in Fig. 12e. As we can see, different settings of X have a significant impact on the trace 
slicing task: X = {p1} yields the longest running time, while X = {p2} yields the shortest running time.

Impact of |E | and |X |. The sixth experiment measures the performance of our approach under different settings of base 
events and parameters. We vary |E | from 5 to 15 and |X | from 1 to 4. The log size is fixed to 100 million events and the 
cluster size is fixed to 10 nodes.

The running time for each setting of |E | and |X | is shown in Fig. 12f, where each cell lists two numbers, reporting the 
running time for trace slicing and model synthesis, respectively. The trace slicing job is mainly influenced by |X |, and is 
much faster when X contains fewer parameters. While the model synthesis job is slightly impacted by |E |, since the input 
PTA and the output model become more complex when E contains more base events. Also, our approach performs well in 
all settings of |E | and |X |.

Impact of k. The last experiment measures the impact of k (for k-tail) on our distributed model synthesis algorithm. We 
repeat the experiment on basic performance with different values of k. We only experimented with k = 1, 2 since larger k
makes the synthesized model too complex and is usually not used in practice.

The results are summarized in Fig. 13. As the results show, the execution time of distributed model synthesis is higher 
for k = 2, which is obvious since the time of computing state signatures increases. A more interesting observation is that 
the increment of time for k = 2 is only about 8%. We believe this is mainly due to the parallel processing capacity of our 
distributed approach.

7.2. Experiments on real logs

To further evaluate the practicality of our approach, we carried out another group of experiments on real logs generated 
from the DaCapo-9.12 benchmark [18]. We monitored the execution of DaCapo benchmark programs to log all invocations 
of JDK 8 APIs (as events) using AspectJ.8 The log size is about 10 GB and contains 85 million events. Our approach is then 
applied to this log to mine the behavior models of some Java classes from packages java.util, java.io and java.lang etc. For 
each Java class, its parametric event definition is defined on its set of public methods (method name as base event, method 
formal parameters as event parameters). The computing cluster contains 10 machines, and the parameter k for the k-tail 
algorithm is set to 2.

The experimental results are summarized in Fig. 14, where the columns from left to right give the Java class of interest, 
the number of events in the log, the execution time for trace slicing, and the execution time for model synthesis, respec-
tively. The results show that our approach is able to handle real logs within reasonable amount of time. Most classes (all 

8 http :/ /eclipse .org /aspectj/.

http://eclipse.org/aspectj/
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Java class Events Trace slicing (s) Model synthesis (s)

java.util.HashMap 51,100 76 39
java.io.InputStream 591,380 77 52
java.io.OutputStream 26,301,320 213 89
java.io.Reader 1,253,840 86 69
java.io.File 148,060 83 70
java.lang.String 1,459,540 76 65
java.security.MessageDigest 55,482,840 254 59

Fig. 14. Experiment results on real logs.

but “OutputStream” and “MessageDigest”) have only a few events (compared to the total number of 85 million events) in 
the log. Thanks to the parallel processing capacity of our MapReduce framework, the inference tasks for all classes can be 
finished in 2 to 5 minutes.

8. Discussion

In this section, we discuss two possible extensions of our approach, i.e., mining temporal invariants and log preprocess-
ing.

8.1. Invariant mining

Our approach can be extended to support mining temporal invariants. Temporal invariants reflect the temporal relation-
ship among events, and can improve the accuracy of the inferred model by preventing over-generalization [4,19]. For the 
shopping system example, one typical temporal invariant is that create_order must happen before pay_order.

In practice, the mined temporal invariants usually take some simple forms, such as a → b, which means the occurrence 
of event a must eventually be followed by the event b. To mine these kinds of invariants, the occurrence information of 
events needs be recorded [19]. For example, let occurrence[a] be the number of occurrences of event a, and f ollows[a][b]
the number of occurrences of event a that is followed by the event b, and precedes[a][b] the number of event b that is 
preceded by the event a. Then with this information, we can easily decide if a → b, a � b or a ← b holds or not.

The implementation is also simple. Each reducer needs to keep values for above three predicates for all base events. 
Each time a trace slice is constructed, the corresponding values are updated. When all reducers finish, these values should 
be merged and the temporal variants can be inferred based on the merged values.

8.2. Log preprocessor

In our approach, trace slicing and model synthesis are two separate MapReduce jobs. This design scheme gives users the 
flexibility to apply our technique as a log preprocessor.

Note that most of the existing model synthesis algorithms [1,2,4] share a similar work flow: they first construct a PTA 
as the initial model from the given traces, and then iteratively merge equivalent states in the PTA until the final model is 
inferred.

Thus, our approach can be easily combined with the existing model synthesis algorithms to infer more accurate models. 
The user needs to run the trace slicing job only. Based on the powerful data processing ability of MapReduce, the original 
log can be parsed, processed, and sliced efficiently. Then the generated PTA and optionally temporal constraints can be fed 
to the existing model synthesis algorithms to produce the system model.

9. Related works

A rich literature exists on inference of finite state models from a set of traces. k-tail [1] infers a finite state machine 
by iteratively merging k-equivalent states, which can be seen as a basis of many existing algorithms. sk-strings [2] infers 
probabilistic finite state machine by merging states which are indistinguishable by their top s percent of the most probable 
k-strings. RNPI [20] considers both positive and negative samples, and infers a model which accepts all positive samples 
but none negative samples. Evidence-driven state merging (EDSM) [21], e.g., Blue-Fringe [21], ranks mergeable states with 
statistical information to determine which pair should be merged first. The work [15] considers three algorithms to infer 
process models from event data, including neural network, k-tail, and Markov methods. SMArTIC [22] improves the accu-
racy of the inferred model by first clustering relevant traces together and merging the models inferred from each cluster. 
kBehavior [23] infers models incrementally using heuristics based on recurrent patterns in the trace. Li et al. [24] propose a 
model inference technique for digital circuits by first mining recurring patterns from traces using predefined templates and 
then synthesizing them into complex models. Heule and Verwer [25,26] propose an efficient heuristics for EDSM using SAT 
solvers by encoding the model inference problem into Boolean formulas. InvariMint [27] is a general framework for declar-
atively specifying model inference algorithms. In InvariMint, a model inference algorithm is expressed as a set of properties 
expected to hold on the inferred model. To address the scalability issue of model inference, Busany and Maoz [28] take a 
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statistical approach by inferring a model from a sample of traces with certain statistical guarantees. The basic idea is to 
consider model inference as a statistical experiment, where each trace in the log is treated as a trial to either accept or 
reject the inferred model. However, these works do not take into consideration event parameters, which are important for 
software systems, and are all centralized algorithms.

Although many existing works, including ours, infer models passively from a set of given traces, the inference process 
can also be active. Angluin [29] proposes the first active model inference algorithm L∗ , which assumes an oracle to answer 
two kinds of queries, i.e., membership queries to determine whether a trace is accepted, and equivalence queries to check 
the correctness of the hypothesized model. QSM [30] employs a query-drive state merging strategy, and submits member-
ship queries of generalized traces to the end user during the state merging process. However, QSM is often infeasible in 
practice as it may submit too many queries for even a simple model. To alleviate this, Walkinshaw et al. [31] use a testing 
framework to answer membership queries. Howar [32] extends L∗ [29] to support alphabet refinement. It abstracts a set of 
concrete events with parameters into abstract events, which are refined subsequently to remove non-determinism caused 
by abstraction.

Incorporating temporal constraints can improve the accuracy of the inferred model by preventing over-generalization. 
Walkinshaw and Bogdanov [33] take LTL formulas as additional inputs, and use a model checker to iteratively refine the 
inferred model until all LTL constraints are satisfied. Lo et al. [4] automatically discover temporal constraints from traces 
with predefined templates, and only merge two states without violating any temporal constrains. This work also proposes 
an approximate merging criteria to avoid the high complexity incurred by checking temporal constraints. Lamprier et al. [14]
improve the previous work [4] and propose an exact but efficient state merging strategy by maintaining an auxiliary struc-
ture for each state. Synoptic [19] adopts a similar approach, but employs partition-based abstraction to infer an initial model 
and iteratively refines the model using the counterexample-guided abstraction refinement approach [34]. SpecForge [35]
combines multiple model inference algorithms. It first decomposes models inferred by existing algorithms into temporal 
constraints, filters outliers, and converts the constraints into the final model. As mentioned in Section 8, our approach can 
be easily extended to support mining temporal constraints, and it is an interesting future direction to integrate temporal 
constraints into our model synthesis phase.

Ammons et al. [3] apply model inference techniques to infer software API specifications. They first split program 
traces into interaction scenarios based on data dependence information, and infer a specification model using an exist-
ing learner [2]. Mariani and Pastore [36] infer behavior models from log files to locate system failures by first replacing 
concrete event parameters with symbolic ones using heuristics. The difference is that the previous works either require the 
user manually identify related parameters [3] or preprocess traces using heuristics [36], while our approach performs trace 
slicing based on parameter instances with little human effort. Lee et al. [8] propose a trace slicing technique to handle 
parametric traces, which also inspired our work. However, their trace slicing algorithm is centralized, and seems to be a 
bottleneck of the model inference process.

Instead of inferring behavior models only from execution traces, other works take program source code into considera-
tion. Whaley et al. [37] combine static and dynamic analysis to infer component inference models. They first groups public 
methods of a component based on the accessed fields, and infers a model for each group representing admissible method 
sequences. The inferred models are further enhanced using dynamic analysis with execution traces. JIST [38] abstracts a 
concrete class using predicate abstraction, and infers a specification model by solving a two player game between the ab-
stract class and the safety requirement using the L∗ algorithm [29]. Wasylkowski et al. [39] introduce a static method to 
infer object usage models from client code by first abstracting source code into a method model, which is projected onto 
objects to infer object usage models. Shoham et al. [40] mine API specifications from client code with two steps by first 
collecting all possible event traces using abstract interpretation [41], and then summarizing the collected traces to remove 
noises and infer specifications. SEIM [42] uses inter-procedural analysis to infer interaction models from client code, and 
presents a refinement strategy to eliminate infeasible behaviors. de Caso et al. [43] infer behavior models from method 
pre/post-conditions to support contract validation using enabledness-preserving abstraction. Krka et al. [44] considers two 
strategies to combine model inference with program invariants, namely state-enhanced k-tail (SEKT) and trace-enhanced 
MTS inference (TEMI). SEKT only merges state pairs having identical internal states, while TEMI refines the modal transition 
system (MTS) constructed from program invariants based on execution traces. Our work differs from these works in that we 
treat the system as a black-box, and only require the execution logs instead of the source code.

However, it has been suggested that finite state models sometimes are insufficient for software systems as information of 
data values is lacking [45–47]. In general, there are two directions to extend finite state models with data values. The first 
is to enrich finite state models with data states. Obstra [48] abstracts concrete objects from test cases to infer object states 
models, which are further augmented with additional tests to discover more complete behavior. ADABU [45] distinguishes 
mutator methods and inspector methods of an object. It calls inspector methods after each mutator method to inspect 
object states, and maps these concrete states to abstract states to infer the object model. Walkinshaw et al. [49] discover 
state transitions from programs using symbolic execution techniques, but require the user to manually define data states. 
SPY [50] generalizes the partial model inferred execution traces using graph transformation rules to obtain behavior models. 
TAUTOKO [51] enriches existing model inference algorithms with test case generation to discover more comprehensive 
behavior.

Another direction is to infer extended finite state machines (EFSM), where transitions are labeled with guard predicates. 
Berg et al. [52] adapt the L∗ algorithms [29] to infer parameterized models, but only boolean predicates are allowed. GK-
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tail [46] extends k-tail [1] to infer EFSMs from execution traces. It first merges traces with same events ignoring data values, 
and generates predicates for merged traces using Daikon [53]. Finally, the EFSM is inferred by merging equivalent states as in 
k-tail [1]. Psyco [54] infers component interface models using the L∗ algorithm [29], where events are augmented with pred-
icates, and uses symbolic execution to answer queries. It also performs alphabet refinement to remove non-determinism. 
X-Psyco [55] improves Psyco [54] in several ways. X-Psyco uses partial order reduction to reduce the generated method 
sequences, and relies on concrete executions for model inference, which is combined with symbolic execution to ensure 
completeness and generate transition guards. Tzuyu [47] adopts a similar framework, but employs system testing as the 
oracle and uses SVM [56] to perform alphabet refinement. MINT [57] is a general approach for inferring EFSMs, which first 
uses data classifiers to infer guard predicates, and iteratively merge compatible states to obtain the final model. Comparing 
with these works, our approach only uses data values to perform trace slicing, while the values are discarded in the inferred 
model. However, it is worth considering the parallelization of these model inference algorithms.

Many inference algorithms of other finite state models have also been proposed recently, such as mealy machines [58–60]
which model output values, register automata [61–63] which support variables, hybrid automata [64] modeling continuous 
system behavior [64], discrete time Markov chains [5] to model user navigational behavior, communicating finite state 
machines [6] to support concurrent systems, and resource finite state machines [65] to express resource usages etc. However, 
to the best of our knowledge, there is no previously published work on applying MapReduce to model inference.

Recently, Wang et al. [9] studied the parallelization of specification mining using MapReduce. Their parallelization solu-
tion for the k-tail algorithm is to divide the original trace into several groups, on each of which an instance of the original 
k-tail algorithm is then executed. Our parallelization solution is at a finer-grained level in the sense that our approach 
parallelizes the inference of a single behavior model.

Moreover, since our approach involves log processing, our work also shares some similarities with trace checking with 
MapReduce. Informally, trace checking is the problem to check the compliance of a log of traces with temporal formu-
las. However, since logs can be potentially very large, several MapReduce-based trace checking algorithms have recently 
been proposed. Barre et al. [66] present an algorithm for checking Linear Temporal Logic (LTL) formulas over event traces 
with MapReduce. The algorithm checks the formula by iteratively processing the logical operators in the same level in a 
bottom-up manner. Thus, the parallelism is bounded by the structure of the input formulas. Bianculli et al. [67] improve 
the previous work [66] by supporting Metric Temporal Logic (MTL) [68], where temporal operators are enhanced with time 
intervals, with aggregating modalities. Bersani et al. [69] further propose a novel lazy semantics for MTL to handle the mem-
ory scalability issue caused by the bounds of time intervals. The lazy semantics allows to decompose a MTL formula with 
large time intervals into an equivalent formula with smaller bounds. Basin et al. [70] present a formal log slicing framework 
for checking Metric First-Order Temporal Logic (MFOTL) [71] policies, which is further implemented with MapReduce. The 
basic idea to slice a log into several pieces, check each piece separately, and merge the results from all these pieces together. 
But the major difference between our approach and these works is that we mainly focus on behavior model inference from 
large logs, rather than checking compliance with temporal logics.

10. Conclusion

In this paper, we presented an approach to infer software behavior models from large logs using MapReduce. In our 
approach, the logs are first parsed and sliced, then the model is inferred by the distributed k-tail algorithm. Our approach 
can also be used as a log preprocessor and combined with existing model inference algorithms. Experiments on Amazon 
clusters and large datasets show the efficiency and scalability of our approach. This paper extends our previous work [12]
in several ways. Specially, we describe several practical optimizations, formally prove the correctness of our approach, and 
provide more complete experimental assessment under various settings.

We plan to perform case studies on large logs generated by real software systems to further evaluate the performance 
and applicability of our approach. We also plan to investigate the parallelization of more accurate model inference algo-
rithms or incorporating temporal constraints during the inference phase.
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Appendix A. Correctness of distributed trace slicing

In the following, we show the correctness of our distributed trace slicing algorithm. First, we show some properties of 
the connected parametric instance (Definition 9).

Lemma 3. Given a parametric trace τ and a τ -connected parametric instance θ , there exists a sequence of parametric events 
e1〈θ1〉, . . . , en〈θn〉 such that:
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• θ = θ1 � . . . � θn, and
• for any ei〈θi〉 and e j〈θ j〉 in the sequence, θ j is reachable from θi , i.e., there exist e′

1〈θ ′
1〉, . . . , e′

k〈θ ′
k〉 in the sequence such that 

θi �� θ ′
1, . . . , θ

′
k−1 �� θ ′

k, θ
′
k �� θ j .

Proof. We show the lemma with structural induction over the definition of connectedness (Definition 9).
Inductive basis: if e〈θ〉 ∈ τ , let the sequence be e〈θ〉, i.e., with only one parametric event. Apparently it satisfies above 

conditions. Thus the lemma holds.
Inductive step: suppose there exist θ1 and θ2 such that both θ1 and θ2 are τ -connected, θ1 �� θ2 and θ = θ1 � θ2. 

From the inductive assumption, the lemma holds for both θ1 and θ2. Let θ1 = θ1
1 � . . . � θu

1 and θ2 = θ1
2 � . . . � θ v

2 , where 
e1

1〈θ1
1 〉, . . . eu

1〈θu
1 〉, e1

2〈θ1
2 〉, . . . , ev

2〈θ v
2 〉 ∈ τ . Then θ = θ1 � θ2 = (θ1

1 � . . . � θu
1 ) � (θ1

2 � . . . � θ v
2 ). From the definition of the combi-

nation operator (Definition 7), it is straightforward that � is associative. Thus, θ = θ1
1 � . . . � θu

1 � θ1
2 � . . . � θ v

2 , and the first 
statement holds.

For the second statement, let ei〈θi〉 and e j〈θ j〉 be two parametric events in the sequence of e1
1〈θ1

1 〉, . . . eu
1〈θu

1 〉, e1
2〈θ1

2 〉, . . . ,
ev

2〈θ v
2 〉. From the inductive assumption, we only need to consider the case where ei〈θi〉 in e1

1〈θ1
1 〉, . . . eu

1〈θu
1 〉 and e j〈θ j〉 in 

e1
2〈θ1

2 〉, . . . , ev
2〈θ v

2 〉, since otherwise the statement trivially holds from the inductive assumption. Since θ1 �� θ2, there must 
exist a parameter x ∈ X such that both θ1(x) and θ2(x) are defined. Further from θ1 = θ1

1 � . . . � θu
1 and θ2 = θ1

2 � . . . � θ v
2 , 

there must exist parametric instances θ i
1 and θ j

2 such that both θ i
1(x) and θ j

2 (x) are defined. Then, since θ1 is compatible 
with θ2, and θ i

1 � θ1 and θ j
2 � θ2, we have θ i

1 is compatible with θ j
2 . Thus, θ i

1 �� θ
j

2 . Moreover, from the inductive assumption, 
we have θ i

1 is reachable from θi , and θ j is reachable from θ j
2 . By concatenating two sequences with θ i

1 �� θ
j

2 , we have θ j is 
reachable from θi , and the second statement holds. �
Lemma 4. Given a parametric trace τ and a parameter window X , for any complete and connected parametric instance θ , there exists 
a parametric event e′〈θ ′〉 ∈ τ such that θ ′�X= θ �X .

Proof. From Lemma 3, since θ is connected, there exists a sequence of parametric events e′
1〈θ ′

1〉, . . . e′
n〈θ ′

n〉 ∈ τ such that 
θ = θ ′

1 � . . . � θ ′
n . Moreover, from the definition of X (Definition 10), for any e′

i〈θ ′
i 〉 in the sequence, either Dom(θ ′

i ) ∩X = ∅
or X ⊆ Dom(θ ′

i ). Now suppose for any θ ′
i , Dom(θ ′

i ) ∩ X = ∅. Then, we have Dom(θ ′
1 � . . . � θ ′

n) ∩ X = ∅, which means θ is 
not complete and leads to a contradiction. Thus, there must exist some e′〈θ ′〉 in the sequence such that X ⊆ Dom(θ ′). Then 
from the definition of the combination operator � (Definition 7), we have θ ′ �X= θ �X . �

Now, we consider the while loop at line 6 of the Reduce function, which leads to the following lemma.

Lemma 5. Given a parametric trace τ and a complete and connected parametric instance θ , for any parametric event e′〈θ ′〉 ∈ τ such 
that θ ′ � θ , �(θ ′) is defined after the while loop at line 6 of the Reduce function for key = θ �X .

Proof. Let value[] be the list of parametric events for key = θ �X . If X ⊆ Dom(θ ′), which means key(e′〈θ ′〉) = θ ′ �X= θ �X , 
then e′〈θ ′〉 ∈ values[]. Thus, �(θ ′) is defined after line 5 of the Reduce function for key = θ �X , and the statement holds.

Otherwise, X ∩ Dom(θ ′) = ∅, which means key(e′〈θ ′〉) =⊥. Thus, �⊥(θ ′) is defined after line 3 of the Reduce function 
for key =⊥. From Lemma 3, since θ is connected, there exists a sequence of parametric events e1〈θ1〉 . . . en〈θn〉 ∈ τ such 
that θ = θ1 � . . . � θn . Then from the proof of Lemma 4 and without loss of generality, let e1〈θ1〉 in the sequence be the 
parametric event such that θ �X= θ1 �X . From the previous discussion, �(θ1) is defined after line 5 of the Reduce function 
for key = θ �X .

Now consider θ ′ . Let x ∈ X be a parameter such that θ ′(x) is defined. Since θ is complete, i.e., Dom(θ) = Dom(θ1 � . . . �
θn) = X , there must exist a parametric event ei〈θi〉 in the sequence e1〈θ1〉 . . . en〈θn〉 such that θi(x) is defined. Moreover, since 
both θ ′ � θ and θi � θ , we have θ ′ is compatible with θi . Thus, θ ′ �� θi . Then from Lemma 3, there exist e′

1〈θ ′
1〉, . . . , e′

k〈θ ′
k〉

in the sequence of e1〈θ1〉 . . . en〈θn〉 such that θ1 �� θ ′
1, . . . , θ

′
k−1 �� θ ′

k and θ ′
k �� θi . By concatenating with θi �� θ ′ , we have 

θ ′ is reachable from θ̄1. Note that for any θ̄ (θ̄ � θ ) in the sequence of θ ′
1, . . . θ

′
k, θi , either �(θ̄) is defined after line 5 of 

the Reduce function for key = θ �X (X ⊆ Dom(θ̄)), or �⊥(θ̄) is defined after line 3 of the Reduce function for key =⊥
(X ∩ Dom(θ̄) = ∅). Thus, during the while loop at line 6 of the Reduce function for key = θ �X , �⊥(θ ′) is added into � by 
following the sequence of θ1, θ ′

1, . . . θ
′
k, θi, θ ′ , and the statement also holds. �

Then, we show the trace slice τ �θ is correctly constructed at line 24, which is achieved by the following lemma.

Lemma 6. τ �θ computed at line 24 satisfies the definition of θ -trace slice of τ (Definition 6).

Proof. From the definition of trace slice (Definition 6), given a parametric instance θ and a parametric trace τ , θ -trace slice 
of τ consists of the base events of all parametric events e′〈θ ′〉 ∈ τ such that θ ′ � θ . According to Lemma 5, for any e′〈θ ′〉 ∈ τ
such that θ ′ � θ , �(θ ′) is defined at line 23 and �(θ ′) is a sequence of base events for θ ′ . Moreover, it is trivial to see that 
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�(θ ′) is defined only if θ ′ ∈ τ . Thus, τ �θ can be computed by merging the lists of base events �(θ ′) for θ ′ � θ in ascending 
order of timestamp at line 24. �

Finally, the following theorem states the correctness of our distributed trace slicing algorithm.

Theorem 1. Given a parametric trace τ , the following statements hold for the distributed trace slicing job:

1. for any τ �θ constructed at line 24, the parametric instance θ is complete and connected, and
2. for any complete and connected parametric instance θ , θ -trace slice of τ is constructed at line 24.

Proof. The first statement trivially holds since the guards at lines 19 and 22 ensure only τ �θ for complete and connected 
parametric instances are constructed.

We then mainly focus on the second statement. From Lemma 4, for any complete and connected parametric instance θ , 
there exists a parametric event e′〈θ ′〉 ∈ τ such that θ ′ �X= θ �X , which means there exists a key–value pair output by 
mappers with key = θ �X . Then we only need to show θ -trace slice of τ can be constructed in the Reduce function for 
key = θ �X , which is equivalent to show θ ∈ � at line 22 from Lemma 6. From Lemma 3, since θ is connected, there 
exists a sequence of parametric events e1〈θ1〉, . . . en〈θn〉 ∈ τ such that θ = θ1 � . . . � θn , and for any ei〈θi〉 and e j〈θ j〉 in 
the sequence, θ j is reachable from θi . Moreover, from Lemma 5, all �(θ1), . . . , �(θn) are defined after the while loop at 
line 6, i.e., θ1, . . . , θn ∈ � after line 18. Thus, θ is constructed during the while loop at line 19 by combining the parametric 
instances θ1, . . . θn , and the second statement holds. �
Appendix B. Correctness of distributed model synthesis

In this appendix we show the correctness of our distributed model synthesis algorithm. Recall that given an automa-
ton M , denote wordk

M(s) = {ω|ω ∈ 	≤k ∧ f (s, ω) = T }, i.e., the set of k-words accepted by the state s of M . We further lift 
the above notation to a set of states S , i.e., wordk

M(S) = ⋃
s∈S wordk

M(s). Given a set of words � and a base event e ∈ 	, 
denote e · � = {e · ω|ω ∈ �}, i.e., the set of words obtained by concatenating e with each word in �.

Now consider the state merging process. Given an automaton M and two k-equivalent states s1 and s2 in M , let M ′ be 
the automaton obtained by merging s1 and s2 into s′ . Let S and σ be the set of states and the transition function of M , 
and S ′ and σ ′ be the set of states and the transition function of M ′ . It is straightforward that S ′ = (S \ {s1, s2}) ∪ {s′}. The 
transition function σ ′ is obtained as follows. For the state s′ and any e ∈ 	, we have:

• σ ′(s′, e) = σ(s1, e) ∪ σ(s2, e), if s1, s2 /∈ σ(s1, e) ∪ σ(s2, e);
• σ ′(s′, e) = ((σ (s1, e) ∪ σ(s2, e)) \ {s1, s2}) ∪ {s′}, if s1 or s2 in σ(s1, e) ∪ σ(s2, e).

For any state s ∈ S ′ \ {s′} and any e ∈ 	, we have:

• σ ′(s, e) = σ(s, e), if s1, s2 /∈ σ(s, e);
• σ ′(s, e) = (σ (s, e) \ {s1, s2}) ∪ {s′}, if s1 ∈ σ(s, e) or s2 ∈ σ(s, e).

We first show two properties of k-equivalent states.

Lemma 7. Let s1 and s2 be two k-equivalent states, then for any i ∈ [1, k], s1 and s2 are i-equivalent.

Proof. Prove by contradiction. Assume s1 and s2 are not i-equivalent for some i ∈ [1, k], which means there exists a word 
ω ∈ 	≤i such that ω is accepted by only one of s1 and s2. Since 	≤i ⊆ 	≤k , we have ω ∈ 	≤k . Thus, s1 and s2 are not 
k-equivalent, which is a contradiction. �
Lemma 8. Given two states s1 and s2 in an automaton M, s1 and s2 are k-equivalent iff for any base event e ∈ 	, wordk−1

M (σ (s1, e)) =
wordk−1

M (σ (s2, e)).

Proof. ⇒: Suppose s1 and s2 are k-equivalent. Let e be a base event, and e ·ω ∈ 	≤k be a k-word starting from e, where ω ∈
	≤k−1. Since s1 and s2 are k-equivalent, we have wordk

M(s1) = wordk
M(s2), which implies e ·ω ∈ ⋃

e′∈	 e′ · wordk−1
M (σ (s1, e′))

iff e · ω ∈ ⋃
e′∈	 e′ · wordk−1

M (σ (s2, e′)). Moreover, since e · ω /∈ ⋃
e′∈(	\{e}) e′ · wordk−1

M (σ (s1, e′)) and e · ω /∈ ⋃
e∈(	\{e}) e′ ·

wordk−1
M (σ (s2, e′)), we have e ·ω ∈ e · wordk−1

M (σ (s1, e)) iff e ·ω ∈ e · wordk−1
M (σ (s2, e)), which means ω ∈ wordk−1

M (σ (s1, e))
iff ω ∈ wordk−1

M (σ (s2, e)). Thus, the statement holds.

⇐: Let e ∈ 	 be a base event and wordk−1
M (σ (s1, e)) = wordk−1

M (σ (s2, e)), which implies e · wordk−1
M (σ (s1, e)) = e ·

wordk−1
M (σ (s2, e)). Thus, 

⋃
e∈	 e · wordk−1

M (σ (s1, e)) = ⋃
e∈	 e · wordk−1

M (σ (s2, e)), which implies wordk
M(s1) = wordk

M(s2), 
and the statement holds. �
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The following theorem ensures that the order of state merging has no influence on the output model.

Theorem 2. Given an automaton M and two k-equivalent states s1 and s2 , let M ′ be the automaton obtained by merging s1 and s2
into s′ . The following statements hold:

• wordk
M(s1) = wordk

M(s2) = wordk
M′ (s′), and

• for any state s ∈ S ′ \ {s′}, wordk
M(s) = wordk

M′ (s).

Proof. Let S and σ be the set of states and the transition function of M , and S ′ and σ ′ be the set of states and the 
transition function of M ′ . Note that for the first statement, it is trivial that wordk

M(s1) = wordk
M(s2), and we only need 

to consider wordk
M(s1) = wordk

M′ (s′). We then show the theorem by natural induction over the length l (l ≤ k) of the 
words.

Inductive basis: l = 1. Let e ∈ 	 be a base event, i.e., a word with the length 1. For the first statement, if s1, s2 /∈
σ(s1, e) ∪ σ(s2, e), then σ ′(s′, e) = σ(s1, e) ∪ σ(s2, e). From Lemma 7, s1 and s2 are also 1-equivalent, which means 
σ(s1, e) �= ∅ iff σ(s2, e) �= ∅. Thus, we have σ(s1, e) �= ∅ iff σ ′(s′, e) �= ∅. Otherwise, if s1 or s2 in σ(s1, e) ∪ σ(s2, e), then 
σ ′(s′, e) = ((σ (s1, e) ∪ σ(s2, e)) \ {s1, s2}) ∪ {s′}. In this case, both σ(s1, e) �= ∅ and σ ′(s′, e) �= ∅, which implies σ(s1, e) �= ∅
iff σ ′(s′, e) �= ∅. Thus, e ∈ word1

M(s1) iff e ∈ word1
M′ (s′), and the first statement holds.

For the second statement, if s1, s2 /∈ σ(s, e), then σ ′(s, e) = σ(s, e). Thus, σ(s, e) �= ∅ iff σ ′(s, e) �= ∅. Otherwise, if s1
or s2 ∈ σ(s, e), then σ ′(s, e) = (σ (s, e) \ {s1, s2}) ∪ {s′}. In this case, both σ(s, e) �= ∅ and σ ′(s, e) �= ∅, which also implies 
σ(s, e) �= ∅ iff σ ′(s, e) �= ∅. Thus, e ∈ word1

M(s) iff e ∈ word1
M′ (s), and the second statement holds.

Inductive step: assuming the theorem holds for l (l ≤ k − 1), we show that the theorem holds for l + 1. Let e ∈ 	 be a 
base event.

For the first statement, from Lemma 8, we only need to show wordl
M(σ (s1, e)) = wordl

M′ (σ ′(s′, e)). If s1, s2 /∈
σ(s1, e) ∪ σ(s2, e), then σ ′(s′, e) = σ(s1, e) ∪ σ(s2, e). From the inductive assumption (the second statement), we have 
wordl

M(σ (s1, e) ∪σ(s2, e)) = wordl
M′ (σ (s1, e) ∪σ(s2, e)). Moreover, from Lemma 7, we have s1 and s2 are (l + 1)-equivalent, 

which further implies wordl
M(σ (s1, e)) = wordl

M(σ (s2, e)) from Lemma 8. Then, we have the following equation:

wordl
M ′(σ ′(s′, e))

= wordl
M ′(σ (s1, e) ∪ σ(s2, e))

= wordl
M(σ (s1, e)) ∪ wordl

M(σ (s2, e))

= wordl
M(σ (s1, e))

Thus, the first statement holds in this case.
Otherwise, if s1 or s2 in σ(s1, e) ∪ σ(s2, e), then σ ′(s′, e) = ((σ (s1, e) ∪ σ(s2, e)) \ {s1, s2}) ∪ {s′}. From the inductive 

assumption (the second statement), we have wordl
M((σ (s1, e) ∪ σ(s2, e)) \ {s1, s2}) = wordl

M′ ((σ (s1, e) ∪ σ(s2, e)) \ {s1, s2}). 
Also from the inductive assumption (the first statement), we have wordl

M (s1) = wordl
M(s2) = wordl

M′ (s′). Moreover, from 
the previous discussion, we have wordl

M(σ (s1, e)) = wordl
M(σ (s2, e)). Then, we have the following equation:

wordl
M ′(σ ′(s′, e))

= wordl
M ′(((σ (s1, e) ∪ σ(s2, e)) \ {s1, s2}) ∪ {s′})

= wordl
M ′((σ (s1, e) ∪ σ(s2, e)) \ {s1, s2}) ∪ wordl

M ′(s′)

= wordl
M((σ (s1, e) ∪ σ(s2, e)) \ {s1, s2}) ∪ wordl

M ′(s′)

= (wordl
M(σ (s1, e)) \ wordl

M(s1)) ∪ wordl
M(s1)

= wordl
M(σ (s1, e))

Thus, the first statement also holds.
For the second statement, from Lemma 8, it also suffices to show wordl

M (σ (s, e)) = wordl
M′ (σ (s, e)). If s1, s2 /∈ σ(s, e), 

then σ ′(s, e) = σ(s, e). From the inductive assumption (the second statement), we have wordl
M(σ (s, e)) = wordl

M′ (σ (s, e)). 
Thus, the second statement holds for this case.

Otherwise, if s1 or s2 in σ(s, e), then σ ′(s, e) = (σ (s, e) \ {s1, s2}) ∪ {s′}. Similar to the proof of the first statement, we 
have the following equation:

wordl
M ′(σ (s, e))

= wordl
M ′((σ (s, e) \ {s1, s2}) ∪ {s′})

= (wordl (σ (s, e)) \ wordl (s1)) ∪ wordl ′(s′)
M M M
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= (wordl
M(σ (s, e)) \ wordl

M(s1)) ∪ wordl
M(s1)

= wordl
M(σ (s, e))

Thus, the second statement also holds. �
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Jump, H. Lee, J.E.B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dincklage, B. Wiedermann, The DaCapo benchmarks: Java benchmarking 
development and analysis, in: Proceedings of the 21st Annual ACM SIGPLAN Conference on Object-Oriented Programing, Systems, Languages, and 
Applications, ACM Press, New York, NY, USA, 2006, pp. 169–190.

[17] D. Lo, S.-C. Khoo, QUARK: empirical assessment of automaton-based specification miners, in: Proceedings of the 13th Working Conference on Reverse 
Engineering, IEEE, 2006, pp. 51–60.

[18] S.M. Blackburn, R. Garner, C. Hoffman, A.M. Khan, K.S. McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S.Z. Guyer, M. Hirzel, A. Hosking, M. 
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