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a b s t r a c t

We consider pricing schemes for matching customers and providers on double-sided markets for elec-
tronic services. While existing second-best solutions are incentive compatible, the associated payment
functions are difficult to implement in real-world settings. Based on the Vickrey–Clarke–Groves (VCG)
and the k-pricing mechanism, we propose two straightforward payment schemes that offer a practical
alternative to the second-best solution. Our experiments provide evidence that the VCG payments fail to
implement incentive compatibility. This failure is due to the interdependency of the participants’ utilities.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Matching the right pairs of competitive customers andproviders
for electronic services on double-sided markets is an important
optimization problem in Operations Research [2]. On these mar-
kets, multiple service providers offer electronic services of a spec-
ified quality of service (QoS), while multiple customers demand
these services at a specific QoS. To this end, matching markets
have recently emerged in different business areas including Cloud
computing [1].

In common market settings, strategic participants may engage
in bid manipulation in order to influence their transaction prices.
While first-best solutions are not available in such settings [10],
second-best mechanisms for matching customers and providers
with interdependent utilities have been proposed [15]. Although
such mechanisms satisfy incentive compatibility and individual
rationality, the associated payment schemes are difficult to imple-
ment in real-world scenarios. Attempts to simplify the payment
scheme, however, may open the way for strategic participants to
increase their utilities by misrepresenting their bids. Thus, before
modifying the payments, the mechanism designer must obtain an
accurate estimation for the potential utility gain that participants
can achieve due to strategic bid manipulation.

Prior research studies the average utility gain of participants
with independent utilities on markets for electronic services. The
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mechanism proposed by Schnizler et al. uses k-pricing to pro-
vide a simple payment scheme that is well-suited for real-world
electronic service exchange [12]. Although their approach allows
for estimating the utility gain of strategic participants, it does
not consider interdependent utilities. Lee analyzes the manip-
ulability of stable matching mechanisms to quantify the utility
gain participants can expect through bid manipulation [8]. Yet
concrete payment schemes for real-world markets are missing.
In the context of generalized assignment problems, Fadaei and
Bichler propose truthful approximation mechanisms in payment-
free environments [3]. Fadaei and Bichler use the optimal welfare
value as a benchmark to estimate the efficiency loss due to strategic
bidding. Because they considermechanism designwithoutmoney,
no payment rules are provided. Widmer and Leukel [15] provide
a lower bound for the efficiency of a second-best mechanism
that allocates electronic services with private quality information.
Although they specify the incentive compatible payments of cus-
tomers and providers in double-sided markets, these payment
rules turn out to be inexpedient for implementing the associated
mechanism in real-world environments.

The objective of our research is to study the efficiency loss
of a mechanism with two straightforward payment schemes for
electronic service matching in double-sided markets. We apply
these two payment schemes to markets where participants have
interdependent utilities. The first payment scheme is based on the
prominent Vickrey–Clarke–Groves (VCG) pricing rules [14], which
satisfy incentive compatibility in single-unit and certain multi-
unit procurement auctions [5]. The second payment scheme is
based on k-pricing introduced by Sattherthwaite and Williams
[11], where the price is simply calculated as the arithmeticmean of
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customer valuation and provider cost. Mechanisms with k-pricing,
however, are not incentive compatible [10]. In a set of simulation
experiments, we study the potential utility gains that participants
can expect through strategic bid manipulation.

We find that in our model with interdependent utilities, the
prominentVCGmechanism is not incentive compatible. The reason
for the failure of incentive compatibility is that strategic customers
and providers can manipulate their perceived impact on social
surplus through the utilities of their matched partners. Hence,
participants are able to increase their utilities by manipulation
even when VCG pricing is used. The results of our experimental
evaluation for both payment schemes provide an accurate estima-
tion for these utility gains.

2. Formal framework

There are two disjoint sets of participants in themarket, namely
customers and providers. In order to obtain benchmark results for
arbitrary market settings, we begin by assuming an equal number
N of customers and providers on each market side in this arti-
cle. This assumption is consistent with prior research investigat-
ing mechanisms for allocating electronic services [12]. We revisit
this assumption in our discussion of future research directions
(cf. Section 4.3).

Each provider attempts to sell an electronic service to one cus-
tomer, and each customer seeks to buy a service fromone provider.
Each customer i demands for a privately known QoS θi, and each
provider offers their service at a privately known QoS σj.

If customer i receives the service of provider j, i produces the
pairwise private valuation v(θi, σj). This valuation depends on i’s
desired quality, as well as on the difference between its own de-
sired quality and provider j’s actual quality. This situation depicts a
market in which customer valuation functions are non-monotonic
in the quality offered by the provider. For instance, a customermay
prefer a service with medium over high computational capacity. A
high-capacity service is well able to process many simultaneous
requests from the customer’s application that uses this service.
If, however, this application does not have enough computational
power or resources, the applicationwill fail to answer these simul-
taneous requests in due time. This failure leads to higher buffering
in the application and thus longer response times. Therefore, a
customer’s valuation must take into account the application that
uses the service and the tradeoff between being idle or buffering
heavily [6]. Therefore, we assume that any mismatch in desired
quality and actual quality creates adjustment problems for the cus-
tomer. That is, v(θi, σj) ismaximizedwhen the supplied quality and
the desired quality are equal (i.e., when θi = σj). By assumption,
the maximal value is increasing in θi.

On the supply side, if provider j sells a service to customer i,
j accrues a service provision cost c(σj, θi), which depends on the
actual quality andon the difference between the ownactual quality
and the customer’s desired quality. If a provider produces a quality
lower than the quality desired by a customer, this provider incurs
higher cost from not fulfilling the requirements. If, in contrast, a
providermaintains higher quality than desired, their cost increases
due to idle resources [4]. Hence, we assume that c(σj, θi) is mini-
mized when σj = θi and that the minimal value is increasing in σj.
This assumption captures the fact that amismatch in actual quality
and desired quality creates higher provision cost resulting from
after-sales customer service cost and missed opportunity cost.
Both v(θi, σj) and c(σj, θi) are assumed to be thrice differentiable.

Customers and providers use quasi-linear utilities. Hence, cus-
tomer i paying tc for receiving an electronic service from j obtains
a payoff of

uc(θi, σj) = v(θi, σj) − tc, (1)

and provider j receiving tp for delivering the service to customer i
obtains a payoff of

up(σj, θi) = tp − c(σj, θi). (2)

This research takes the perspective of a social planner, who
is interested in maximizing the sum of the participants’ welfare.
Therefore, the social planner aims at maximizing the social sur-
plus among all participants. Let xij ∈ {0, 1} denote the decision
variable, which is 1 if customer i receives the electronic service
from provider j in the final allocation, and 0 otherwise. Thus, the
mechanism faces the following optimization problem:

max
xij

N∑
i=1

N∑
j=1

(v(θi, σj) − c(σj, θi))xij (3)

s.t. 0 ≤

∑
j

xij ≤ 1 ∀i (4)

0 ≤

∑
i

xij ≤ 1 ∀j. (5)

The expression in (3) adds up the pairwisematch surplus across
all customers and providers and determines the allocation that
maximizes the social welfare. Notice that the payments tc and
tp do not appear in (3) because they add up to zero due to the
budget balance constraint. Constraints (4) and (5) ensure that each
customer is matched to exactly one service provider in the final
allocation.

3. Mechanism definition

3.1. Allocation rule

The allocation rule of the mechanismmust ensure that the final
allocation of customers andprovidersmaximizes the socialwelfare
defined in (3). In many auction settings, it is difficult to determine
thewinners of the auction due to computational complexity issues.
In supermodular environments, however, it turns out that the
allocation rule,whichmaximizes the socialwelfare, adopts a rather
simple form. Let ρθ (θi) = |{θk ∈ θ : θk ≥ θi}| be the rank
of desired quality θi within the vector of all customers’ desired
qualities θ = {θ1, . . . , θN}. Define ρσ (σi) similarly for providers.
Then, the allocation rule is given by

xij =

{
1 if ρθ (θi) = ρσ (σj) = k ∧ v(θi, σj) − c(σj, θi) ≥ 0,
0 otherwise. (6)

In other words, the mechanism accepts the bids θi of all cus-
tomers and the bids σj of all providers, sorts each side in descend-
ing order, and allocates customers and providers that are on the
same rank from top to bottom. That is, the allocation rule of the
mechanism is positively assortative. Itmaximizes the optimization
problem in (3) because the pairwise surplus v(θi, σj) − c(σj, θi) is
a supermodular function. If the pairwise surplus function is super-
modular, the optimal match function is positively assortative [13].

3.2. Pricing

After having obtained the welfare maximizing allocation rule
in (6), it is crucial to determine the payments made by the partic-
ipants for electronic service allocation. For designing an efficient
mechanism, these payments must guarantee that no participant
has an incentive to deviate from their true bid. That is, the pay-
ments must ensure incentive compatibility. It is well-known that
a pricing scheme based on the VCG mechanism [14] is incentive
compatible for a single customer who buys one unit of a prod-
uct from a set of providers [5]. Moreover, the VCG mechanism
ensures incentive compatibility in settings with many customers
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and many providers that exchange specific electronic services. On
such markets, however, budget balance cannot be achieved [12]. A
practical alternative for VCG payments is a pricing scheme based
on k-pricing. The k-pricing scheme determines the payments by
equally splitting the difference between the bids of customers and
providers [11]. Appropriate VCG and k-pricing payments for the
proposed mechanism are introduced in the following sections.

3.2.1. VCG pricing
In a VCG mechanism, each participant’s impact on the social

welfare is internalized through their payments such that the other
participants receive the same payoff, regardless of the participant’s
bid [9]. That is, the payments of each participant are set equal to
their impact on social surplus relative to the reports. To be more
specific, let θ̂i denote the desired QoS submitted to the mechanism
by customer i and let σ̂j denote the offered QoS submitted to the
mechanism by provider j. Then i’s payment for service consump-
tion is

t ic = −

N∑
k=1
k̸=i

N∑
j=1

(v(θ̂k, σ̂j) − c(σ̂j, θ̂k))xkj

+ max
x′kj

( N∑
k=1
k̸=i

N∑
j=1

(v(θ̂k, σ̂j) − c(σ̂j, θ̂k))x′

kj

)
. (7)

The compensation payments for providers t jp are defined anal-
ogously:

t jp =

N∑
i=1

N∑
k=1
k̸=j

(v(θ̂i, σ̂k) − c(σ̂k, θ̂i))xik

− max
x′ik

( N∑
i=1

N∑
k=1
k̸=j

(v(θ̂i, σ̂k) − c(σ̂k, θ̂i))x′

ik

)
. (8)

As stated above, the VCG mechanism is incentive compatible
in common auction theory settings, for instance, when customers
and providers have unit demand and supply, and their QoS is
private information. Similarly, public good environments entail
incentive compatibility of the VCG mechanism. Considering the
interdependent structure of the participants’ utilities in this work,
however, requires a reassessment of VCG’s incentive properties.

3.2.2. k-pricing
In the k-pricing scheme, the transfers are calculated based

on the difference between the valuation and provision cost of
the matched participants. In general, these transfers are given by
kv(θi, σj) + (1 − k)c(θi, σj) for any k ∈ [0, 1]. Since each final
allocation is made up of exactly two participants, k is set to 0.5.
Using this pricing scheme, both individual rationality and budget
balance are satisfied by definition. Hence, the mechanism with k-
pricing is given by the allocation rule defined in (6) with transfers

t ic = t jp =
1
2
(v(θi, σj) + c(σj, θi)). (9)

By the Myerson–Satterthwaite-Theorem [10], incentive com-
patibility fails to hold when ex post optimality is required.
Therefore, the mechanism with k-pricing cannot be incentive
compatible.

Example 1. Suppose there are two customers and two providers
in the market who submit their QoS bids truthfully. As suggested
in our prior work [15], customers use a valuation function equal to
v(θi, σj) = 1 +

√
θi − (θi − σj)2 and providers use a cost function

equal to c(σj, θi) = σ 2
j + (θi − σj)2. All QoS realizations θi and

Table 1
Average utility and budget with uniformly distributed QoS.

Pricing scheme Customer utility Provider utility Welfare Budget

VCG 1.3295 1.1130 4.8849 −2.6335
k-pricing 0.5629 0.5629 2.2516 0

σj are uniformly distributed over the unit interval. Table 1 shows
the average utilities of customers and providers as well as the
average budget achieved by the VCG and the k-pricingmechanism.
While the mechanismwith k-pricing balances the budget, the VCG
pricing scheme runs a budget deficit. Notice that the difference
between welfare and budget obtained by the VCG mechanism
equals the welfare achieved by the k-pricing mechanism. Because
k-pricing does not satisfy incentive compatibility, the VCG pricing
scheme cannot be incentive compatible either. The experimental
evaluation confirms this finding.

4. Experimental evaluation

This section reports an experimental evaluation of the two
pricing schemes developed in this proposal.We describe the setup,
report the results, and discuss the findings.

4.1. Experimental setup

The experimental setup is based on the setting used in Table 1.
The participants’ QoS are described by random variables drawn
from the uniformdistribution over the unit interval and the normal
distribution truncated to the unit interval with mean µ = 0.5 and
standard deviation σ = 0.1.

Customers and providers are assumed to misrepresent their
QoS bids. We only consider linear misrepresentations of partic-
ipants; that is, participants use a manipulation factor to distort
their true QoS. For instance, a manipulation factor of 0.8 means
that all customers reduce their true QoS by 20% and all providers
increase their true QoS by 20%. In each experiment, the number of
manipulating participants is varied as well. For example, a ratio of
0.7 denotes that 70% of customers and 70% of providers engage in
bid manipulation, while the remaining 30% report truthfully.

We study the average utility gain each participant can achieve
by submitting manipulated QoS values to the respective mecha-
nism. The average utility gain of a participant is calculated as the
ratio between the average utility obtained by manipulation and
the average utility obtained by truthful bidding. Consequently, an
average utility gain of less than 1 implies that, on average, no
participant can increase their utility by manipulation. For values
greater than 1, however, participants have an incentive to manip-
ulate their bid. An average utility gain of 1.12, for example, implies
that each participant can increase their utility by 12% on average if
they distort their bid.

4.2. Results

Fig. 1 shows the average utility gain a single, high-quality cus-
tomer can generate if they distort their QoS in themechanismwith
VCGpricing. All other participants are assumed to report truthfully.
If the market contains four participants (N = 2) with QoS drawn
from the uniform distribution, the manipulating customer is able
to increase their utility once their manipulation factor exceeds
0.45 (i.e., their true QoS is lowered by 55%) and obtains a rela-
tive maximum utility gain of 4.7% at a manipulation factor of 0.7
(i.e., lowered by 30%). If the participants use normally distributed
QoS, the manipulating customer can increase their utility using a
manipulation factor that exceeds 0.3. Like in the uniform case, their
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Fig. 1. Average utility gain of a single manipulating customer (VCG).

utility gain is maximized at a factor of 0.7, where their relative
utility gain is 7.3%.

When the market contains 200 participants (N = 100) that
use uniformly distributed QoS, the manipulating customer cannot
improve their utility at all. If the QoS is drawn from the normal
distribution, however, they are able to improve their utility at a
manipulation factor that exceeds 0.75. Finally, if this customer uses
a manipulation factor of 0.9, their relative maximum utility gain
appears to be 1%.

In contrast to the previous experiment, the following experi-
ment assumes amarket onwhichmultiple participantsmanipulate
their bids. Fig. 2 depicts the utility gain each customer can expect
on average if 10%, 20%, . . . , 100% of all participants manipulate
their bids by manipulation factors between 0.7 (i.e., customers
lower by 30%, providers raise by 30%) and 1 (i.e., no manipulation).
If all participants engage in manipulation (manipulating partici-
pants = 100%), the average utility gain of a customer depicted in
Fig. 2 arrives at its maximum of 7.6% at a manipulation factor of
0.85. In other words, if all customers lower their QoS by 15% and all
providers raise their QoS by 15%, each customer can increase their
utility by 7.6% on average. If over 70% of all participantsmanipulate
their QoS by more than 33%, no customer can expect any utility
gain (values are below 1).

Fig. 3 presents the average customer utility gain for participants
whose QoS is normally distributed in the mechanism with VCG
pricing. The maximum relative utility gain a customer can achieve
on average is 7.9% (peak of surface) at amanipulation factor of 0.45
and with 60% manipulating participants. When both the number
of manipulating participants and the manipulation percentage in-
crease at the same time, no customer is able to improve their utility
by dishonest bid reporting.

Figs. 4 and 5 depict the average utility gain of providers in
the mechanism with k-pricing assuming uniformly and normally
distributed QoS. For QoS realizations drawn from the uniform
distribution (cf. Fig. 4), each provider can expect amaximumutility
gain of 3.3% on average when each participant manipulates their
report by 15% (manipulation factor of 0.85) and all participants
engage in manipulation (manipulating participants = 100%). Once
customers and providers manipulate by more than 60%, however,
no provider can anticipate any average gain in utility regardless of
how many participants engage in misrepresentation.

Fig. 2. Customer utility gain with uniform QoS and N = 10 (VCG).

Fig. 5 shows the average provider utility gain for normally
distributed QoS in themechanismwith k-pricing. If all participants
manipulate their QoS at a manipulation factor of 0.75 (i.e., 25%
manipulation), each provider can expect the maximum average
utility gain of 1.5%. For high manipulation factors (greater than
35%), providers cannot improve their utility anymore (values are
below 1).

4.3. Discussion

Our experiments demonstrate the impact of bid manipulation
on the utilities of customer and providers in different market
settings. Although the proposed pricing schemes fail to provide
adequate incentives for participants to report their QoS truthfully,
the results suggest that the relative utility gain of a participant
does not exceed 8% on average in any market setting. This finding
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Fig. 3. Customer utility gain with normal QoS and N = 10 (VCG).

Fig. 4. Provider utility gain with uniform QoS and N = 10 (k-pricing).

provides evidence for the efficacy of the proposed pricing schemes
in double-sided markets. In the following paragraphs, we discuss
the insights that can be obtained from our research.

First, we find that the mechanism with VCG pricing does not
satisfy incentive compatibility in our model. This result is surpris-
ing because in common auction or public good environments, the
VCG generally implements the efficient outcome [9]. As shown in
the payment definitions (7) and (8), the VCG pricing scheme is
based on the participant’s impact on social surplus relative to the
reports of other participants. Because utilities are interdependent,
a customer can manipulate their perceived impact on social sur-
plus through the cost function of their matched provider. Hence,
customers who pay for the value they bring to their matched
providers can always improve their utility by pretending to be of
lower QoS (and vice versa). Consequently, the VCG pricing scheme
is not incentive compatible in ourmodel. Johnson obtains a similar
result for matching markets in the context of position auctions [7].

Second, high-quality customers as depicted in Fig. 1 achieve
higher relative utility gains in the mechanism with VCG pricing

Fig. 5. Provider utility gain with normal QoS and N = 10 (k-pricing).

when QoS is normally distributed (7.3%) as compared to uniform
QoS (4.7%). Because the underlying normal distribution assumes a
mean of 0.5, there is more mass of QoS realizations in the middle
of the unit interval. Therefore, high-quality customers have more
leeway to manipulate their QoS as compared to the uniform dis-
tribution. However, as the market size increases to N = 100, the
incentives for customers tomanipulate their QoS decrease. In large
markets, participants are faced with higher competition, which
causes a decrease in their potential utility gain.

Third, we find that by using the VCG pricing scheme, customers
have an incentive to manipulate their QoS, while providers do
not. Under the mechanism with k-pricing, however, providers can
improve their utility by manipulation, while customers cannot. In
the mechanism with VCG pricing, customers have higher utilities
than providers (cf. Table 1). These utilities denote ameasure for the
loss of incentive compatibility. Because the utilities of customers
exceed those of providers, the mechanism’s cost for providing
adequate incentives for customers is higher, too. Hence, the mech-
anism with VCG payments is vulnerable in the face of bid manipu-
lation of customers. On the other hand, providers can increase their
utilities by strategic misrepresentation in the mechanism with k-
pricing. Here, customers and providers simply split the difference
between valuation and cost. Because the customer’s valuation is
greater than the provider’s cost on average, there ismoreweight on
the valuation when calculating the transaction price. Therefore, if
all participants distort their bids using the samemanipulation fac-
tor, the average transaction price rises. Higher transaction prices,
however, entail higher utilities for providers, thus opening a way
for providers to engage in strategic bid manipulation.

Fourth, the more participants manipulate their bids in the
mechanismwith k-pricing, the higher is the average utility gain for
each provider (cf. Fig. 4). Schnizler et al. report on similar findings
for bids that follow the Decay distribution [12]. They find that each
participant can increase their utility by 26% when all participants
manipulate by 6%. In this work, however, the maximum utility
gain of providers is only 1.5% at a manipulation factor of 0.75
(i.e., 25%). The reason for this difference is that our model is based
on interdependent utilities of customers and providers. As such,
the mechanism must consider the fact that a customer’s utility
is maximized when their desired QoS matches the actual QoS
delivered by a provider (and vice versa). Therefore, participants
must apply a 25% manipulation to arrive at the relatively low
average utility gain of 1.5%.
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Future research might be pursued in two directions. First, it
would be interesting to study the effects of strategic bid manip-
ulation on potential utility gains from the perspective of a profit-
maximizing intermediary. This change would require modifying
the allocation rule (6) and revisiting the payment schemes. Towhat
extent the interdependent structure of the participants’ utilities
affects the strategic bidding behavior in a profit-maximizing im-
plementation remains an open research question. Second, while
we assume an equal number of customers and providers in the
current model, future research can now analyze the effects of a
varying number of customers and providers on the potential utility
gain of strategic participants. Further experimentation is required
to understand the efficacy of the mechanism for dynamic market
settings.
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