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Abstract 

We model the downside and upside spillover effects, systemic and tail dependence risks of 

the DJ World Islamic (DJWI) and DJ World Islamic Financial (DJWIF) indices, and of 

Islamic equity indices from Japan, USA and the UK. We draw our empirical results and 

conclusions by implementing a robust modeling framework consisting of Value-at-Risk 

(VaR), conditional VaR (CoVaR), Delta conditional VaR (∆CoVaR), canonical vine 

conditional VaR (c-vine CoVaR), and time-varying and static bivariate and vine copula 

models. Full sample estimations indicate larger downside spillover effects and systemic risk 

for the DJ Islamic Financials World and USA Islamic indices, while Islamic indices from 

Japan and the DJ World financials have greater exposure to upside spillover risk effects. 

During the financial crisis the USA and UK Islamic indices display higher downside systemic 

risk; and the strongest negative tail asymmetric dependence occurs between the DJ Islamic 

Financials World, and the Islamic indices from Japan and the DJ World financials. 

Implications of the results are discussed. 
 
JEL Classifications: C51; C52; C58; G11; G17     

Keywords: Spillovers; Systemic risk; Conditional VaR; Copulas; Tail dependence 
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1. INTRODUCTION 

Never before has been more important to understand the spillover effects across financial 

stock markets given the increasing globalization phenomenon, the continuous integration of 

economies and financial markets, and the increasing important role that stock markets play in 

determining the performance of world economies. It was during the recent global financial 

crisis of 2008-2009 when it became evident that portfolio losses are largely influenced by the 

inability of individual and institutional investors to deal on a timely manner with negative tail 

co-movements, spillover effects and the systemic risk stemming from the instability of too-

big-to-fail financial institutions. Since then, an increasing trend of financial modeling has 

attempted to better understand and trace the underlying linkages connecting financial markets 

across countries. Financial regulators in particular, given the size of international Islamic 

equity markets which has reached trillions in asset value, have began to consider the potential 

risk effects extreme negative tail movements and co-movements in some countries’ Islamic 

equity markets could exert on Islamic (and conventional) equity markets from other parts of 

the world. All this in the light of the objectives targeted by the Basel III standards, which 

have highlighted the importance of maintaining the stability of the financial system and of 

strengthening its resilience (BCBS, 2011). It is under these circumstances where the problem 

of accurately and adequately estimating the extent to which some aggregate and 

representative global financial equity markets influence the performance of other financial 

equity markets scattered across regions of the world becomes relevant and is worth 

investigating.  

The problem has been examined from various perspectives, including Granger-causality, as in 

Hernandez et al. (2015), Hiemstra and Jones (1994), Cheung and Mak (1992), or 

cointegration, following the works by Abduh et al. (2011), Yusof and Bahlous (2013), linear 

and nonlinear regression e.g., in Ling  and Naranjo (1999), Connor and Korajczyk (1995), 



  

4 

 

and vine copula modeling, as in Arreola-Hernandez et al. (2016), Bekiros et al. (2015) and 

Arreola-Hernandez (2014). Compared with those studies our has the comparative advantage 

of implementing a robust modeling framework consisting of Value-at-Risk (VaR), conditional 

Value-at-Risk (CoVaR), Delta conditional Value-at-Risk (∆CoVaR), canonical vine 

conditional Value-at-Risk (c-vine CoVaR) and time-varying and static bivariate and vine 

copula methods, in an attempt to analyze downside and upside spillover effects, systemic risk 

and tail dependence risk. We show the usefulness of our empirical approach by modeling 

Islamic equity indices from Japan, USA and the UK, and the DJ World Islamic Financial and 

DJ World Islamic indices. The main objective of our research work is to identify the Islamic 

equity indices, scattered across regions of the world, with greater exposure to downside and 

upside dependence structure-based spillover, systemic and tail dependence risks caused by 

extreme movements in the DJ World Islamic Market, a representative of all trading country-

based Islamic markets. It is also of interest to discern, through hypothesis testing, whether 

spillover and contagion effects increase under adverse market scenarios.  

We contribute to the relevant literature by conducting under normal and adverse market 

scenarios (i.e., during the global financial crisis of 2008-2009) a thorough and exhaustive 

analysis of downside and upside spillover effects, systemic and tail dependence risks in 

domestic and global Islamic equity markets. The incorporation of vine copulas in our analysis 

enables us to draw accurate estimates of the risk contribution of global indices to systemic 

risk, given the precise and adequate measurement we draw of the changing dependence 

structure corresponding to the global and domestic Islamic equity indices under 

consideration. The use of both, time-varying and static bivariate and vine copulas makes it 

possible to conduct a robust analysis of tail dependence risk as a function of the time factor 

and with respect to its effects on the bivariate and multivariate dependencies. To our 

knowledge no other research study has implemented the modeling framework we consider on 

global and domestic Islamic equity markets.  
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In terms of the modeling approach we pursue our research is broadly linked to studies 

undertaken by Reboredo and Ugolini (2015a) who by means of vine copula and CoVaR 

models investigate the systemic impact of financial distress of Spanish listed banks on other 

listed banks that are part of the European financial system. Their results indicate a significant 

increase of systemic risk in the aftermath of the recent global financial crisis and, to a lesser 

extent, around the time of the European sovereign debt crisis. Specific findings of their 

research indicate that the Spanish bank Banco Bilbao Viscaya Argentaria (BBVA) played a 

predominant role as it both transmitted and received systemic risk to and from the remaining 

listed banks. Also, while the Santander Bank played a minor role, the smallest banks Sabadell 

and Bankinter did not play any pivotal role, not even between themselves. The study by 

Reboredo and Ugolini (2015b), in the context of the European sovereign debt crisis, finds that 

spillover effects and systemic risk increased slightly in those European countries that did not 

have sovereign debt problems, after the onset of the Greek debt crisis. On the contrary, 

countries that had sovereign debt problems during the Greek crisis period experienced 

smaller spillover effects. Moreover, the Greek economy during the sovereign debt crisis had 

the largest spillover effect on the Portuguese economy. Girardi and Ergün’s (2013) analysis is 

relevant to our research work in that it modifies the model for systemic risk examination 

proposed by Adrian and Brunnermeier (2011, 2016). The specific type of model specification 

they implement is better as to incorporating risk contribution, spillover effects and systemic 

risk between groups of financial risk factors, and for events characterized by severe distress. 

Yun and Moon (2014) by fitting the Marginal Expected Shortfall (MES) and the CoVaR 

methods examine the risk contribution and systemic risk between Korean financial 

institutions. Their incorporation of dynamic conditional correlation estimates into the MES 

and CoVaR methods is indicated to adequately account for banks’ dependence structure 

changes across time and varied market conditions. They also show the risk contribution 

between banks is dependent on bank’s size, leverage ratio and Value-at-Risk exposure. 
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Reboredo et al. (2016) investigate the downside and upside spillovers between exchange rates 

and stock prices from emerging economies by first modeling the dependence relationships 

between the financial variables, and by using the obtained estimates of dependence to 

adequately and accurately measure the Value-at-Risk exposure. They find evidence of 

positive correlation between stock prices and currency values for emerging economies, and 

identify variations in downside and upside asymmetric spillover effects between emerging 

market currencies, the US dollar and Euro. Regarding the implementation of time-varying 

bivariate and vine copulas, our study connects to that conducted by Al Janabi et al. (2017), 

wherein a dynamic conditional correlation t-copula is employed along with a liquidity Value-

at-Risk model to compare optimal portfolios of international stock and commodity indices. In 

the same vein Arreola-Hernandez et al. (2016) model the dependence structure of equity 

portfolios under a systematic copula counting technique proposed for the analysis and 

interpretation of multivariate dependence risk. 

Our empirical results indicate that greater downside spillover effects and systemic risk 

exists in the DJ Islamic Financials World and USA Islamic indices when considering the full 

sample period, while equities from the USA and UK Islamic indices are more exposed to 

downside spillovers during the global financial crisis period. The DJ Islamic Financials 

World and the Japan Islamic indices have greater exposure to upside systemic risk for the full 

sample period, while the USA and UK Islamic indices present greater spillovers and risk 

exposure during the crisis period. The downside and upside VaR values are greater for the 

group of equities belonging to the DJ World Islamic Financial and UK indices. The strongest 

positive tail asymmetric dependence occurs between the UK and the USA Islamic equity 

indices and the DJ World Islamic index. The strongest negative tail asymmetric dependence 

is observed between the DJ Islamic Financials World and Japan Islamic indices and the DJ 

World Islamic index. The findings may appeal to portfolio and risk managers who hold long 

and short investment positions and whose concern is risk in the downside and upside. 
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This paper is organized as follows: the following section presents the modeling framework 

we apply to undertake our analysis of spillover effects, systemic and tail dependence risks. 

Section 3 explains the data set under investigation. In Section 4 we display and interpret our 

empirical results, whilst section 5 concludes the analysis.  

 

2. METHODOLOGY 

2.1. Tail modeling and marginal density 

As part of the vine copula model specification, we fit an ARMA-FIGARCH process with 

long-range volatility memory and for the marginal distribution of the standardized residuals; 

we use the skewed t distribution of Hansen (1994) to adequately capture the distributional 

characteristics of the marginals
1
. The advantages of this specific type of evolution process 

derive from its FIGARCH component, which provides the required flexibility to adequately 

model the conditional variance and better explain the dependence of the marginals’ volatility 

through time (Baillie et al., 1996). We specify the marginal densities of the stock market 

returns (  ) using an ARMA (m, n) model of the following type: 

                           
 
              

 
                               (1) 

where m and n are non-negative integers, and    and    the autoregressive (AR) and moving 

average (MA) parameters. The parameter   
  in the expression         is the conditional 

variance that has dynamics determined by an FIGARCH (p, d, q) model. The parameter d 

represents the fractional differencing parameter of the model, where 0<d<1. This parameter 

is important as it offers information about the speed and patterns at which effects (or shocks) 

                                                             
1
 We considered four competing GARCH models, namely the ARMA-GARCH, the ARMA-FIGARCH, the 

ARMA-FIEGARCH and the ARMA-FIAPARCH models, with each of them having a skewed student-t 

distribution. In selecting the best marginal model for each time series, we have considered multiple and diverse 

combinations of the lag parameters m, n, p, and q for values of the lags ranging from zero to a maximum of 2. 

Based on the AIC, we have selected the most adequate model, which in this case is the ARMA-FIGARCH 

model. 
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to the volatility process of the model are exerted and propagated. Moreover, the conditioning 

of d to be in the above-specified range is necessary as shock propagation to the mean happens 

within those values in a slow manner and according to hyperbolic rate. Furthermore, for d>0 

the process displays long memory features, considering its long-term characteristics. For d=1 

the shocks to the conditional variance of the IGARCH component in the FIGARCH continue 

indefinitely, making it impossible to obtain a finite estimate of forecasted volatility. On the 

other hand, when d>1 the conditional variance cannot be defined. In order to adequately 

account for the dependence of the marginals’ volatility, according to Baillie et al. (1996), we 

use the following model specification: 

                                 
                                           (2) 

                                    
       

                              (3) 

                                     
       

                              (4) 

                                            
                                  (5) 

The parameter      has a zero mean, is serially uncorrelated and accounts for the changes in 

the conditional variance, as being determined by new volatility shocks. The parameter h   of 

the FIGARCH model specification, in relation to the   changes or innovations in the 

conditional variance in Eq. (5), stands for the conditional variance, while the parameter   
  

stands for the square shocks. The parameter   stands for a lag, and if       the model 

becomes linear. If     and     the process has a unit root, thus reflecting a permanent 

shock effect. In order to be able to account for the skewness in the negative tail of the return 

distribution we incorporate in the FIGARCH marginal model specification a skewed Student-

t parameterization. In this way, we are in fact implementing a FIGARCH with Student-t 

innovations to adequately model negatively skewed behavior in the marginal distributions. 

The density of the skewed-t, following Hansen (1994), can be expressed as follows: 
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The parameters   and   represent the degrees of freedom and        .When     

    the Student-t models the tails symmetrically. The a, b and c are constants represented by 

the following equalities:  

                                                  
   

   
                                             (7) 

                                                                                             (8) 

                                 
   

 
           

 

 
                                   (9) 

As the degrees of freedom we are considering are finite, the skew-t converges to the 

symmetric Student-t distribution (i.e.     and   is finite). However, if we have      and 

     he skew-t converges to the standard Gaussian distribution. 

2.2. Canonical vine copula 

The canonical vines (c-vines) represent a subset of the regular vines and are acknowledged 

for being statistically adequate to account for the dependence structure of multivariate series 

with one variable exhibiting the strongest correlations (i.e. exerting the greatest influence) 

among the rest of the variables in a data set (Arreola-Hernandez et al., 2016; Arreola-

Hernandez, 2014; Czado, 2010). A regular vine is called canonical or c-vine if its “trees” are 

formed by nodes and edges (where the node with maximal degree in    of a canonical vine is 

the root) and each tree    has a unique node of degree    . The c-vines are subject to the 

proximity condition which states that for            if             then       , (  

denotes a union without the intersection). This means that, if   and   are nodes of a tree     

connected by an edge, where           and b        , then exactly one of the    equals 

one of the   . As such, canonical vines have a star-like shape and for every tree   ,  

         , a root node is selected based on the criterion of having the strongest correlation 
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with the rest of the variables in the tree. We select the c-vine copula model instead of others 

types of vine copulas (e.g., d-vines, r-vines) as it provides the flexibility and accuracy 

required to measure the nonlinear dependence between the pairs of financial variables 

considered (see Bekiros et al., 2015; Arreola-Hernandez, 2014; Brechmann and Czado, 2013; 

Nikoloulopoulos et al., 2012). Thus, we expect the selected c-vine copula model to improve 

the accuracy of the implemented CoVaR and Delta CoVaR models. The model we use in our 

work to separate multivariate densities                  and to infer pair c-vine copula 

structures, was introduced by Aas et al. (2009):  

            
 
                     

   
   

   
                                                      (10) 

2.3. Time-varying and static bivariate copula models  

We employ static and time-varying parameter bivariate copula models to examine the upper 

and lower tail dependence between the pairs of country-based and global Islamic equity 

indices. The bivariate copulas employed have been built on the proposition of the theorem of 

Sklar (1952), which asserts that a joint distribution          of two continuous random 

variables X and Y can be expressed in terms of a copula function C(u, v) and the marginal 

distribution functions Fx(x), Fy(y), so that: 

                                                                                     (11) 

where u = Fx(x) and v = FY(y). Eq. (11) shows that a bivariate copula can be used to account 

for a specific type of dependence relationship which two uniform marginal distributions hold, 

as inferred by their joint distribution.
2
 In implementing the bivariate copulas, a parametric 

distribution function (e.g. Student-t, Gaussian) is used to capture and shape the marginal 

empirical distribution. The drawn parametric distributions from the marginals could either be 

embedded or not embedded inside the bivariate copula set-up. The following joint probability 

                                                             
2 See Joe (1997) and Nelsen (2006) for more details. For an overview of copula applications to finance see 

Cherubini et al. (2004). 
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density of X and Y, resulting from the copula density        
        

    
, shows that a bivariate 

copula is capable of modeling separately the marginals and the dependence structure from a 

pair of variables’ joint distribution: 

                                                                                       (12) 

In Eq. (12),       and       represent the marginal density functions of Y and X respectively. 

On a more practical level, a bivariate copula provides information about extreme upper and 

lower co-movements or what is commonly known as tail dependence. The smaller the tail 

dependence parameters the stronger the correlation observed in the negative tail of the joint 

distributions, and vice versa. An analytical measure of upper and lower tail dependence can 

be expressed as follows: 

                 
    ׀     

            
           

   
          (13) 

                                    
׀          

            
      

 
                 (14) 

where            . The lower (upper) tail dependence implies that            , 

showing that a non-zero probability of observing an extremely small (or large) value for one 

series together with an extremely small (or large) value for another series. In our copula 

application, we implement various types of static and time-varying parameter bivariate 

copula families including elliptical and Archimedean, and rotated versions of them. The 

rotated bivariate copulas are employed to better capture joint distributional characteristics, 

which the standard non-rotated bivariate copulas cannot account for.
3
 Among the bivariate 

copulas we apply are the Gaussian, Clayton, 180-degrees rotated Clayton, Plackett, Frank, 

Gumbel, 180-degrees rotated, Gumbel, Student-t and Joe-Clayton. The Clayton and 180-

degrees rotated Gumbel bivariate copulas are suitable models to measure stronger 

dependence in the negative tail of the joint distributions. The 180-rotated Clayton, Gumbel 

                                                             
3 The time-varying parameter bivariate copulas enable capturing the changes in the dependence structure 

through time. 
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and Joe-Clayton copulas are adequate models to measure stronger dependence in the positive 

tail of the joint distributions. The Student-t copula is designed to symmetrically account for 

dependence in both tails of the joint distributions.
4
 The Frank and Gaussian bivariate copulas 

serve for nonlinear and linear dependence modeling in the center of the joint distribution, 

respectively. The Plackett is useful to identify potential independence between the pairs of 

variables under consideration. Hence, we strategically employ a robust bivariate copula-

modeling framework that targets the modeling of dependence at various locations of the joint 

distributions. Table 1 presents the analytical design of each of the bivariate copulas we fit in 

our research study. 

[PLEASE INSERT TABLE 1 HERE] 

The change in the parameters of the time-varying copulas is defined by an evolution 

equation. As to the Gaussian and Student-t bivariate copulas, the evolution of the linear 

dependence parameter  follows an ARMA(1,q)-type process (Patton, 2006): 

                            
 

 
            

        
 
              (15) 

where                       is the modified logistic transformation which ensures 

that    is in the range [-1, 1]. This implies the dependence parameter is determined by a 

constant parameter   , the explanatory factor of the historical correlation as scaled by   , 

and by the average product of the last q observations of the transformed variables,   . The 

dynamic time-varying parameters of the Student-t bivariate copula are also explained by Eq. 

(15) if one substitutes        by   
     . The evolution dynamics of the time-varying 

parameters of the asymmetric Gumbel and rotated Gumbel bivariate copulas follows an 

ARMA(1,q) process with the following specification: 

                                         
 

 
            
 
                            (16) 

                                                             
4 The bivariate copulas that measure the tail dependence symmetrically are the Gaussian, Student-t, Frank and 

the Plackett. The copulas for asymmetric dependence modeling are the Gumbel (for upper tail dependence), the 

rotated Gumbel (for lower tail dependence) and Clayton (for lower tail dependence).  

t
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The evolution of the SJC tail dependence parameters is formulated according to: 

                         
                

 

 
            
 
                    (17) 

                          
                

 

 
            
 
                    (18) 

where                is a logistic transformation ensuring that   
  and   

  are in the 

range of [0, 1]. 

 

2.4. VaRs, CoVaRs and Delta CoVaRs risk measures 

We fit Value-at-Risk (VaR), conditional Value-at-Risk (CoVaR), Delta conditional Value-at-

Risk (∆CoVaR), canonical vine conditional Value-at-Risk (c-vine CoVaR), while at the same 

time we perform hypothesis testing to measure, understand and validate potential losses in 

Islamic equity portfolio investments, stemming from market volatility and systemic 

dependence deriving from spillovers the World Islamic Market Index may have on country-

based Islamic indices. The VaR measures the probable losses a portfolio of assets, which may 

incur for a specified time investment horizon (e.g., 1-day, 10-day) and a chosen confidence 

level (e.g., 95%, 99%). The VaR can be fitted to forecast investment losses in the downside 

(for long investment positions) or upside (for short investment positions). The downside risk 

for a portfolio position at time t in the future for a     confidence level is equal to:  

                                                                                             (19) 

                                                     
       ,                                 (20) 

where the parameters    and    are the conditional mean and standard deviation of the  

Islamic equity indices’ time  series modeled, respectively. Each of these parameters evolves 

according to an ARMA-FIGARCH process as presented in Section 2.1. In Eqs. (19) and (20), 

the parameter     
      stands for the   quantile of the skewed Student-t distribution. The 

upside risk of a portfolio position at time t and for a      confidence level is equal to:  

                                                                                           (21) 
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                                       (22) 

Next, we implement CoVaR modeling following Adrian and Brunnermeier (2011) and 

Girardi and Ergün (2013). The CoVaR for the asset   is defined as the VaR for i conditional 

on asset   exhibiting extreme movement. Asset j represents a variable capable of triggering 

systemic risk (e.g., a too-big-to-fail financial institution or a representative index of a 

financial market, as in our work) through spillover effects on other variables with which it 

holds some degree of dependence. Analytically, we let   
  be the returns for Islamic equities 

and    
  be the returns of the DJ World Islamic Market Index (i.e., the DJ World Islamic 

Market Index is the variable capable of triggering systemic risk on the country-based Islamic 

equity indices through spillover effects).
5
  The downside risk of an investment in Islamic 

equity securities for a     confidence level, given an extreme downward movement in the 

prices of the DJ World Islamic Market is the  -quantile of the conditional distribution of   
 : 

                                
          

    
        

                               (23) 

From the above equation the parameter       
  stands for the  -quantile of the DJ World 

Islamic Market Index price distribution and quantifies the maximum loss of a long 

investment position in equity indices, for a specific time horizon and confidence level    . 

The probabilistic expression      
        

     accounts for the maximum loss a 

portfolio position in Islamic equity indices may experience. The upside CoVaR for an 

extreme upward movement in the prices of the DJ World Islamic Market Index can be 

expressed as follows: 

                                   
          

    
          

                       (24) 

                                                             
5 The DJ World Islamic market index measures the global universe of investable equities and it represents the 

most comprehensive and widely employed index of Islamic stocks in the world. This index contains data for 

over 12,000 companies from 77 countries, although most of the stocks in the DJ World Islamic market universe 

are located in non-Muslim developed countries. 
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In this case, the parameter          
  quantifies the maximum loss of a short investment 

position in Islamic equity indices, for a specific investment horizon and confidence level. The 

specification of the CoVaR in the form of copula functions is given as: 

                                          
              

                            (25) 

                        
                

                  
                

             (26) 

where      and      represent the distributions of the marginals or the distribution of the 

returns corresponding to both, the country-based Islamic equity indices and the DJ World 

Islamic equity index, respectively.  

In estimating the CoVaR for the set of domestic and global Islamic equity indices we follow 

the process introduced by Reboredo and Ugolini (2015a): 

Step 1: We could solve for either Eq. (25) or Eq. (26) in order to draw a value for 

             
  , respectively considering the VaR and CoVaR significance levels, as well as 

the   . 

Step 2: We employ the distribution functions of the DJ World Islamic Market and the Islamic 

equity indices considering the marginal specification model of Eqs. (1) – (9) and we estimate 

the CoVaR for the equities as     
                

   . 

Furthermore, the systematic risk triggered by extreme movements in the prices of the DJ 

World Islamic Market Index and reflected on the country-based Islamic equity indices, is 

defined following Brunnermeier (2011) and Girardi and Ergün (2013) as the risk contribution 

of a stock market   on single or groups of asset classes. It can be estimated as the delta 

      (       ), representing the difference between the     of the stock market as a 

whole (DJ World Islamic Market Index), conditional on the distressed state of market   

(global financial crisis period in our study) i.e.,    
        

    and the     of the stock 

market as a whole conditional on the benchmark state of market  . The latter is formulated as 
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the median of the return distribution of market   or the     for        The systemic risk 

contribution of market   (DJ World Islamic Market) is eventually defined as: 

                                 
    

         
   

         
         

 

        
                                 (27) 

The main advantage of the        lies in accounting for the marginal risk contribution of 

market   vis-à-vis the overall risk.  

In order to find out if the estimated systemic risk is significant at the considered 

confidence level, we employ the KS bootstrapping test developed by Abadie (2002). We test 

the hypothesis of no systemic impact between the returns of the DJ World Islamic Market 

Index and the country-based Islamic equity indices as: 

                                                
        

                                         (28) 

The KS test measures the difference between two cumulative quantile functions by 

employing empirical distribution functions, as opposed to using parametric distribution 

functions. The test is defined as follows: 

                                   
  

   
 

 

 
                                   (29) 

where       and       are the cumulative CoVaR and VaR distribution functions, 

respectively, and n and m are the sizes of the two samples.  

 

3. DATA ANALYSIS 

The data set comprises daily equity closing prices of country-based Islamic equity indices 

(Japan, USA, UK), the global DJ World Islamic Market Index and the DJ Islamic Financials 

World Index.
6
 This global DJ World Islamic Market Index includes data of more than 12,000 

                                                             
6
 The Dow Jones Islamic market (DJIM) incorporates Islamic equities listed in USA, UK, Japan and it is used as 

a proxy for the global Islamic stock market. As noted in Naifar et al. (2016), the DJIM was launched in February 

1999 and constitutes the first global Islamic index created for investors seeking equities in compliance with 

Sharia. Data of the index prior to that year it was launched is obtained according to an index methodology 

employed by Dow Jones today. The Dow Jones Islamic Market Financials Index is a subset of the DJIM World 

Index and measures the performance of financial stocks traded globally that pass the screens for compliance 
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companies from 77 countries and most of the stocks in the index are from the non-Muslim 

developed countries. According to the Dow Jones website, the U.S. at the end of October 

2016 has the highest country allocation (60.53%) in the index, followed by Japan (7.63%), 

Switzerland (4.67%) and the UK (3.69%). The U.S., the UK and Japan stock indices are 

selected because they are currently the three largest stock markets in the world and cover 

different geographical areas. All the stock market indices are expressed in U.S. dollar terms to 

have a homogenous dataset and to avoid issues of exchange rate risk
7
. We choose to include 

the Islamic equity financial sector because the timeline of the price and return series we 

model, covers the global financial crisis of 2008-2009, thus we could expect this sector to 

experience significant systemic risk-derived effects. The data set ranges from January 1, 1996 

to December 31, 2015, covering a total of 19 years and 5220 daily observations.  

Our motivation for selecting country-based and global Islamic equity indices is that the 

number of studies focusing on the analysis of spillover effects, tail dependences and Value-at-

Risk between country-based and global Islamic equity indices is still very small. Moreover, 

the findings resulting from our study would constitute a benchmark for relative comparisons 

of spillover effects, systemic risk and dependence risk between Western-type and Islamic-

type equity markets. We select daily frequency price series because higher frequency data 

poses a comparative advantage relative to weekly, monthly or quarterly data as reported in 

Chortareas et al. (2011) and Liu (2009). As in most studies that undertake bivariate and vine 

copula modeling we estimate and use “copula data” lying in the range [0,1]. For the 

estimation of VaR and CoVaR we use logarithmic returns. All Islamic equity price series have 

been downloaded from Thomson Reuters Datastream International.   

                                                                                                                                                                                              
with the Islamic investment guidelines. It represents the Financial Industry as defined by Industry Classification 

Benchmark (ICB) and is a float market cap weighted index. 

7 In order to avoid asynchronicity issues caused by different time zones, we have matched equity prices from 

day t for the global Islamic stock market, the DJ Islamic Financials World Index, the U.S., and UK stock 

markets with equity prices from day t+1 for the Japanese stock market. 
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The descriptive statistics displayed in Table 2 indicate that the USA Islamic equity index 

and the Dow Jones World Islamic Equity Index have the largest historical means. A look at 

the equity historical standard deviation shows that the USA Islamic equity index and the Dow 

Jones World Islamic Equity Index also present the lowest volatility scores, making them the 

best investment choices from the entire set of country-based and global Islamic equity 

markets modeled. A distributional feature perhaps not appealing to potential investors is that 

both have a negative skewness, i.e., indicating a tendency to yield short-term trends of 

negative returns once one or two negative returns have been realized. The correlation matrix 

of the country-based and global Islamic equity indices reveals the strongest correlations 

between the USA Islamic equity index and the DJ Islamic Financials World Index, as well as 

between the UK and USA Islamic equity indices. Also the USA and UK Islamic equity 

indices are the most strongly correlated with the Dow Jones World Islamic Index. Figure 1 

displays the price series plots of the country and global Islamic indices under consideration. It 

can be seen that UK, USA and world Islamic indices appear to be the most volatile, followed 

by the equities of the Japan and DJ Islamic Financials World Index. All price series show the 

market downturns corresponding to the burst of the Internet Bubble occurring between 2001 

and 2003, and the Global Financial Crisis of 2008-2009. However, over the long rung there is 

an escalating trend in Islamic equity security prices. Figure 2 depicts the c-vine copula 

structure for the investigated markets. Lastly, the estimates of the ARMA-FIGARCH process 

with long-range volatility memory and normal standardized residuals for the marginals of the 

vine copula modeling are reported in Table 3. 

[PLEASE INSERT TABLES 2, 3 AND FIGURES 1, 2 HERE] 

 

4. EMPIRICAL RESULTS 

Our analysis focuses on the examination of lower and upper tail dependence, Value-at-Risk, 

spillover effects and systemic risk between the pairs of country-based and global Islamic 
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equity indices. With respect to lower and upper tail dependence we find that, according to 

each of the bivariate copulas considered, the strongest tail dependence occurs between the 

Dow Jones World Islamic Index and the UK and USA Islamic equity indices. A comparison 

of the tail copula parameters derived by the Clayton and Gumbel 180-degrees rotated, and the 

Clayton 180-degrees rotated ones, shows that the UK and the USA Islamic equity indices 

illustrate stronger asymmetric positive tail dependence with the DJ World Islamic index, 

while the equities from the DJ Islamic Financials World and Japan Islamic indices present 

stronger asymmetric negative tail dependence with the DJ World Islamic index. On the other 

hand, a comparison of the tail dependence parameters, drawn from the Frank and Gaussian 

bivariate copulas indicates that the dependence between the DJ World Islamic Index and the 

USA and UK Islamic equity indices is nonlinear in the center of the joint distributions or 

when the financial stock markets are calm. These results are confirmed by the fit of the time-

varying bivariate copulas as shown by the tail dependence parameters displayed in Panel B of 

Table 5. Figures 3 and 4 illustrate the temporal characteristics of c-vine and bivariate copula 

estimated parameters.   

[PLEASE INSERT TABLE 4 AND 5 HERE] 

[PLEASE INSERT FIGURE 3 AND 4 HERE] 

Based on Table 6 and 7, the VaR results in relation to downside risk when considering the 

full sample period, indicate that long investment positions in equities of the DJ Islamic 

Financials World and the Japan Islamic indices have greater VaR exposure stemming from 

market volatility. During the global financial crisis long investment positions in the DJ 

Islamic Financials World and the UK Islamic indices show higher risk exposure. With respect 

to upside risk, the VaR results for the full sample indicate that short investment positions in 

the DJ Islamic Financials World and the Japan Islamic indices have higher VaR scores. Also, 

during the global financial crisis, short investment positions in the DJ Islamic Financials 

World and the UK Islamic indices show greater risk exposure too.  
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[PLEASE INSERT TABLES 6 AND 7 HERE] 

The CoVaR empirical findings for downside risk in the full sample period indicate that higher 

systemic risk exists in the DJ Islamic Financials World and USA Islamic indices, given the 

spillover effects stemming from downturns or decreases in the prices of the DJ World Islamic 

Index. During the global financial crisis the equities from the USA and UK Islamic indices 

are more exposed to systemic risk, as demonstrated by the spillover effects from downturns 

in the prices of the DJ World Islamic Index. As to upside risk, when we consider the full 

period the systemic CoVaR estimates are larger for the DJ Islamic Financials World and the 

Japan Islamic indices, due to spillovers derived by the increases in the prices of the DJ World 

Islamic Index. During the global financial crisis the CoVaR estimates are larger for the USA 

and UK, as a result of the up-trending prices of the DJ World Islamic Market Index. The 

Delta CoVaR identifies the greatest systemic risk in the USA Islamic index and the DJ 

Islamic Financials World Index for both financial periods under consideration. Figure 5 

displays the dynamics of the VaR and CoVaR estimated parameters, whilst Figure 6 depicts 

the time series of the VaR and CoVaR estimates per se. 

[PLEASE INSERT FIGURES 5 AND 6 HERE] 

Next, the vine CoVaR estimates for the full sample reveal that on the downside the DJ 

Islamic Financials World and the UK Islamic equity indices present the strongest dependence. 

Under adverse market circumstances namely during the Global Financial Crisis, the UK and 

USA Islamic equity indices show the strongest dependence. From the upside vine copula 

CoVaR estimates at the 99% confidence level, we observe the strongest dependence between 

the USA and UK Islamic equity indices. Tables 8 and 9 highlight the statistical significance 

of the estimated risk metrics via the utilization of the KS bootstrapping tests at various 

confidence levels (Abadie, 2002). Overall, the same applies during the Global Financial 

Crisis. The downside and upside Delta CoVaR results for both period scenarios confirm the 

assumption that the USA and UK Islamic equity indices demonstrate the strongest 
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dependence.  

[PLEASE INSERT TABLES 8 AND 9 HERE] 

 

5. CONCLUSIONS 

As the size and value of Islamic equity markets increases in trillions the importance of 

measuring and understanding country-based Islamic market marginal and joint dependence 

behavior cannot be underscored. This is particularly so because Islamic equity markets are 

subsets of conventional equity markets in most countries, thus posing a degree of systemic 

risk to country equity markets through spillover risk effects. The present study, in order to 

draw and provide new and useful insights about the characteristics of interdependence, 

systemic risk and spill over risk effects in domestic and global Islamic equity models the 

downside and upside spillover effects, the systemic risk and the tail dependence risk of 

Islamic equity market indices from Japan, USA and the UK, and for the DJ Islamic Financials 

World and USA Islamic indices. The empirical results are obtained by implementing Value-

at-Risk (VaR), conditional VaR (CoVaR), Delta conditional VaR (∆CoVaR), canonical vine 

conditional VaR (c-vine CoVaR), and time-varying and static bivariate and vine copulas 

models.  

We find evidence of larger downside spillover effects and systemic risk for the DJ Islamic 

Financials World and USA Islamic indices when considering the entire sample period, while 

Islamic equities from the USA and UK have greater exposure to downside systemic risk 

during the global financial crisis. Larger upside spillover effects are identified in the DJ 

Islamic Financials World and the Japan Islamic indices for the full sample period, whilst the 

USA and UK Islamic indices are more exposed to systemic risk during the crisis. The 

downside and upside VaR values are larger for the group of equities belonging to the DJ 

World Islamic Financial and UK indices. The strongest positive tail asymmetric dependence 

occurs between the UK and the USA Islamic equity indices and the DJ World Islamic index. 
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Further, the strongest negative tail asymmetric dependence is observed between the DJ 

Islamic Financials World and Japan Islamic indices and the DJ World Islamic index. Our 

findings could be important to portfolio managers, policy makers and investors who hold 

long and short investment positions and whose concern is risk in the downside and upside for 

systemic risk management purposes. 
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FIGURE 1: TIME SERIES OF ISLAMIC STOCK INDICES 

 

Notes: The plot displays the price series corresponding to the Islamic stock indices. It can be seen that the UK 
Islamic index appears to be more volatile, relative to the USA, Japan, Islamic world and Financials. 

 

 

FIGURE 2: C -VINE COPULA STRUCTURE 

 

Notes: 1.– Financial, 2.– UK, 3.– USA, 4.– Japan 
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FIGURE 3: PLOTS OF C-VINE COPULA PARAMETERS   

a) T1: (1,2) – TVP SJC  b) T1: (1,3) – TVP SJC 

  
c) T1: (1,4) – TVP SJC  d) T2: (2,31׀) – TVP SJC 

  
e) T2: (2,41׀) – TVP SJC f) T3: (3,41,2׀) – TVP Gaussian 

  
Notes: 1.– Financial, 2.– UK, 3.– USA, 4.– Japan 
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FIGURE 4: BIVARIATE COPULA PARAMETERS   
  

a) Financials – TVP SJC b) UK – TVP SJC 

  
 

c) USA – TVP SJC  

 

d) Japan – TVP SJC 
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FIGURE 5: PLOTS OF VAR AND COVAR ESTIMATED PARAMETERS 

Panel A: Downside VaR and CoVaR 

a) Financials 

 

b) UK 

 

c) USA 

 

d) Japan 
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Panel B: Upside VaR and CoVaR 

a) Financials 

 

b) UK 

 

c) USA 

 

d) Japan 
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FIGURE 6: TIME SERIES OF VAR AND COVAR MEASURES 

Panel A: VaR of equity indices and CoVaR from the DJ World Islamic index 

 
a) Financials b) UK 

  
c) USA d) Japan 

  
 

Panel B: VaR of the DJ World Islamic market and CoVaR from the four equity indices  
 

a) Financials b) UK 

  
c) USA d) Japan 
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TABLE 1: BIVARIATE COPULA FUNCTIONS 

  

Copula Name Formula Parameter  Tail dependence 

Normal (N)                           
  

         Zero tail dependence:         

Student-t (t)                  
        

       
 

         Symmetric tail dependence: 

 
                              

Clayton (CL)                           
    

     

 

             Asymmetric tail dependence:                

Gumbel (Gu)                                     
   

  

 

        Asymmetric tail dependence                 

Rotated Gumbel                                
 

 upper tail independence and lower tail dependence 

Frank (F) 

               
                          

       
   

 

0<δ<∞ Zero tail dependence:         

Placket  
          

 

      
                              

  
           

 

θ Zero tail dependence:         

SJC                                                                       
         

      
 

Joe Clayton  
                               

  
           

  
   

    
 
   

 
 

         
           

                
 

 
            

 

   
  

  
                

 

 
            

 

   
 

 
Notes:  and  denote the lower and upper tail dependence, respectively. For the Normal copula,        and        are the standard normal quantile functions and     is the bivariate standard normal 

cumulative distribution function with correlation  . For the Student-t copula,   
      and   

      are the quantile functions of the univariate Student-t distribution with     as the degree-of-freedom parameter 

and T is the bivariate Student-t cumulative distribution function with     as the degree-of-freedom parameter and    as the correlation.  For the SJC copula, ,  

L U

U/ log ( )  21 2 L/ log ( )   21
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TABLE 2: DESCRIPTIVE STATISTICS AND CORRELATIONS 

 
Financials USA UK Japan DJWI 

 Mean 0.00020 0.00032 0.00024 0.00016 0.00028 

Std. Dev. 0.01596 0.01250 0.01362 0.01427 0.01027 

Sharpe Ratio 0.01290 0.02574 0.01761 0.01155 0.02782 

Range 0.34259 0.21434 0.21245 0.20666 0.17959 

Skewness 0.22064 -0.13302 -0.10180 -0.05325 -0.35462 

Kurtosis 17.7764 9.64358 9.51970 6.70383 9.89863 

Jarque-Bera 47522.6*** 9613.39*** 9252.43*** 2985.63*** 10458.4*** 

ADF -73.402*** -54.786*** -35.588*** -55.3729*** -50.741*** 

PP -73.472*** -76.885*** -75.352*** -77.0722*** -62.566*** 

KPSS 0.0323 0.1505 0.13586 0.0680 0.1186 

Q(20) 66.999*** 60.308*** 99.081*** 51.735*** 145.68*** 

Q2(20) 6144.9*** 5320.9*** 5544.9*** 2600.1*** 6927.0*** 

ARCH(20) 1842.5*** 1573.4*** 1528.2*** 1053.5*** 1434.0*** 

Observations 5219 5219 5219 5219 5219 

Correlation Matrix  

Financials 1.0000 0.4693*** 0.3507*** 0.1676*** 

 

  

(38.382) (27.048) (12.279) 

 USA 

 

1.0000 0.4426*** 0.0390*** 

 

   

(35.652) (2.8162) 

 UK 
  

1.0000 0.2121*** 
 

    

(15.677) 

 Japan 

   

1.0000 

 Correlation with DJ World Islamic (DJWI) market 

Overall 0.5255*** 0.9130*** 0.7080*** 0.2649*** 

 

 

(44.618) (161.66) (72.408) (19.839) 

 GFC 0.6609*** 0.9043*** 0.7971*** 0.2439*** 

 

 
(26.606) (64.011) (39.883) (7.6000) 

  
Notes: ADF, PP and KPSS are the empirical statistics of the Augmented Dickey-Fuller (1979), and the Phillips-

Perron (1988) unit root tests, and the Kwiatkowski et al. (1992) stationarity test, respectively.  Q(k) and Q2(k) 

refer to the empirical statistics of the Ljung-Box test for autocorrelation of the returns and squared returns series 

with lag k, respectively. The ARCH-LM(k) test of Engle (1982) checks the presence of the ARCH effect. The 

asterisk (***) denotes the rejection of the null hypotheses of normality, no autocorrelation, unit root, non-

stationarity, and conditional homoscedasticity and significance of correlation at the 1% significance level. 

Values in parenthesis are t-statistics. 
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TABLE 3: MAXIMUM LIKELIHOOD ESTIMATES OF ARMA-FIGARCH WITH SKEWED-T  

 

Financials USA UK Japan DJWI 

Panel A: mean equation 

   0.0005*** 0.0007*** 0.0006*** 0.0003** 0.0006*** 

 
0.0001 0.0001 0.0001 0.0002 0.0001 

   0.3161*** 0.7123*** 0.8009*** 0.6007*** 
 

 

0.1069 0.0620 0.0466 0.0798 

    -0.2023** -0.8014*** -0.8791*** -0.7051*** 0.1727** 

 

0.0994 0.0462 0.0297 0.0766 0.0675 

Panel B: variance equation 

  0.0157*** 0.0285*** 0.0423*** 0.1041** 0.0151** 

 

0.0049 0.0087 0.0143 0.0422 0.0065 

d-Figarch 0.7377*** 0.5586*** 0.4224*** 0.3510*** 0.5132*** 

 

0.0877 0.0866 0.0465 0.0455 0.0656 

   0.1881*** 0.0786** 0.1620*** 0.0381* 0.0708* 

 

0.0448 0.0367 0.0542 0.1231 0.0438 

   0.8061*** 0.6082*** 0.5181*** 0.3318*** 0.5554*** 

 

0.0560 0.0874 0.0743 0.1522 0.0835 

Asymmetry -0.0247* -0.1306*** -0.0811*** -0.0452** -0.1001*** 

 

0.0178 0.0193 0.0201 0.0196 0.0188 

Tail 6.9990*** 8.0366*** 9.9633*** 9.1307*** 8.4681*** 

 

0.6369 0.9934 1.3297 1.0545 1.0350 

Panel C: Diagnostic tests 

LogLik 15982.9 16500.1 15938.8 15375.5 17571.0 

ARCH(20) [0.3826] [0.3571] [0.4321] [0.3735] [0.5982] 

Q(20) [0.2267] [0.2471] [0.1869] [0.7534] [0.3521] 

Q2(20) [0.3409] [0.3204] [0.4458] [0.3960] [0.5639] 

K-S [0.3066] [0.1344] [0.4046] [0.8721] [0.6538] 

LiMcLeod [0.2276] [0.2474] [0.1879] [0.7528] [0.3525] 

Hosking [0.2271] [0.2475] [0.1872] [0.7537] [0.3525] 

Notes: We report the maximum likelihood (ML) estimates and the z statistics (in parentheses) for the parameters of the 
marginal distribution model defined in Eqs. (1)-(9). The lags p, q, r and m are selected using the loglikelihood (logLik) for 

different combinations of values ranging from 0 to 2. Q(k) and Q2(k) are the Ljung-Box statistics for serial correlation in the 
model residuals and squared residuals, respectively, computed with k lags. ARCH(k) is the Engle LM test for the ARCH 
effect in the residuals up to the kth order. K-S denotes the Kolmogorov-Smirnov test (for which the p-values are reported), 
representing the adequacy of the Student-t distribution model. Hosking (1980) and McLeod and Li (1983) are the 
autocorrelation tests until lag 20. The p-values [in the square brackets] below 0.05 indicate the rejection of the null 
hypothesis. The asterisks (***), (**) and (*) represent significance at the 1%, 5% and 10% levels, respectively. 
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TABLE 4: ESTIMATES FOR C-VINE PAIR COPULAS 

Panel A: Static copulas 

 

T1 T2 T3 

2,4) (1 ׀ 2,3) (1,4) (1,3) (1,2)  ׀    (1,2 ׀ 3,4) (1

Gaussian 

        0.465* 0.371* 0.197* 0.152* 0.302* -0.083* 

 

(0.011) (0.012) (0.013) (0.014) (0.013) (0.014) 

AIC -1270.156 -770.794 -207.416 -122.740 -498.882 -36.278 

Clayton's 
        0.727* 0.502* 0.244* 0.181* 0.357* 0.001* 

 
(0.025) (0.022) (0.019) (0.018) (0.021) (0.014) 

AIC -1216.489 -710.352 -214.074 -125.084 -385.113 0.039 

Rotated Clayton 

        0.610* 0.427* 0.189* 0.124* 0.340* 0.001* 

 

(0.024) (0.021) (0.019) (0.017) (0.020) (0.015) 

AIC -896.073 -516.642 -129.355 -62.562 -394.970 0.099 

Plackett 

        4.836* 3.183* 1.805* 1.559* 2.599* 0.781* 

 

(0.184) (0.125) (0.075) (0.064) (0.105) (0.032) 

AIC -1372.639 -759.908 -194.194 -113.388 -505.677 -35.920 

Frank 

        3.247* 2.364* 1.162* 0.890* 1.902* 0.001* 

 

(0.092) (0.088) (0.085) (0.084) (0.087) (0.083) 

AIC -1272.497 -731.315 -187.559 -112.444 -482.745 0.021 

Gumbel 

        1.416* 1.280* 1.120* 1.100* 1.212* 1.100* 

 

(0.015) (0.013) (0.011) (0.011) (0.012) (0.012) 

AIC -1194.914 -673.563 -172.040 -75.271 -464.085 283.921 

Rotated Gumbel 

        1.448* 1.301* 1.136* 1.100* 1.221* 1.100* 

 

(0.016) (0.014) (0.011) (0.010) (0.012) (0.012) 

AIC -1402.835 -794.088 -239.142 -125.407 -469.101 216.440 

Student's t 

        0.482* 0.375* 0.199* 0.153* 0.305* -0.083* 

 

(0.011) (0.012) (0.014) (0.014) (0.013) (0.014) 

  5.180* 9.377* 11.560* 36.195* 10.732* 10.000* 

 

(0.442) (1.379) (2.085) (18.065) (1.743) (6.943) 

AIC -1473.215 -830.773 -243.579 -126.766 -548.195 -36.160 

SJC 

         0.213* 0.127* 0.020* 0.003* 0.122* 0.001* 

 

(0.020) (0.019) (0.012) (0.004) (0.018) (3.981) 

   0.354* 0.242* 0.094* 0.056* 0.129* 0.001* 

 

(0.015) (0.017) (0.017) (0.015) (0.019) (3.336) 

AIC -1411.336 -820.099 -245.860 -133.736 -517.604 48.506 
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Panel B: Time-varying copulas 

 

T1 T2 T3 

2,4) (1 ׀ 2,3) (1,4) (1,3) (1,2)  ׀    (1,2 ׀ 3,4) (1

TVP-Gaussian       

   0.041* 0.009 0.358 0.335 0.869 -0.037 

 

(0.013) (0.006 (0.312 (0.241 (0.223 (0.040 

   0.316* 0.087 0.279 0.105 0.270 0.049 

 

(0.035) (0.015 (0.219 (0.104 (0.108 (0.049 

   1.871* 2.005 -0.024 -0.290 -1.094 1.510 

 

(0.053) (0.022 (1.750 (1.640 (0.763 (0.527 

AIC -1645.612 -838.748 -222.295 -124.175 -506.493 -40.536 

TVP-Clayton 

        0.951* 1.504 0.355 0.865 1.304 0.000 

 

(1.605) (0.079 (0.054 (0.148 (0.136 (0.454 

  0.303* -0.594 0.767 -0.876 -0.436 -2.401 

 

(0.912) (0.038 (0.092 (0.216 (0.131 (1.675 

  -1.355* -1.908 -0.166 -0.927 -2.016 0.000 

 

(1.605) (0.079 (0.054 (0.148 (0.136 (0.454 

AIC -1598.041 -743.626 -222.967 -129.172 -414.376 0.039 

TVP-Rotated Clayton 

         0.836* 0.613 0.893 0.575 1.094 0.000 

 

(1.665) (0.041 (0.194 (0.328 (0.150 (0.162 

   0.346* 0.472 -0.440 -0.821 -0.334 -2.264 

 

(6.384) (0.115 (0.389 (1.838 (0.214 (1.060 

   -1.238* -0.644 -1.271 -0.393 -1.414 0.000 

 

(1.665) (0.041 (0.194 (0.328 (0.150 (0.162 

AIC -1273.305 -591.144 -141.755 -63.285 -419.386 0.100 

TVP-Gumbel 

        0.514* 0.000 1.353 1.649 1.358 0.000 

 

(0.048) (0.731 (0.547 (0.868 (0.349 (3.078 

  0.345* 0.543 -0.629 -1.127 -0.443 0.000 

 

(0.013) (2.461 (0.436 (0.783 (0.246 (3.024 

  -1.642* -0.661 -1.016 -0.523 -1.294 0.000 

 

(0.048) (0.731 (0.547 (0.868 (0.349 (3.078 

AIC -1656.399 -749.519 -185.370 -83.147 -496.272 -0.038 

TVP-rotated Gumbel 

         0.502* -0.033 -0.713 1.787 1.558 0.000 

 

(0.052) (0.131 (0.158 (0.424 (0.257 (4.134 

   0.347* 0.554 0.992 -1.181 -0.562 0.000 

 

(0.014) (2.607 (0.116 (0.377 (0.176 (4.047 

   -1.527* -0.539 -0.154 -0.593 -1.458 0.000 

 

(0.052) (0.131 (0.158 (0.424 (0.257 (4.134 

AIC -1849.386 -847.345 -250.157 -128.647 -498.909 -0.123 

TVP-SJC 

         0.866* -0.492 -0.322 -8.718 0.771 -19.899 

 

(0.543) (1.141 (0.941 (14.423 (1.000 (23.320 

   -11.328* -7.243 -14.015 8.034 -8.622 -1.205 

 

(1.950) (2.497 (4.995 (5.914 (3.315 (9.546 

   1.052* 2.606 3.471 -2.985 -3.336 -0.003 

 

(0.625) (0.679 (1.188 (2.190 (2.658 (1.032 

   -1.926* -2.010 -0.069 1.705 1.990 -19.762 

 

(0.019) (0.992 (0.824 (0.716 (0.847 (3.889 

   -0.814* -0.651 -4.510 -13.324 -13.112 -4.403 

 

(0.107) (2.661 (3.140 (2.827 (3.427 (1.498 

   4.136* 4.254 -8.666 -12.267 -3.624 -0.013 
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(0.016) (1.506 (2.587 (2.621 (1.317 (1.100 

AIC -1914.310 -888.734 -259.323 -141.080 -553.346 97.934 

TVP-Student-t 

         0.036* 0.010 0.423 0.262 0.666 -0.152 

 

(0.011) (0.005 (0.183 (0.110 (0.645 (0.144 

   0.205* 0.058 0.224 0.163 0.105 0.102 

 

(0.021) (0.014 (0.100 (0.084 (0.098 (0.104 

   1.939* 2.020 -0.343 0.111 -0.243 0.088 

 

(0.037) (0.027 (0.992 (0.764 (2.212 (1.759 

  7.669* 10.452 11.995 25.000 10.961 25.000 

 

(0.852) (1.671 (2.227 (7.653 (1.795 (5.457 

AIC -1756.324 -882.103 -255.995 -132.397 -551.451 -32.329 

Notes: The table reports the ML estimates for the different dynamic bivariate copulas. The standard error values (given in 
parenthesis) and the AIC values adjusted for the small-sample bias are provided for these different models. For the TVP 

Gaussian and Student-t copulas, q in Eq. (7) is set to 10. The asterisk (*) indicates significance at the 5% level. The bold 
values indicate the best copula. 
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TABLE 5: ESTIMATES FOR BIVARIATE COPULAS 

Panel A: Static copulas 

 

Financials UK USA Japan 

Gaussian 
      0.518* 0.920* 0.648* 0.219* 

 

(0.010) (0.000) (0.008) (0.013) 

AIC -1627.890 -9890.60 -2840.081 -257.528 

Clayton's 
      0.845* 3.760* 1.144* 0.269* 

 

(0.026) (0.060) (0.029) (0.019) 

AIC -1517.641 -8070.30 -2338.872 -257.351 

Rotated Clayton 
      0.720* 3.520* 1.071* 0.195* 

 
(0.025) (0.060) (0.028) (0.019) 

AIC -1153.239 -7639.45 -2131.953 -133.508 

Plackett 
      5.907* 5.340* 8.833* 1.911* 

 

(0.220) (1.590) (0.308) (0.078) 

AIC -1766.298 -9275.27 -2812.136 -240.983 

Frank 
      3.766* 13.450* 5.052* 1.303* 

 

(0.094) (0.180) (0.101) (0.085) 

AIC -1648.660 -8891.08 -2693.057 -237.484 

Gumbel 
      1.498* 3.610* 1.741* 1.125* 

 

(0.016) (0.040) (0.019) (0.011) 

AIC -1530.988 -9300.99 -2660.165 -173.083 

Rotated Gumbel 
      1.532* 3.700* 1.763* 1.147* 

 

(0.017) (0.040) (0.020) (0.011) 

AIC -1753.212 -9565.82 -2788.679 -251.638 

Student's t 
      0.537* 0.900* 0.654* 0.221* 

 

(0.010) (0.120) (0.008) (0.014) 

  5.260* 5.770* 7.339* 3.569* 

 

(0.449) (2.400) (0.832) (1.543) 

AIC -1833.324 -9843.18 -2968.502 -262.667 

SJC 
       0.259* 0.790* 0.419* 0.013* 

 

(0.019) (0.720) (0.015) (0.010) 

   0.400* 0.810* 0.475* 0.112* 

 

(0.014) (2.030) (0.013) (0.017) 

AIC -1755.475 -9516.53 -2856.949 -264.217 
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Panel B: Time-varying copulas 

 Financials UK USA Japan 

TVP-Gaussian 
       0.020* -1.470* -0.127* 0.000* 

 

(0.012) (4.820) (0.085) (0.004) 

   0.259* 0.090* 0.131* 0.022* 

 

(0.024) (0.050) (0.034) (0.009) 

   1.981* 5.000* 2.465* 2.018* 

 

(0.038) (5.270) (0.162) (0.028) 

AIC -1846.713 -9898.441 -2893.076 -271.423 

TVP-Clayton 
      1.000* 1.000* 1.430* 1.093* 

 

(0.040) (1.000) (1.468) (0.082) 

  0.278* -1.000* -0.999* -0.911* 

 

(0.011) (1.000) (0.176) (0.033) 

  -1.501* 0.000 0.042* -1.088* 

 

(0.040) (1.000) (1.468) (0.082) 

AIC -1804.421 -122.833 -1459.061 -268.196 

TVP-Rotated Clayton 
       0.845* 1.000* 1.490* 0.480* 

 
(0.302) (1.000) (0.495) (0.122) 

   0.327* -1.000* -1.350* 0.528* 

 
(0.000) (1.000) (0.674) (0.248) 

   -1.063* 0.000 -0.146* -0.494* 

 
(0.302) (1.000) (0.495) (0.122) 

AIC -1445.460 -186.810 -1465.596 -143.597 

TVP-Gumbel 
      0.531* 2.445* 0.313* -0.245* 

 

(0.064) (0.323) (0.032) (0.479) 

  0.327* -0.116* 0.390* 0.627* 

 

(0.020) (0.072) (0.010) (0.376) 

  -1.500* -4.716* -0.722* -0.375* 

 

(0.064) (0.323) (0.032) (0.479) 

AIC -1873.308 -9380.162 -2833.185 -182.675 

TVP-rotated Gumbel 
       0.508* 1.952* 0.292* 2.048* 

 

(0.046) (0.707) (0.032) (0.050) 

   0.334* 0.013* 0.395* -1.230* 

 

(0.013) (0.154) (0.010) (0.048) 

   -1.376* -3.573* -0.643* -0.845* 

 

(0.046) (0.706) (0.032) (0.050) 

AIC -2086.023 -9642.847 -2940.436 -262.800 

TVP-SJC 
       -0.391* 1.294* 1.737* -0.145* 

 

(0.456) (2.123) (0.611) (2.103) 

   -6.867* -0.022* -8.455* -14.971* 

 

(1.748) (1.126) (1.665) (8.324) 

   2.526* -0.012* -1.269* 0.622* 

 

(0.518) (3.012) (0.880) (1.331) 

   -1.902* 1.577* -1.979* 0.518* 

 

(0.035) (2.088) (0.016) (0.421) 

   -0.588* 0.064* -0.242* -5.266* 

 

(0.119) (1.149) (0.056) (1.505) 

   4.016* -0.184* 4.043* -9.106* 

 

(0.036) (3.285) (0.017) (1.165) 



  

41 

 

AIC -2159.330 -9550.504 -3072.378 -276.549 

TVP-Student-t 
       0.026* -4.806* -0.097* -0.001* 

 

(0.013) (2.432) (0.073) (0.004) 

   0.166* 0.058* 0.100* 0.019* 

 

(0.021) (0.032) (0.024) (0.008) 

   2.017* 8.648* 2.427* 2.025* 

 

(0.037) (2.654) (0.139) (0.026) 

  6.693* 11.283* 7.777* 24.013* 

 

(0.642) (1.793) (0.890) (6.705) 

AIC -1995.418 -9957.547 -3021.220 -275.065 

Notes: The table reports the ML estimates for the different dynamic bivariate copulas. The standard error values (given in 

parenthesis) and the AIC values adjusted for the small-sample bias are provided for these different models. For the TVP 

Gaussian and Student-t copulas, q in Eq. (3) is set to 10. The asterisk (*) indicates significance at the 5% level. The bold 

values indicate the best copula. 
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TABLE 6: DESCRIPTIVE STATISTICS FOR VAR AND VINE COVAR MEASUREMENT FOR ALL ISLAMIC EQUITY INDICES 

Variable Vine Structure Stats VaR(D) 1% Vine CoVaR(D) 1% VaR(U) 1% Vine CoVaR(U) 1% Vine ∆CoVaR(D) Vine ∆CoVaR(U) 

   
Full GFC Full GFC Full GFC Full GFC Full GFC Full GFC 

Financials 

 

 Mean -0.034 -0.054 

  

0.035 0.056 

      

  
 Std. Dev. (0.023) (0.037) 

  
(0.023) (0.037) 

      Financials ׀ UK (1,2)  Mean 

  

-0.074 -0.128 

  

0.077 0.126 0.910 0.991 0.960 0.982 

  

 Std. Dev. 

  

(0.053) (0.090) 

  

(0.052) (0.086) (0.152) (0.064) (0.033) (0.029) 

Financials ׀ USA (1,3)  Mean 
  

-0.071 -0.115 
  

0.076 0.122 0.873 0.883 0.946 0.953 

  

 Std. Dev. 

  

(0.048) (0.076) 

  

(0.051) (0.081) (0.113) (0.121) (0.027) (0.026) 

Financials ׀ Japan (1,4)  Mean 

  

-0.055 -0.084 

  

0.068 0.107 0.524 0.460 0.805 0.794 

  
 Std. Dev. 

  
(0.036) (0.055) 

  
(0.045) (0.071) (0.143) (0.128) (0.041) (0.043) 

UK 

 

 Mean -0.031 -0.045 

  

0.032 0.047 

      

  

 Std. Dev. (0.014) (0.019) 

  

(0.014) (0.020) 

      UK ׀ Financials  (1,2)  Mean 
  

-0.062 -0.095 
  

0.058 0.086 0.895 0.788 0.869 0.732 

  

 Std. Dev. 

  

(0.029) (0.042) 

  

(0.026) (0.038) (0.795) (0.650) (0.729) (0.609) 

UK ׀ USA  (2,3,1 )  Mean 
  

-0.043 -0.063 
  

0.049 0.071 0.297 0.299 0.538 0.534 

  
 Std. Dev. 

  
(0.019) (0.027) 

  
(0.021) (0.032) (0.027) (0.031) (0.086) (0.092) 

UK ׀ Japan (2,4,1)  Mean 

  

-0.060 -0.090 

  

0.054 0.080 0.725 0.741 0.641 0.676 

  
 Std. Dev. 

  
(0.027) (0.038) 

  
(0.024) (0.034) (0.058) (0.042) (0.083) (0.065) 

USA 

 

 Mean -0.028 -0.036 

  

0.030 0.038 

      

  

 Std. Dev. (0.014) (0.020) 

  

(0.014) (0.021) 

      USA ׀ Financials (1,3)  Mean 
  

-0.055 -0.071 
  

0.053 0.067 0.647 0.313 0.657 0.315 

  

 Std. Dev. 

  

(0.027) (0.038) 

  

(0.025) (0.037) (0.571) (0.489) (0.541) (0.440) 

USA ׀ UK (2,3,1 )  Mean 

  

-0.042 -0.054 

  

0.046 0.058 0.246 0.039 0.494 0.246 

  
 Std. Dev. 

  
(0.020) (0.030) 

  
(0.022) (0.033) (0.335) (0.183) (0.394) (0.237) 

USA ׀ Japan (3,4,1,2)  Mean 

  

-0.026 -0.033 

  

0.024 0.030 -0.091 -0.094 -0.086 -0.088 

  
 Std. Dev. 

  
(0.013) (0.018) 

  
(0.011) (0.016) (0.030) (0.027) (0.028) (0.025) 

Japan 
 

 Mean -0.034 -0.039 
  

0.034 0.039 
      

  

 Std. Dev. (0.012) (0.016) 

  

(0.012) (0.015) 

      Japan ׀ Financials (1,4)  Mean 
  

-0.053 -0.058 
  

0.060 0.068 0.745 0.221 0.963 0.423 

  
 Std. Dev. 

  
(0.018) (0.022) 

  
(0.020) (0.026) (0.672) (0.501) (0.708) (0.536) 

Japan ׀ UK (2,4,1)  Mean 

  

-0.065 -0.076 

  

0.061 0.072 1.045 0.545 0.940 0.498 

  
 Std. Dev. 

  
(0.022) (0.030) 

  
(0.021) (0.028) (0.629) (0.294) (0.586) (0.283) 

Japan ׀ USA (3,4,1,2)  Mean 
  

-0.030 -0.034 
  

0.029 0.033 -0.242 -0.174 -0.206 -0.143 

  
 Std. Dev. 

  
(0.010) (0.014) 

  
(0.010) (0.013) (0.226) (0.205) (0.226) (0.208) 

Notes: This table presents the average and the standard deviation (in parenthesis) of the VaR, CoVaR and ∆CoVaR metrics. 
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TABLE 7: DESCRIPTIVE STATISTICS FOR VAR AND VINE COVAR FOR WORLD AND ISLAMIC EQUITY INDICES 

  

VaR(D) 1% CoVaR(D) 1% VaR(U) 1% CoVaR(U) 1% ∆CoVaR(D) ∆CoVaR(U) 

  

Full GFC Full GFC Full GFC Full GFC Full GFC Full GFC 

Panel A: VaR and CoVaR of four selected markets  
Financial  Mean -0.034 -0.054 

  

0.035 0.056 

      

 

 Std. Dev. (0.023) (0.037) 

  

(0.023) (0.037) 

      Financials ׀ World  Mean 

  

-0.076 -0.127 

  

0.078 0.126 0.953 0.991 0.976 0.990 

 

 Std. Dev. 

  

(0.053) (0.088) 

  

(0.052) (0.085) (0.101) (0.065) (0.026) (0.024) 

UK  Mean -0.031 -0.045 

  

0.032 0.047 

      

 

 Std. Dev. (0.014) (0.019) 

  

(0.014) (0.020) 

      UK ׀ World  Mean 

  

-0.066 -0.097 

  

0.059 0.087 0.829 0.829 0.751 0.760 

 

 Std. Dev. 

  

(0.029) (0.042) 

  

(0.026) (0.037) (0.025) (0.022) (0.021) (0.022) 

USA  Mean -0.028 -0.036 

  

0.030 0.038 

      

 

 Std. Dev. (0.014) (0.020) 

  

(0.014) (0.021) 

      USA ׀ World  Mean 

  

-0.070 -0.089 

  

0.057 0.072 0.983 0.978 0.841 0.845 

 

 Std. Dev. 

  

(0.033) (0.049) 

  

(0.027) (0.040) (0.028) (0.026) (0.027) (0.025) 

Japan  Mean -0.034 -0.039 

  

0.034 0.039 

      

 

 Std. Dev. (0.012) (0.016) 

  

(0.012) (0.015) 

      Japan ׀ World  Mean 

  

-0.052 -0.059 

  

0.061 0.070 0.442 0.422 0.701 0.698 

 

 Std. Dev. 

  

(0.018) (0.024) 

  

(0.020) (0.027) (0.109) (0.110) (0.044) (0.040) 

Panel A: VaR and CoVaR of DJ World Islamic market 

World  Mean -0.023 -0.031 

  

0.024 0.033 

      

 

 Std. Dev. (0.011) (0.017) 

  

(0.012) (0.018) 

      World ׀ Financials  Mean 

  

-0.051 -0.072 

  

0.046 0.063 0.456 0.262 0.428 0.226 

 

 Std. Dev. 

  

(0.025) (0.039) 

  

(0.022) (0.034) (0.537) (0.458) (0.500) (0.428) 

World ׀ UK  Mean 

  

-0.053 -0.073 

  

0.046 0.063 0.437 0.306 0.372 0.256 

 
 Std. Dev. 

  
(0.026) (0.039) 

  
(0.022) (0.034) (0.277) (0.186) (0.254) (0.175) 

World ׀ USA  Mean 
  

-0.054 -0.074 
  

0.046 0.063 0.583 0.698 5.532 6.160 

 

 Std. Dev. 

  

(0.026) (0.040) 

  

(0.022) (0.034) (0.204) (0.173) (1.218) (1.204) 

World ׀ Japan  Mean 

  

-0.037 -0.051 

  

0.041 0.056 0.002 0.164 0.197 0.397 

 

 Std. Dev. 

  

(0.018) (0.027) 

  

(0.020) (0.030) (0.305) (0.293) (0.353) (0.334) 

Notes: This table presents the average and the standard deviation (in parenthesis) of the VaR, CoVaR and ∆CoVaR. 
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TABLE 8: HYPOTHESIS TESTING OF VAR, COVAR AND DELTA COVAR ASYMMETRIES 

 

Vine 

structure 

                    
                    

                    
                    

   
     

   
    

     

   
    

   
     

   
    

     

   
    

                        
                        

  

Full GFC Full GFC Full GFC Full GFC 

Financials 

         Financials ׀ UK (1,2) 0.591 0.515 0.598 0.504 0.418 0.580 0.335 0.315 

  

[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 

Financials ׀ USA (1,3) 0.555 0.505 0.585 0.502 0.352 0.334 0.509 0.460 

  

[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 

Financials ׀ Japan (1,4) 0.390 0.340 0.508 0.454 0.799 0.889 0.869 0.931 

  

[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 

UK 

         UK ׀ Financials  (1,2) 0.671 0.794 0.625 0.735 0.736 0.963 0.034 0.064 

  

[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.004] [0.044] 

UK ׀ USA  (2,3 1 ׀) 0.932 0.953 0.697 0.733 0.608 0.446 0.504 0.357 

  

[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 

UK ׀ Japan (2,4 1 ׀) 0.450 0.446 0.938 0.856 0.707 0.527 0.785 0.669 

  

[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 

USA 

         USA ׀ Financials (1,3) 0.633 0.688 0.570 0.629 0.757 0.776 0.032 0.041 

  

[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.009] [0.419] 

USA ׀ UK (2,3 1 ׀) 0.361 0.299 0.360 0.394 0.511 0.427 0.488 0.391 

  

[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 

USA ׀ Japan (3,4 1,2 ׀) 0.118 0.085 0.906 0.850 0.289 0.228 0.146 0.096 

  
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 

Japan 

         Japan ׀ Financials (1,4) 0.536 0.608 0.672 0.738 0.727 0.840 0.144 0.188 

  

[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 

Japan ׀ UK (2,4 1 ׀) 0.075 0.070 0.665 0.543 0.759 0.683 0.800 0.756 

  

[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.012] 

Japan ׀ USA (3,4 1,2 ׀) 0.063 0.077 0.428 0.394 0.342 0.234 0.251 0.174 

  

[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.050] 

Notes: This table summarizes the results of the Kolmogorov–Smirnov (KS) test. The values in brackets [ ] are the p-values of the K-S test.
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TABLE 9: HYPOTHESIS TESTING OF VAR, COVAR AND DELTA COVAR ASYMMETRIES 

 

                    
                    

                    
                    

   
     

   
    

     

   
    

   
     

   
    

     

   
    

                        
                        

 

Full GFC Full GFC Full GFC Full GFC 

Financial 

        Financial ׀ World 0.608 0.541 0.607 0.520 1.000 1.000 0.308 0.289 

 

[0.000] [0.000] [0.004] [0.000] [0.000] [0.000] [0.000] [0.000] 

UK 

        UK ׀ World 0.755 0.815 0.643 0.742 1.000 1.000 0.922 0.922 

 

[0.000] [0.000] [0.009] [0.000] [0.000] [0.000] [0.000] [0.000] 

USA 

        USA ׀ World 0.783 0.798 0.623 0.682 1.000 1.000 0.999 1.000 

 

[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 

Japan 

        Japan ׀ World 0.550 0.625 0.689 0.754 0.781 0.818 0.893 0.909 

 

[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 

World 

        World ׀ Financials 0.737 0.760 0.641 0.685 0.866 0.946 0.036 0.056 

 

[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.003] [0.118] 

World ׀ UK 0.766 0.781 0.646 0.690 0.994 1.000 0.102 0.137 

 
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 

World ׀ USA 0.772 0.783 0.650 0.691 0.999 1.000 1.000 1.000 

 

[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 

World ׀ Japan 0.507 0.580 0.554 0.617 0.406 0.503 0.258 0.281 

 

[0.003] [0.118] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 

Notes: This table summarizes the results of the Kolmogorov–Smirnov (KS) test. The values in brackets [ ] are the p-values of the K-S test 

  



  

46 

 

 

A SYSTEMIC RISK ANALYSIS OF GLOBAL ISLAMIC EQUITY MARKETS USING VINE COPULAS AND DELTA COVAR 

MODELING  
 

 

H I G H L I G H T S 

 

 

 We analyze downside and upside spillover effects, systemic & tail dependence risks 

 We utilize VaR, CoVaR, ∆CoVaR, c-vine CoVaR, static & TV vine copula approaches 

 The investigation involves equity indices from Japan, USA, UK, DJWIF & DJWI 

 Our findings could be important to portfolio managers, policy makers and investors 

 Market agents are interested in accurately estimating downside & upside systemic risk 

 

 

 


