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Uncertainties in energy demand modelling allow for the development of different models, but also leave
room for different calibrations of a single model. We apply an automated model calibration procedure to
analyse calibration uncertainty of residential sector energy use modelling in the TIMER 2.0 global energy
model. This model simulates energy use on the basis of changes in useful energy intensity, technology
development (AEEI) and price responses (PIEEI). We find that different implementations of these factors
yield behavioural model results. Model calibration uncertainty is identified as influential source for
variation in future projections: amounting 30% to 100% around the best estimate. Energy modellers
should systematically account for this and communicate calibration uncertainty ranges.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Developments of the energy system play a key role in economic
development and environmental problems at different scales. This
includes issues like access to modern energy, securing energy
supply and environmental problems, such as air pollution and
climate change. It is therefore important to explore different
potential development paths of the energy system. However, at
least two factors complicate projections of future energy use: (1)
the energy system is determined by complex interactions of a wide
range of drivers and (2) there is a lack of empirical data. This lack of
information complicates the development and calibration of
models, especially for developing regions – and allows for multiple
interpretations of the same phenomena. Despite these difficulties,
a wide range of models has been developed to explore trends in the
energy system at global [1–5], regional [6–8] and national scales
[6,7,9,10]. These models are partly developed from different
scientific paradigms and modelling traditions. Such paradigms may
lead to different interpretations of the past and different
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expectations for the future. The most clear-cut example is the
difference between models that stem from a macro-economic
tradition (top-down) [11,12] and those from a engineering–
economic tradition (bottom-up) [6,7,13] that lead to different
interpretations of the present situation with respect to energy
efficiency (optimal vis-à-vis major opportunities for improvement)
[14,15]. Even within one model, however, several options may exist
on how to interpret the past and current situation. This may lead to
different model calibrations, that cause uncertainty in future
projections.

Different methods have been used to explore uncertainty in
global energy models [16–19], but relatively little attention has
been given to the influence of model calibration on future projec-
tions. We recently developed a method to analyse uncertainty in
model calibration [20]. This method is inspired by the concept of
equifinality, the phenomenon that there are many acceptable
model calibrations that cannot easily be rejected and should be
considered in assessing the uncertainty in predictions [21]. In this
paper, we apply our calibration uncertainty method to the global
energy model TIMER 2.0, a system dynamics model that simulates
developments in global energy supply and demand [4,22]. While
our previous publication focused on the development and proofing
of the method, here our main interest is on the effect of model
calibration on future scenarios for residential energy use at the
regional scale. The main question is what the uncertainty in model
calibration implies for the uncertainty in the future trends that this
model simulates.
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Uncertainty studies of global energy models focus mainly on the
global level [16–19]. However, with increasing regional disaggre-
gation of these models, it becomes interesting to test their perfor-
mance for individual regions We selected five world regions that
are among the largest regions in terms of energy use and represent
a wide spectrum of development levels: USA, Western Europe,
India, China and Brazil. We focus on the residential sector, as this
sector is currently the main energy consuming sector in many
developing regions. Within this sector, the analysis focuses on
energy demand – as recent uncertainty analysis of the TIMER
model identified this as the most important factor in total model
uncertainty [23].

In this paper, Section 2 introduces the role of uncertainty in the
context of model calibration and the methodology to explore this
uncertainty. Section 3 describes the structure of the TIMER 2.0
energy demand model. In Section 4, we analyse the performance of
the model for residential energy use for historic energy use in
several world regions. Section 5 presents the impact of calibration
uncertainty on projections of energy use towards 2030. Finally, in
Section 6 conclusions are drawn.

2. Method for model calibration

2.1. Uncertainty in model calibration

Exploration of different futures on the basis of models is
complicated by many different sources of uncertainty [23–31]. This
includes uncertainties associated with model parameters, but also
those related to model structure or disagreements between
conceptual theories on a larger scale. Some uncertainties can be
reduced by additional knowledge (epistemic), while others are
related to natural randomness (ontic). Beven [21] outlined
a philosophy for modelling of environmental systems, focussing on
the challenges in model calibration (an issue that has also been
raised in [32,33]) Beven’s approach rejects the idea that a single
optimally calibrated model exists for any given case. Instead,
environmental models may be non-unique in their accuracy of
reproduction of observations (i.e. unidentifiable or equifinal), and
subject to only a conditional confirmation, due to e.g. errors in
model structure, calibration of parameters and period of data used
for evaluation. An ‘acceptable representation’ of the model is called
behavioural. The acceptance criterion can be quantitative (e.g.
above a threshold value of a likelihood measure) or qualitative (e.g.
reproduction of trends). For a more elaborate discussion on cali-
bration uncertainty in energy modelling see [20].

At present, calibration of energy models is often based on the
modeller’s expert knowledge and skills to identify plausible
parameter values. If multiple sets of parameter values are tenable
and model projections are sensitive to the parameter values
chosen, this practice is questionable and may overlook relevant sets
of parameter values. A more systematic exploration of the uncer-
tainty space can help to overcome this limitation.

2.2. Methodology to for model calibration and scenario runs

We developed an automated parameter estimation procedure to
explore the impact of calibration uncertainty on model outcomes.
The aim of the parameter estimation methodology is two-fold.
First, it is an automated model calibration procedure that mini-
mizes the error between model results and observations, gener-
ating a set of calibrated parameter values. In this sense it is related
to nonlinear regression methods like PEST [34] or UCODE [35].
Second, by repeatedly applying the method it can be used to
perform an uncertainty analysis on model calibration. This gener-
ates a series of calibrated sets of parameter values. This aspect is
more related to (sequential) Monte Carlo based approaches like
GLUE [36] or SimLab [37]. This method involves several steps:

A. Determining useful parameters for model calibration and their
associated ranges.

B. Performing a series of model calibrations and identify sets of
input parameters that perform well against historic data.

C. Analysing the sets of calibrated parameter values.
D. Analysing the impacts of calibration uncertainty on future

projections.

The first step involves analysis of the model to select useful
parameters for the model calibration process. We also identify
ranges for the calibration parameters, based on analysis of the
model formulation, the values used in former calibrations, litera-
ture and expert judgement. This step is described in detail in
Section 3. The ranges are used as boundaries in the parameter
estimation process.

Several measures exist to evaluate the deviation between model
results (predictions, P) and observed data (O) [38]. We choose to use
the Normalised Root Mean Square Error (NRMSE), which is defined
as:

NRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
t¼1

�
Pt�Ot

Ot

�2

T

vuut
(1)

In this, Pt and Ot indicate the predicted and observed value in year t
and T is the number of years in the time series. This measure has
values between zero (perfect fit) and infinite (random). Multiplied
with 100, the NRMSE can be seen as the time averaged percentage
deviation between the time series of model results and the time
series of observations.

In the second step, we perform a series of model calibrations. As
starting point for these parameter estimations, we use an initial
dataset (SI) for P parameters and N parameter estimation attempts:
SIP,N. This set contains a combination of design of experiments
(central composite design [39], to explore the extremes of the
parameter space) accomplished with a series of random numbers.
In the model calibrations, the input parameters are varied simul-
taneously to minimize the NRMSE. We look for optimal parameter
estimations by using a MATLAB build-in functionality for con-
strained nonlinear optimisation, using sequential quadratic
programming [40]. This algorithm approaches the model as a black-
box optimisation function and varies the parameter values until the
derivative of the objective function (i.e. the NRMSE) reaches values
between zero and a pre-defined threshold level. This results in
a dataset with calibrated parameter values that have a good (or best
obtainable) fit with observations of energy use for the period 1970–
2003: SCP,N. This can be best imagined as the collection of local
optima in the objective function landscape spanned up by the
explored parameter space.

Third, we analyse the series of calibrated sets of parameter values
in SCP,N in several ways. The distribution of the calibrated parameter
values over their range is analysed and we plot the calibrated
parameter values against the NRMSE. Relations between parameters
and the impact of parameters on the NRMSE can be numerically
expressed by the (linear) Pearson correlation coefficient between
parameters. We use this as the simplest indicator to express a rela-
tion between two parameters, although it does not capture
nonlinearity or the existence of multimodal distributions. Based on
this, behavioural sets of parameter values can be selected. In our
analysis, we decided not to remove any sets of parameter values
based on non-behavioural outcomes. However, we use the NRMSE
(hence, behavioural/non-behavioural) to weight future projections
that are derived from the different sets of parameter values.
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Fig. 1. Overview of the TIMER Energy Demand model and parameters used in he model calibration process.
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The fourth step is to analyse the impact of variation in calibrated
parameter values on future projections. We use the calibrated sets
of parameter values (in SCP,N) to run the model forward for the
period 2003–2030. The range of projected future energy use
scenarios is analysed by a frequency diagram of energy use in 2030.
In this, the frequencies are weighted to the NRMSE. The weight (W)
that the N’th calibrated set of parameter values gets in the
prediction ensemble is defined as the normalisation of the relative
weight (R) of the N’th set to the best performing set of parameter
values4:

WN ¼
RNP

N
RN

where RN ¼
NRMSEbest

NRMSEN
(2)

3. The TIMER 2.0 energy demand model: parameters
and ranges

The TIMER model is a system dynamics energy system simula-
tion model [4,22] This model has been applied in a variety of
contexts, for instance the IPCC Special Report on Emission
Scenarios [41], UNEP Global Environmental Outlook [42] and the
Millennium Ecosystem Assessment [43]. Energy use is modelled at
a high level of aggregation; the model structure is similar for 26
world regions and five economic sectors and specific circumstances
are captured by region- and sector specific parameter values. The
energy demand model has a top-down macro-economic character:
energy use is associated with economic activity via changes in
energy intensity and efficiency (Fig. 1).

In a first step, energy use is modelled as the annual demand for
Useful Energy (UE, i.e. the level of energy services or energy func-
tions [4]). Useful Energy demand is a function of changes in
4 This measure does not hold in the unlikely situation that the model exactly
reproduces historic data and the best obtained NRMSE becomes zero.
population and economic activity and three dynamic factors:
structural change in Useful Energy Intensity (UEI), Autonomous
Energy Efficiency Improvement (AEEI) and Price Induced Energy
Efficiency Improvement (PIEEI). The demand for useful energy is
converted to secondary (or final) energy use (SE), using specific
efficiencies (h) for different fuels, capturing price-based fuel
substitution. Thus:

SER;S;FðtÞ ¼
POPRðtÞ*XR;SðtÞ*UEIR;S;FðtÞ*AEEIR;S;FðtÞ*PIEEIR;S;FðtÞP

EC
hR;S;CðtÞ*MSR;S;CðtÞ

ðGJ=yrÞ ð3Þ

in which POP is the population (in persons), X is the per capita
economic activity of a sector (for the household sector this activity
indicator is private consumption in purchasing power parity (PPP),
constant 1995 international $/capita/yr). The useful energy inten-
sity (UEI) multiplier captures intra-sectoral structural change (in GJ/
$/capita) and the AEEI and PIEEI (dimensionless) multipliers
represent autonomous and price induced efficiency improvements.
UEI, AEEI and PIEEI are functions of other state variables in the
model, which will be elaborated below. The market shares (MS) of
fuels are derived from fuel prices via a multinomial logit allocation
formula. The indices indicate region (R), sector (S), energy form (F,
fuels or electricity) and energy carrier (C, coal, oil, natural gas,
modern biofuel, hydogen, secondary heat and traditional biofuel).
The model distinguishes two forms of energy, motivated by their
different functions: electricity and fuels. For fuels, we focus on the
total final demand i.e. the sum of all energy carriers5.
It should also be noted that we assume no supply constraints by equating
energy demand and energy use. The statistical data are assumed to have satisfied
demand in a state of economic equilibrium on an annual basis. This might not be
valid for developing regions, where electricity use is more limited by supply than by
a lack of demand.
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Fig. 2. UEI-curve (left) and useful energy use per capita (right) for hypothetical parameter values.
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3.1. Useful energy intensity

From energy analysis some generic trends in energy use are
known [44–46]:

1. Total energy use tends to increase with population and
economic activity;

2. Energy intensity has been observed to increase, followed by
a decline. This pattern is sometimes referred to as the envi-
ronmental Kuznets Curve [47–49]. Underlying processes
include changes in underlying activities (from little industry, to
heavy industry and finally manufacturing industry) [50–52].
The level at which a maximum is reached tends to decrease
over time – interpreted as the collective dissemination of
energy-innovations and of learning-by-doing [53,54].

This stylized fact6 is represented in the TIMER model in the form
of a (asymmetric) bell-shaped function of sector specific per capita
economic activity. This is expressed as7:

UEIR;S;FðtÞ ¼ Y0 þ
1

bXðtÞ þ gXd
ðtÞ

(4)

with X(t) the sectoral economic activity per capita and b, g and
d parameters to determine the shape of the curve. All parameters in
this equation are defined per region, sector and energy form, d is
assumed to be negative to maintain a bell-shaped form.

For very high activity levels ðX/NÞ, UEI tends to reach
asymptotically constant GJ/$ values, equal to Y0 GJ/$8 (see Fig. 2).
For very low activity levels (X w 0) the UEI-value approaches Y0 if
d is negative. The flexible formulation of this curve implies also
a high sensitivity to parameter values. From an energy use point-of-
view, some reasonable constraints can be made to limit the
potential parameter space to a relevant subspace [20]:

� The value of Y0 can be interpreted as the ultimately lowest energy
intensity of sectoral activity in the both X/N and X w 09.
� The second term of the curve may, at high income levels, be

related to saturation of useful energy per capita per year (U),
based on sector specific features such as climate or population
6 The term ‘stylized fact’ stems originally from social sciences and economics and
reflects a simplified representation of empirical findings. It is a broad generalization
that emerges from many different data sources. It is mostly used in the context
of macro-economic analysis, for instance when describing general relations of
economic growth [55,56], linkages between economies [57] or the behaviour
of stock markets [58] and currency markets [59].

7 This bell-shaped curve can also be written in terms of income elasticity as is
common for energy use. It implies first rising, than declining income elasticity.

8 This asymptote coincides with a hyperbole of constant per capita energy use.
The product of X in $/cap/yr and Y (UEI) in GJ/$/yr is the per capita use of energy (U)
in GJ/cap/yr.

9 a could be used to distinguish energy intensity between extremely high and
low income levels.
density. Since we assume that d is negative, assuming Y0¼ 0 in
Eq. (4) (hence, focussing at the second term), means that:

U ¼ X*UEI ¼ X
bX þ gXd

0 lim
X/N

X
bX þ gXd

¼ 1
b

and thus b ¼ 1
U

(5)

� The activity level at which the maximum occurs (Xmax) can be
estimated from regional energy use data. However, this has the
risk of cyclical reasoning because one draws conclusions from
the observed data which are to be explained 10.
� The curve can be further constrained by forcing it through one

observed reference point, defined as [Xref, UEIref], which can be
any year in the period 1971–2003.11

These constraints allow for a consistent set of parameter choices
on the basis of three key variables: the activity level at which the
maximum occurs (Xmax), the saturation level of useful energy per
capita (U) and the asymptote or ultimate energy intentity (Y0).

The range for values of Xmax and U in the parameter estimation
process is defined as 10% broader than the maximum and minimum
values applied in earlier (manual) calibrations (see Appendix 1,
Tables 5 and 6). Although Y0 is conceptually only limited by the
value of UEIref, the model becomes linear if Y0 approaches UEIref

12.
To ensure that the bell-shape of the function is maintained, we
assume Y0 to be lower than 20% of UEIref.

3.2. Autonomous energy efficiency improvement (AEEI)

The continuous decline of energy intensity due to technology
improvement is represented by the Autonomous Energy Efficiency
Improvement (AEEI) multiplier. The marginal AEEI is formulated as
a fraction of economic activity growth [60]:

AEEImarg R;SðtÞ ¼ FS*
� GDPpcRðtÞ

GDPpcRðt�1Þ
� 1

�
*100 ð%=yrÞ (6)

in which FS is a sectoral specific fraction of economic activity
growth.

The parameter value that has to be estimated for AEEI is the
fraction of GDP growth (FS). For the percentage of annual AEEI
a range of 0.2–1.5% per year is suggested by experts [17]. We
established a range for FS based on the average annual regional GDP
10 One should do this only for datasets (regions, periods) where presumably end-
use conversion efficiency has hardly changed. This is probably valid for electricity
use, but not for fuel use, especially in developing regions. The transition from
traditional biomass to modern fuels leads to major efficiency improvements, see h

in Eq. (2).
11 In the default model implementation this is the year 2003, the latest year of the

calibration period.
12 Since energy intensity is defined in energy use per (monetary) unit of GDP,

there is no theoretical or thermodynamic limit to the value of Y0.
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per capita growth over the period 1971–2003 (see Appendix 1,
Table 7). Though we estimate the value of the parameter FS, we
present the results of the AEEI in Section 4 as the average
percentage of annual efficiency improvement.

3.3. Price induced energy efficiency improvement (PIEEI)

The PIEEI reflects that energy efficiency measures are more
attractive if energy prices are high. The description of PIEEI is based
on an energy conservation supply-cost-curve, describing the
increasing marginal cost to save energy. The investments are
annuitied by assuming a payback time. By comparing the annual
gains of efficiency improvement to the annual cost of investments,
an optimum investment (or efficiency) level can be found. The
energy conservation supply-cost-curve can be compared to
bottom-up technology data [4] but is modelled as an aggregated
function. The optimal level of energy efficiency (E, as fraction of
total energy use) is defined as:

ER;S;FðtÞ ¼ MR;S;F �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M�2
R;S;F þ

CR;S;FðtÞ*TR;S;FðtÞ
SR;S;F *IR;S;FðtÞ

r (7)

in which M is the maximum potential price induced efficiency
improvement, C the sectoral average costs of useful energy ($/GJUE)
and T the payback time. I is the cost curve decline from learning-by-
doing and the parameter S is used to scale the curve to the sector
specific costs of useful energy. The PIEEI on marginal capital
investments, as used in Eq. (3), is a defined as: 1�ER,S,F. Vintage
modelling of energy demand capital delays the impact of the PIEEI,
because the current PIEEI is the weighted average of the marginal
PIEEI over the capital life time.

In the parameter estimation procedure we vary values of
payback time (T) and learning (I)13. Because the actual PIEEI is
dependent on the energy prices, we express the results of the PIEEI
as the cumulative efficiency improvement between 1971 and 2003.
The ranges for the learning and payback time parameters in the
experiment are shown in Appendix 1, Tables 5 and 6.

3.4. Price-based fuel substitution

Market shares for fuels in TIMER are allocated on the basis of
mutual cost differences, using a multinomial logit formulation. To
simplify our calculations, we decided in this analysis to fix market
shares to historic data and use a scenario for market share devel-
opment, based on the development of energy prices in a standard
future scenario (see Section 5). Effectively, this keeps the denomi-
nator in Eq. (3) the same in all model runs.

4. Simulation of historic energy use in five world regions

4.1. Residential energy use in the USA

Total residential sector fuel use in the USA declined in the 1971–
2003 period from about 9 to 7 EJ/yr (Fig. 3,) [61]. In the same period,
the assumed drivers, private consumption and population, increased
[62]. Also, floor space per capita, an important bottom-up driver of
space heating, increased [63,64]. The decline has been driven by an
13 Alternative parameters to vary would be the maximum improvement level (M)
or the steepness (S). However, M is based on a theoretical maximum efficiency
improvement expressed in energy intensity terms. This is a useful parameter to
explore, but has more impact on future projections than on historic calibration. The
steepness parameter (S) is used to scale the PIEEI curve to the useful energy costs
per sector and is therefore not useful to vary.
improvement in conversion efficiencies, largely due to the gradual
switch from coal to oil and then, partly, to natural gas [61]. The use of
traditional fuels has been minor, with a temporal increase during the
oil crisis. The data show many year-to-year fluctuations, which
correlate strongly with warmer and colder years, expressed in
heating–degree–days. Correcting fuel use for temperature fluctua-
tions smoothes the historic data, but does not change the decreasing
trend [65]. The TIMER model is capable to simulate the declining
trend, with a best obtained NRMSE of 6.7%. There is a rather broad
spread, with some (outlying) sets of parameter values even showing
an increasing trend (with NRMSE 18%). The parameter settings
indicate declining useful energy intensity in the 1971–2003 period,
with only minor variation in the UEI related parameters. A rather
wide range of technological (AEEI) and price-related (PIEEI) factors
can explain the historic trends (Appendix 2, Fig. 6).

Residential electricity use in the USA has been increasing rapidly
from 2 to 4.5 EJ/yr in the 1971–2003 period (Fig. 3) [61]. The most
important underlying drivers are ownership of appliances and
lighting [63]. The trend can be simulated with a best-fit of 3.6% and
all calibrated sets of parameter values have NRMSE values below
6.5%. Although there is little correlation between the calibrated
parameter values (Table 2), two implementations of the UEI-curve
are distinguished. The best fitting sets of parameter values are
characterised by a combination of high Xmax and low Y0 (i.e.
historically increasing UEI), moderate technology improvement
(AEEI around 0.6%/yr) and low values for price induced efficiency
improvement. This implies a significant income elasticity and
a small price-elasticity, whereas technology is of moderate impor-
tance. Another behavioural implementation involves low values of
Xmax (i.e. historically decreasing energy intensity), no technology
development and moderate reactions to price changes.

4.2. Residential energy use in Western Europe

Western European14 residential fuel use has been stable for the
last 30 years at about 8 EJ/yr (Fig. 3), with a gradual replacement
of coal by oil and then natural gas [61]. Much of the short term
variation can be explained from temperature fluctuations [65]. The
trend of the data can be simulated by the model with best NRMSE
values of 4.3%. There is no correlation in parameter values
(Table 1) indicating that there are no patterns between the
different calibrated parameters. The most behavioural sets of
parameter values are characterised by a UEI-curve that is rather
similar to the USA, with low values for Xmax and Y0, but a higher
value for U. Technology development (AEEI of 0.5–0.7%/yr) and
a moderate (if any) role for price induced savings (PIEEI z 0)
explain the historic data.

Electricity use has been increasing rapidly in Western Europe,
though after 1985 with a lower growth rate [61]. With NRMSE
values between 8.5 and 14%, the model is capable to simulate the
growth but not the decline in growth rate. Table 2 shows some
equifinality in the values for UEI and AEEI, although both parame-
ters strongly determine the NRMSE. The best fitting sets of
parameter values have high Xmax, low Y0 and low AEEI and PIEEI
values, which indicate the importance of activity growth as
a determinant of electricity use and the lack of price effects.

4.3. Residential energy use in Brazil

For developing regions it is important to realise that some
caveats are in place. First, the data in developing regions,
14 The region of OECD Europe in the TIMER model is comparable to EU15 plus
Norway and Switzerland.
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Fig. 3. Historic residential fuel (left graphs) and electricity (right graphs) use [61,67], range of calibrated model results and best fitting calibration for the USA, Western Europe,
Brazil, India and China.
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especially pre-1990, are notoriously unreliable. Second, the large
income disparities within urban areas and between urban and
rural areas may make the average income an unsuitable driving
force indicator (see also Refs. [48,66]). Third, market institutions
are often partly or sometimes hardly functioning, this influences
among others the dissemination of technologies and the role of
prices [14].
Brazilian total final energy use is characterised by a rapid
decline of traditional fuels [67], although the rate of decrease
slows down in recent years [68], also in the residential sector
[69,70] (Fig. 3). Especially during the 1980s the share of modern
(renewable) energy sources in total energy use decreased as
a result of policies adopted in the 1970s [71]. These policies were
mainly driven by energy import policy and focused on the
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transport sector (i.e. the alcohol program). The major commercial
fuel in the residential sector is LPG, mainly applied for cooking;
space heating is almost nonexistent in Brazil [72]. Explanations for
the rapid decrease of fuelwood are substitution by LPG and
improved efficiency. The model is able to simulate fuel use rather
well, with NRMSE values of 5.4%. However, this is strongly influ-
enced by changing the model assumption of constant efficiency for
traditional fuels before 1985 towards a linear increase from 5%
(1971) to 15% (1985), reflecting large scale implementation of
improved stoves. The parameter values indicate various possible
UEI-curves (Xmax has values both below and above the 2003
private consumption level and can thus historically be both
decreasing and increasing) leading to different stabilisation level
(wide variation in U). Technology improvement has been impor-
tant, with AEEI values between 0.5 and 0.8%/yr. However,
responses to prices (PIEEI) are unimportant in explaining historic
developments. The equifinality between parameters takes mainly
place within the UEI-curve and does not appear in Table 1.

The use of electricity in Brazil is increasing rapidly, mainly driven
by the increased ownership of (energy intensive) appliances [67,72].
Compared to other developing countries, Brazil has high ownership
of electric appliances [73]. One peculiar – and disturbing –
phenomenon in simulating Brazil’s energy use are fluctuations in the
major driver (private consumption) [62] and the sometimes
extremely high inflation rate which makes the monetary time series
Table 1
Pearson’s linear correlation coefficient between calibrated parameter values for
residential fuel use. Chinese fuel use is considered non-behavioural.

USA UEI (Ymax) AEEI PIEEI
AEEI 0.36 –
PIEEI 0.23 �0.04 –
NRMSE �0.47 �0.53 �0.60

India UEI (Ymax) AEEI PIEEI
AEEI 0.31 –
PIEEI �0.30 �0.33 –
NRMSE �0.98 �0.36 0.14

Brazil UEI (Ymax) AEEI PIEEI
AEEI �0.03 –
PIEEI �0.02 �0.54 –
NRMSE 0.07 �0.84 0.14

Europe UEI (Ymax) AEEI PIEEI
AEEI �0.30 –
PIEEI 0.06 �0.25 –
NRMSE 0.07 0.08 0.15

China UEI (Ymax) AEEI PIEEI
AEEI 0.29 –
PIEEI �0.13 �0.29 –
NRMSE �0.37 �0.84 0.07
probably a bad indicator of activity see Ref. [65]. Brazilian residential
electricity use is difficult to simulate with the model (Fig. 3). In
periods of constant or declining private consumption levels, historic
electricity use increased linearly. This is probably due to the uncou-
pling of real activity levels and monetary data due to high inflation
rates, but in addition it might be that the growth of electricity use in
Brazil might be supply-driven by slowly expanding capacity.
4.4. Residential energy use in India

Indian residential fuel use increased linearly between 1971 and
2003 (Fig. 3) [67], although private consumption increased expo-
nentially [62]. Residential fuel use in India is mainly applied for
cooking and lighting (kerosene lamps); space heating is not
important due to India’s (sub-) tropical climate [74]. Air condi-
tioning is still a luxury, although ownership is increasing in recent
years [75]. Residential fuel use is dominated by traditional fuel use.
The use of commercial fuels increased, though this is limited in
absolute terms. Government policies such as social price subsidies
on electricity, kerosene and LPG and electrification of rural
households strongly influence energy use, although it is hard to
quantify how in the absence of equivalents for comparison [76]. The
trend of fuel use can be reproduced by the model with a best
NRMSE of 5.9%. The behavioural sets of parameter values are
characterised by declining energy intensity, low AEEI and hardly
Table 2
Pearson’s linear correlation coefficient between calibrated parameter values for
residential electricity use. Brazilian electricity use is considered non-behavioural.

USA UEI (Ymax) AEEI PIEEI
AEEI 0.04 –
PIEEI 0.17 �0.30 –
NRMSE 0.75 0.37 0.48

India UEI (Ymax) AEEI PIEEI
AEEI �0.31 –
PIEEI �0.12 0.65 –
NRMSE �0.32 0.75 0.07

Brazil UEI (Ymax) AEEI PIEEI
AEEI 0.02 –
PIEEI �0.03 �0.25 –
NRMSE �0.19 0.05 �0.61

Europe UEI (Ymax) AEEI PIEEI
AEEI �0.54 –
PIEEI �0.11 �0.14 –
NRMSE �0.89 0.81 0.04

China UEI (Ymax) AEEI PIEEI
AEEI 0.10 –
PIEEI 0.01 �0.26 –
NRMSE �0.32 0.75 0.07
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any PIEEI. Variation in parameter values is only observed for U. This
means that technology (AEEI) and price-impacts (PIEEI) play no role
in the explanation of Indian residential fuel use and that it can fully
be explained from income related changes (UEI).

The level of residential electricity use in India is very low, but
shows an exponentially increasing trend [67]. It can hardly be
simulated by the model: the best NRMSE is 31%. In the parameter
values of AEEI and PIEEI play no role and electricity use is deter-
mined by rapidly increasing useful energy intensity. A possible
explanation (for India, but also for China and Brazil, discussed
further on) is that the demand for electricity is only partly met, due
to constraints in power generation, transmission and distribution. It
is well known that in many parts of India, electricity shortages
happen with subsequent outages and allocation schemes [77].

4.5. Residential energy use in China

Chinese residential fuel use increased slowly from about 10 to
12 EJ/yr (Fig. 3) [67]. Rural household fuel use in China consists
almost solely of traditional fuels and coal [78], while urban house-
holds use mainly electricity and gas, LPG and coal [79]. Residential
coal use declined rapidly during the 1990s, coinciding with
a government campaign to close down small and unsafe mines
[80,81]. The model has difficulties to combine the data series on the
model drivers (both population and income increased strongly) with
the historic data on energy use (which are nearly constant). The best-
fit shows an exponentially increasing trend with an NRMSE of only
32%. The UEI-formulation assumes at these low income levels a close
relation between energy and income; AEEI or PIEEI cannot offset this
trend within the allowed value-range. Two alternative sets of
parameter values lead to a better fit, but both are allegedly implau-
sible. First, extremely low values for Xmax (10 $/cap/yr) and U (3 GJUE/
cap/yr) combined with high AEEI values (6%/yr) lead to a historically
constant energy use, but also to rapidly declining future projections.
A second option is to increase the value of the reference UEI in 2003
(see Section 3.1), but this implies higher end-use conversion effi-
ciencies (h in Eq. (2)), which is rather implausible [78]. Further
explanations may be related to data quality15 or very high efficiency
improvements resulting from large inefficiencies in 1971 that cannot
be reproduced by the current model.

Residential electricity use does follow an exponential trend [67]
and can be reproduced quite well with the exponentially rising
private consumption [62]. Because the data show some short term
deviations from the exponential trend (which are likely to be data
errors or supply-shortages) the best-fit has still a rather high
NRMSE value of 14%. The parameter values for the best fitting sets of
parameter values are characterised by relatively rapidly increasing
useful energy intensity, with a peak a relatively high income levels
(20–30000 int$/capita). Technology (AEEI) and price (PIEEI) play
hardly any role in explaining the historic trend (Appendix 2, Fig. 7).
Although there is variation in parameter values (Fig. 7), this is
mostly within the UEI-curve and no pattern between the values of
UEI, PIEEI and NRMSE can be observed (Table 2).

4.6. Differences and patterns in parameter values

While we have seen that the model can reproduce some trends in
regional energy use very well, the model results on fuel use in China
are not behavioural with historic data. With respect to electricity use,
India and China can be regarded behavioural, despite their relatively
high NRMSE values, but Brazil is clearly not behavioural. These non-
15 It should be note that pre-1990 levels of traditional fuel use in China are
constant in this dataset.
behavioural sets of parameter values provide no useful information
on the model parameter values and they should not be used to
analyse patterns or differences. Also forward calculations on the
basis of these sets of parameter values are not useful.

What are the differences in parameter values between the
regions? The parameter values for residential fuel use show that all
UEI-curve implementations (except Brazil) are historically
declining with hardly any base-intensity and comparable levels of
saturation of approximately 30 GJUE/yr (except for the USA,
Appendix 2, Fig. 6). Peculiarly, the USA and Europe have the lowest
stabilisation levels of useful energy, despite differences in
temperature and the demand for space heating. This uncovers
a weakness of our method, in which each region is calibrated to its
own historic data without any reference to other regions (this issue
is discussed below in more detail). Here, it leads to extrapolation of
the decreasing trends in Europe and the USA and the increasing
trends in developing countries. Technology improvement is rela-
tively important in explaining historic fuel use, with average values
for AEEI between 0.5 and 1.2%/yr. Price induced changes seem
unimportant in all regions, except for the USA.

For electricity use, the calibrated useful energy intensity curves
are historically increasing for all regions (Xmax is higher than 2003
private consumption levels), except for the USA (Appendix 2, Fig. 7).
Further, UEI is in all regions characterised by a low base level
(Y0¼ 0–0.02 MJ/$/yr). Useful energy use per capita saturates at
about 70 GJUE/capita/yr for all regions. Technology and price-
impacts are unimportant in all regions, with all AEEI values below
0.5%/yr and hardly any PIEEI.
5. Uncertainty in projections for 2030

5.1. Energy use projections for five world regions

An important question is how calibration uncertainty influences
future projections of the model. Therefore, we use the sets of
calibrated parameter values to determine for forward calculations
towards 2030. We use scenario inputs from the Environmental
Outlook scenario of the Organisation for Economic Co-operation
and Development: the OECD-EO scenario [82–84]. These scenario
inputs include projections for private consumption and population.
The OECD-EO is a baseline scenario without new policies on
economy and environment, including moderate projections of
population and economy (though a rather high economic growth in
developing regions). In this analysis, the share of final energy
carriers is the same in all forward calculations, corresponding to
energy prices in the default implementation of this scenario16. The
TIMER model has also been used within the OECD-EO study to
project developments of the future energy system. The parameter
settings for that study were globally calibrated against the IEA
World Energy Outlook [85] and are quite different from the ones we
use here. These projections are shown for comparison in subse-
quent graphs, indicated as TIMER OECD-EO scenario. We also
compare these projections with more recent data, which are
currently available up to 2006.

For fuel use in Western Europe, the range of projections from
the calibrated sets of parameter values broadens after 2000,
resulting in projections between 6 and 10 EJ/yr in 2030 (Fig. 4).
Expressed as relative deviation of the best fitting set of parameter
Normally energy prices for future projections are calculated endogenously in
the model based on depletion of resources and learning of exploitation technology.
If this were included, different energy demand projections would lead to different
energy prices, causing different market shares of fuels and diverging values for end-
use-efficiency and PIEEI.



Table 3
Pearson’s linear correlation coefficient between parameter values and projected
residential sector fuel use in 2030 (left). The right column contains the range of
projected fuel use in 2030 as percentage of the best-fit projection. The calibration of
Chinese fuel use is considered non-behavioural.

UEI (Ymax) AEEI PIEEI NRMSE Range in 2030

USA �0.46 �0.52 �0.56 0.91 100%
Europe 0.25 �0.09 0.05 0.22 46%
India �0.79 �0.82 0.36 0.82 38%
China �0.31 �0.87 0.03 0.79 324%
Brazil �0.06 �0.87 0.20 0.93 27%
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values, this amounts to a range of 46% (Table 3). The projection of
the best fitting set of parameter values is in the middle of this
range and in the peak of the weighted distribution of projections
in 2030: slightly over 8 EJ/yr in 2030. It should be noted that in
the OECD-EO scenario, residential fuel use in Western Europe is
projected to remain stable until 2030 at about 8 EJ/yr, with
a slight decrease after 2020. For electricity use, the calibrated
scenarios based on this paper lead to an electricity use of 4 EJ/yr
in 2030. The range of future projections on the basis of calibrated
sets of parameter values for 2030 are between 2 and 4 EJ/yr, or
43% relative to the best-fit projection (Table 4). The OECD-EO
projection for electricity use in Europe is within this range
(Fig. 4).

For fuel use in the USA, the distribution in 2030 shows that
the wide range of projections (100% of the best-fit) originates
mostly from a few outliers: the majority of calibrated sets of
parameter values follow the decreasing trend of historic data
(Fig. 4). Electricity use in the USA for both the best-fit set of
parameter values is projected at the level where most projections
are clustered: 6–7 EJ/yr in 2030 (there is also a range of only 34%
around the best-fit, see Table 4).

Projections for Brazilian fuel use show a relatively narrow
range around the OECD-EO scenario (only 27% of the best-fit) and
are stable at about 1 EJ/yr. However, more recent data follow
a slightly higher path. The simulation of electricity use was
considered non-behavioural is and is not further discussed. For
India (Fig. 4) the range for residential fuel use projects 13–18 EJ/
yr in 2030 (or 38% range). These projections are considerably
above the OECD-EO scenario, and recent data are not decisive.
Projections for electricity use diverge far more. The best-fit set of
parameter values and the full range indicate exponential growth
towards 7 EJ/yr (with a range of 82% around the best-fit). The
OECD-EO scenario has much lower numbers (1.8 EJ). Data for the
period 2003–2006 indicate a lower electricity use, in line with
the OECD-EO scenario. For China, the calibration of fuel use is not
behavioural and is not discussed here. For electricity use,
projection increase rapidly to about 10 EJ/yr (Fig. 4), though with
a range of 58%. The OECD-EO scenario is much lower, at 4 EJ/yr.
Data for the period 2003–2006 show that China might be on the
high growth path.
Table 4
Pearson’s linear correlation coefficient between calibrated parameter values and
projected residential electricity use in 2030 (left). The right column contains the
range of projected electricity use in 2030 as percentage of the best-fit projection. The
calibration of Brazilian electricity use is considered non-behavioural.

UEI (Ymax) AEEI PIEEI NRMSE Range in 2030

USA �0.48 �0.49 �0.21 �0.70 34%
Europe 0.86 �0.84 0.05 �0.99 43%
India 0.51 �0.86 �0.75 �0.96 82%
China 0.49 �0.55 �0.27 �0.88 58%
Brazil 0.11 �0.37 �0.76 0.69 160%
5.2. Evaluation of projections, model and method

The result show that the uncertainty in calibration leads to
wide ranges of future projections17. In this context, it is inter-
esting to see the influence of individual parameters on these
projections (as a result of the non-linear nature of the model this
cannot be easily seen). The simplest method to identify these
influences is the linear correlation between the calibrated
parameter values and projected energy use in 2030 (Tables 3 and
4). In line with expectations, technology improvement (AEEI)
correlates negatively with future energy use, though its influence
varies between regions and is not necessarily related to regions
with high AEEI values. Usually price induced improvement
should also be negatively correlated with future energy use, since
energy prices are projected to increase. However, in many
regions the PIEEI plays no role and has values close to zero
(hence, outliers easily disturb the correlation coefficient). The
role of energy intensity changes differs between fuel and elec-
tricity use. For fuel use, most regions have the peak of the UEI-
curve at historic income levels, projecting declining energy
intensity and thus a negative (though weak) correlation. For
electricity use, the peak is mostly at future income levels, and
energy intensity is increasing towards 2030, leading tot positive
(but also weak) correlations. This implies that structural change
is an important factor behind rapidly growing electricity demand
in developing countries.

In our calculations, each region was calibrated separately, to
obtain model results that better match historical data. Originally,
however, the useful energy intensity curve has been proposed as
‘stylized fact’ from cross-regional data, covering a large GDP-
span over the 1971–2003 period [4,49]. According to this view,
the paths that other regions have taken previously might be an
indicator for other regions. This could lead to different projec-
tions. For instance, residential energy use in India is calibrated
here towards data from a period in which lighting is the major
electricity function; a possible future rise in space cooling or
energy intensive appliances cannot be foreseen in these data –
but can be obtained from a comparison with the USA. A plot of
energy use per capita versus private consumption for the period
1971–2030 reproduces the general shape of rapidly increasing
annual energy use per capita at low income levels and satura-
tion at higher levels (Fig. 5). The historical data and our results
clearly indicate that Brazil and China with declining per capita
energy consumption do not match this pattern. The historical
and projected curves for Europe suggest constant per person
energy use and for the USA a further decline, both to be
interpreted as signs that saturation and ongoing energy effi-
ciency improvements continues. Because space heating accounts
for 60–80 percent of residential fuel use [63,86], it is not to be
expected that the low income regions India and Brazil will
follow the European and USA experiences. This can be accounted
for by correcting the data for heating–degree–days. Explicit
modelling of heating and cooling demand is another option to
overcome this issue [87].

Based on our calibration experiments, per capita residential
electricity use is projected to increase with rising income for all
regions, and there is (still) no sign of saturation for the devel-
oped regions (Fig. 5). The differences between Europe and the
USA are rather outspoken and the best fitting projections for the
developing regions indicate a growth to American levels of
residential electricity use. However, the ranges for India and
17 These models are often used to make projections towards 2050 or 2100.
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China show that an increase towards European levels is also
possible.
Table 6

Ranges for the estimated parameters varied for residential electricity use.

Variable Minimum Maximum

UEI-curve
Xmax 5000 50000
Y0 0 0.141 (USA) 0.097 (EU)

0.087 (Brazil) 0.039 (India)
0.068 (China)

U 50 80
AEEI
FS 0.09 (USA) 0.09 (EU)

0.09 (Brazil) 0.07 (India)
0.03 (China)

0.68 (USA) 0.70 (EU)
0.68 (Brazil) 1.0 (India)
1.0 (China)a

PIEEI
Payback time 0.007 6.760
P-value learning

curve
0.70 1.00

a Because of the high economic growth in India and China, it might be that historic
AEEI has been higher as well; therefore we increases the upped bound of the range
to the total economic growth: FS¼ 1.

Table 7

Average annual GDP per capita growth for the analysed regions.

USA WEU Brazil India China

Average annual GDP/cap
growth 1971–2003

2.19% 2.13% 2.21% 2.69% 6.69%

Appendix 1. Values and ranges for parameter estimation

Table 5

Ranges for the estimated parameters varied for residential fuel use.

Variable Minimum Maximum

UEI-curve
Xmax 500 30000
Y0 0 0.159 (USA) 0.235 (EU)

0.285 (Brazil) 0.284 (India)
0.285 (China)

U 15 45
AEEI
FS 0.09 (USA) 0.09 (EU)

0.09 (Brazil) 0.07 (India)
0.03 (China)

0.68 (USA) 0.70 (EU)
0.68 (Brazil) 1.0 (India)
1.0 (China)a

PIEEI
Payback time 0.007 6.760
P-value learning

curve
0.70 1.00

a Because of the high economic growth in India and China, it might be that historic
AEEI has been higher as well; therefore we increases the upped bound of the range
to the total economic growth: FS¼ 1.
6. Discussion and conclusion

In this paper, we analysed impact of uncertainty in the cali-
bration of the TIMER residential energy demand model on future
projections for several world regions. The results lead to the
following conclusions.

The TIMER global energy demand model is able to reproduce
regional historic energy data on the basis of multiple sets of
parameter values (equifinality). In the model calibration, a range of
parameters values is found to provide reasonable model calibra-
tion. In general, there is a trade-off between the technology
development parameter (AEEI) and changes in useful energy
intensity (‘income elasticity’).

The model generally performs better for developed regions
than for developing regions. Residential fuel use in India and
Brazil, and electricity use in China can be well simulated.
However, simulations of fuel use in China and electricity use in
Brazil are clearly not behavioural. The formulation of energy
demand on the basis of changes in useful energy intensity,
technology development and energy price response is apparently
insufficient for developing countries. For instance, energy prices
in India are heavily subsidised and there is a lack electricity
production capacity. China has similar problems, and also closed
down small-scale coal mines. In Brazil, high inflation rates and
periods of decreasing income complicate the relation between
economic activity and energy use.

Uncertainty from model calibration can have significant
impact on future projections. We find that the different sets of
parameter values lead to a wide range of future projections.
Already in 2030 there is a bandwidth of 27–100% around the
‘best-fit’ in most regions. This variation can be mostly understood
from a different balance in settings of energy intensity and effi-
ciency improvement.

Because the uncertainty in model calibration has a significant
influence on future projections of energy models, modellers
should systematically account for this source of uncertainty and
communicate the bandwidth of possible projections with future
scenarios. This finding also indicates that many of the dynamics
that these models describe are barely understood and hard to
represent by mathematical descriptions. Given the wide ranges
that evolve already in 2030, one can imagine the uncertainty
levels for 2050 or 2100. One option to keep this long-term
uncertainty manageable is to use different models for different
time horizons (see also Ref. [88]). For longer term projections,
different (i.e. simpler) models can be used that better describe
the rough dynamics that take place over longer time periods.
Options to improve this specific model, which might also
decrease calibration uncertainty, are (1) to specify energy end-use
functions, (2) to better account for hysteresis, and (3) explicitly
account for regional energy policies. With respect to the first,
more explicitly accounting for the heterogeneity in end-uses
across world regions and adding intermediate variables like floor
space and appliance ownership provides extra options for model
calibration and explains much of the differences between regions
(see Refs. [65,87]). Second, the model’s incapability to deal
adequately with declining economic activity, leads to non-
behavioural historic results and implicitly also unreliable future
projections. The fact that future scenarios always assume
increasing economic activity unveils another bias in energy use
projections. Finally, specific policies, like protecting (poor) pop-
ulation from world energy prices, influence the use of energy in
developing regions, an aspect that can be implemented in
different scenarios see also Refs. [89].
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Appendix 2. Calibrated parameter values
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Fig. 6. Calibrated parameter values (distribution, black lines, and mean value, grey) for residential fuel use.
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