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Abstract: This paper studies the implications of risk considerations for option

contracts in a two-echelon supply chain. Under the mean-variance framework, we

first investigate the conditions for coordinating the supply chain by using option

contracts. We find that supply chain coordination is not always achieved, contrasting

with the result that properly designed option contracts can always coordinate a supply 

chain in the absence of risk considerations. Second, we analyze the Stackelberg game 

for a decentralized supply chain in two cases, depending on whether the retailer’s risk 

aversion threshold is known to the supplier. We show that when the threshold is

public information, there exists a unique equilibrium in which the supplier with a

higher risk tolerance prefers to reduce the exercise price, and thus, the retailer’s order 

quantity increases. When the retailer’s risk aversion threshold is private information,

the retailer has an incentive to pretend to be less risk averse. To curb this incentive 

distortion, we design a new minimum option quantity commitment for the supplier. 

We complement our theoretical results with numerical simulations.  
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1. Introduction 

   Risks are pervasive in firms’ operational decisions, and thus, risk management 

plays a vital role in the success of firm operations. Indeed, inappropriate risk 

management may lead to significant financial losses. For example, rapidly weakening 

demand coupled with locked-in supply agreements incurred a $2.5 billion inventory 

write-off for Cisco Systems, Inc. in the second quarter of 2001 (Norrman and Jansson, 

2004). In the third quarter of 2001, Nike lost $100 million in sales revenue due to an 

inventory shortage (Norrman and Jansson, 2004). Therefore, incorporating risk factors 

into supply chain decisions has drawn heightened attention from practitioners. For 

instance, Hewlett-Packard established a procurement risk management system to 

evaluate and control supply chain risks. Through this system, Hewlett-Packard saved 

at least $100 million in sourcing costs in 2008 (Nagali et al., 2008). Although firms 

have begun to realize the importance of supply chain risk management, determining 

how to make a tradeoff between profit and risk remains a significant challenge.  

   Previous studies have mainly focused on two types of supply chain risk: 

disruption risks, such as those associated with wars, earthquakes, diseases and 

terrorist attacks (Qi et al., 2004; Sodhi et al., 2012; Ray and Jenamani; 2016), and 

operational risks, such as those emanating from supply reliability and demand 

uncertainty (Wei and Choi, 2010; Liu and Nagurney, 2011; Xue et al., 2016, Zeng and 

Yen, 2017, Fan et al., 2017). Researchers have proposed various methods for 

managing a supply chain under risk constraints. The most widely used method is the 

mean-variance framework, originating from Markowitz’s portfolio theory. Markowitz 

originally proposed the mean-variance framework to analyze risk diversification of 

financial assets and to help investors design an optimal portfolio (Markowitz, 1959).  

 The mean-variance framework is widely explored within the realm of operational 

decisions to address various supply chain risks, particularly those arising from 

uncertain market demand (Tomlin, 2006; Choi et al., 2008a; Wu et al., 2009; Choi and 

Chiu, 2012; Liu et al., 2016; Chiu and Choi, 2016). Specifically, Choi et al. (2008a) 

carry out a mean-variance analysis for the newsvendor problem in which decision 

makers are risk-averse, risk-neutral, or risk-taking. They analytically investigate the 
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effective frontiers for each case. With the same objective function, Choi and Chiu 

(2012) study the mean-downside-risk and mean-variance newsvendor models for both 

the exogenous and endogenous retail price cases. They find that the retailer orders the 

same stocking amounts in the mean-downside-risk and mean-variance models. Some 

studies have also analyzed how to achieve supply chain coordination within the 

mean-variance framework (Gan et al., 2004; Gan et al., 2005; Choi et al., 2008b; Choi 

et al., 2008c; Wei and Choi, 2010; Chiu et al., 2011). For instance, Choi et al. (2008c) 

study the coordination of a buyback contract under the mean-variance framework. 

They find that channel coordination is not always achievable under risk constraints, in 

contrast to results indicating that the conventional buyback contract can always 

coordinate a supply chain (Pasternack, 1985; Tsay, 2001; Lee and Rhee, 2007). Chiu 

et al. (2011) investigate the channel coordination problem for a target sales rebate 

contract in which supply chain parties make decisions based on a mean-variance 

analysis. Wei and Choi (2010) explore the coordination of both a wholesale price and 

a profit-sharing contract under the mean-variance model. They analytically 

characterize the necessary and sufficient conditions under which supply chain 

coordination is achieved. The present paper contributes to this line of research by 

providing a mean-variance analysis of option contracts, with a focus on supply chain 

coordination and equilibrium analysis for a two-echelon supply chain. 

   Contract arrangements provide a useful risk management mechanism in supply 

chains under demand uncertainty. For example, option contracts allow a buyer to 

determine how much to purchase according to the realized market demand, while 

providing a supplier with upfront payments. Option contracts have seen widespread 

application in a number of industries, including IT, telecommunications, 

semiconductors, and electricity (Wu and Kleindorfer, 2005; Anderson et al., 2017). 

For example, many giant companies, such as IBM, Sun Microsystems and 

Hewlett-Packard, have taken a portfolio procurement strategy with options (Tsay and 

Lovejoy, 1999). In addition, option contracts have been used in the agriculture 

industry (Zhao et al., 2013; Wang and Chen, 2017). For example, to facilitate 

vegetable sales in Ishikawa, Japan, some local farmers established an agriculture 
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agency as their representative to negotiate with vegetable buyers such as stores and 

restaurants. The agency has offered the option contracts of vegetables to its buyers 

since 2008. The buyers first place an option quantity before the growing season and 

pay 4% of the total value as deposits. The farmers then grow the vegetable based on 

the buyers’ orders. During the selling season, the buyers purchase an amount of the 

vegetable up to the option quantity from the farmers at a pre-determined exercise 

price to satisfy the realized market demand. Figure 1 illustrates this transaction 

process. 

Fig. 1. Transaction process 

   An increasing number of studies have focused on the application of option 

contracts to procurement risk management (Wu and Kleindorfer, 2005; Wang et al., 

2006; Wang et al., 2012; Zhao et al., 2013; Liu et al., 2014; Nosoohi and Nookabadi, 

2016; Paul et al., 2016; Sawik, 2016; Anderson et al., 2017; Zhao et al., 2018). Zhao 

et al. (2013) examine the feedback effects of the bidirectional option on the retailer’s 

initial order strategy. Nosoohi and Nookabadi (2016) investigate the manufacturer’s 

decisions in two stages under call, put and bidirectional options. Wang et al. (2006) 

analyze a call option contract and show that this contract improves the buyer’s 

performance. Wang et al. (2012) show that in a two-stage model, the buyer has a 

higher expected profit in the first stage, whereas the supplier may have worse 

performance in the second stage compared with the case without option contracts. 

Those studies compare the optimal decisions relating to option contracts with the 

conventional newsvendor model within a risky environment. However, little research 

has examined how risk (as an exogenous factor) affects the supply chain decisions 

involved in option contracts. Introducing risk constraints into a mean-variance model, 
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we examine supply chain coordination and optimal decisions for option contracts. We 

find that channel coordination depends on the retailer’s risk attitude and may not 

always be achieved, in contrast to results indicating that properly designed option 

contracts can always coordinate a supply chain (Gomez_Padilla and Mishina, 2009; 

Wang and Liu, 2007; Zhao et al., 2010; Wang et al., 2015).  

In this paper, we study the mean-variance model under option contracts in a 

two-echelon supply chain. We investigate the tradeoff between profit and risk faced 

by supply chain parties. Our proposed mean-variance model of option contracts is in 

sharp contrast to that of a buyback contract presented by Choi et al. (2008 c) and that 

of a profit sharing contract presented by Wei and Choi (2010). Table 1 summarizes 

the difference of the three contracts with risk constraints. 

Table 1. The comparisons of three contracts with risk constraints 

Contracts 
Control 

parameter  
Degree of control Coordination 

Buyback contract (Choi 

et al. 2008c) 
Returns price 𝑏 Weak Not always 

Profit sharing contract 

(Wei and Choi 2010) 

Wholesale price 

𝑤 and profit 

sharing ratio 𝜆 

Strong Always 

Option contract (our 

paper) 

Option price 𝑜 

and exercise price 

𝑒 

Strong Not always 

In terms of model setup, the supplier in Choi et al. (2008c) only decides the 

returns price 𝑏 while the wholesale price is fixed. The manufacturer in Wei and Choi 

(2010) decides the wholesale price 𝑤 and the profit sharing ratio 𝜆. In our option 

contract, the supplier decides the option price 𝑜 and exercise price 𝑒. These three 

contracts therefore provide the supplier with different degrees of control in achieving 

supply chain coordination. As a result, the coordination outcomes are different as well. 

In Choi et al. (2008c), a higher buyback price offers the retailer higher expected profit 

and lower risk but imposes on the supplier lower expected profit and higher risk. The 

results seem inconsistent with classical investment theory, in which a high risk is 

often accompanied by a great expected profit. Wei and Choi (2010) show the 

necessary and sufficient conditions that coordinate the supply chain, and they 
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characterize the equilibrium for the Stackelberg game in a decentralized supply chain 

when the proportion of the profit and risk sharing is predetermined. Our proposed 

model, however, shows that when the supplier (retailer) bears a lower risk, she (he) 

obtains a lower expected profit. In addition, in our mean-variance models, the 

proportion of risk sharing between the supplier and retailer is not predetermined; 

instead, it is determined by the option price and exercise price. By changing the prices, 

the allocation of expected profit and risk sharing will be altered. Our results are in line 

with the observation that with a higher risk tolerance, the supplier always prefers to 

reduce the exercise price, and the retailer increases the option quantity to enjoy more 

profit.  

We summarize the key results of our paper as follows. We first study the channel 

coordination of option contracts with risk constraints. We find that supply chain 

coordination depends on the retailer’s risk tolerance and, more importantly, may not 

always be achieved. We next study a decentralized supply chain in which the supplier 

and retailer are maximizing their own profits subject to risk constraints. We consider 

two cases: (1) the retailer’s risk aversion threshold is public information; and (2) the 

threshold is private information of the retailer. In the former case, we find that 

changing the option price and exercise price reallocates expected profit and risk 

sharing between the retailer and the supplier. We also show that a unique equilibrium 

exists in the Stackelberg game, and the equilibrium outcomes depend largely on the 

supplier’s and retailer’s risk tolerance levels. In the latter case, we first show that the 

retailer benefits from pretending to be less risk averse. To avoid untruthful 

information reporting on the part of the retailer, we propose a minimum option 

quantity commitment for the supplier. 

The contribution of our paper is twofold. First, our paper contributes to the option 

contract literature by investigating the implication of risk considerations for option 

contracts. In doing so, we develop insights into how risk considerations shape the 

coordination results and equilibrium outcomes. Second, this paper contributes to the 

literature on contract design with risks by studying supply chain coordination and 

equilibrium analysis in an option contract setting. In particular, we study both 



ACCEPTED MANUSCRIPT

8 
  

symmetric and asymmetric information settings in which the retailer’s risk attitude 

may be known or unknown to the supplier.  

The rest of this paper is organized as follows. Section 2 describes the notation and 

assumptions. Section 3 studies supply chain coordination with option contracts in the 

mean-variance model. Section 4 conducts the equilibrium analysis in the 

decentralized case under both symmetric information and asymmetric information 

cases. Section 5 concludes and provides some management insights.  

 

2. Model description 

We consider a two-echelon supply chain consisting of a supplier and a retailer in 

which the newsvendor-like retailer orders products from the supplier to satisfy an 

uncertain demand 𝑋. The probability density function (PDF) of 𝑋 is 𝑓(𝑥), the 

cumulative distribution function (CDF) is 𝐹(𝑥), and the complementary CDF is 

�̅�(𝑥) . The mean and standard variance of 𝑋  are 𝑢  and 𝜎 , respectively. For 

convenience, we refer to the supplier as “she” and the retailer as “he” in the following 

analysis. 

We are interested in a situation in which option contracts are used to capture the 

contractual relationship between the supplier and the retailer. As discussed earlier, 

option contracts have been used in many industries, such as telecommunications, IT 

and agriculture. The option contract is characterized by an option price 𝑜 and an 

exercise price 𝑒. By convention, 𝑒 is the price that the retailer pays to the supplier 

per unit of the product purchased, and 𝑜 is the price paid in advance for the reserved 

options. In practice, the option price 𝑜 can be thought of as an upfront payment made 

by the retailer for reserving one unit of the product before the sales season. 

The supplier decides the option price 𝑜 and exercise price 𝑒, and the retailer 

decides how much to reserve from the supplier, which we term the option quantity 𝑞. 

Based on the realized demand 𝑥, the retailer purchases 𝑚𝑖𝑛{𝑥, 𝑞} units from the 

supplier at the exercise price 𝑒 . The expected sales quantity is given by 

𝑆(𝑞): = 𝐸(𝑚𝑖𝑛{𝑋, 𝑞}), where the expectation is taken over the random demand 𝑋. It 
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is straightforward to show that 𝑆(𝑞)=𝑞 − ∫ 𝐹(𝑥)𝑑𝑥
𝑞

0
. To avoid triviality, we assume 

 𝑜 < 𝑐 < 𝑜 + 𝑒 < 𝑝 (Zhao et al., 2010; Feng et al., 2014). In fact, assuming  o < 𝑐 

avoids the unreasonable case in which the supplier’s production is risk-free. Moreover, 

assuming  c < 𝑜 + 𝑒 and  o + e < 𝑝 avoids the trivial cases in which the supplier is 

unwilling to produce and the retailer is unwilling to order. We also consider zero 

salvage values for the unsold products. Such a setting is appropriate for seasonal 

products with a long lead time and a short selling horizon. The above setting has been 

used in many supply chain management papers, such as Kouvelis and Zhao (2012), 

Kouvelis and Zhao (2016), Feng et al. (2015) and Chen (2015). The sequence of 

events is illustrated in Fig. 2. 

Fig. 2. Sequence of events 

Incorporating risk preferences of supply chain members, we construct the 

mean-variance model to analyze the decisions involved in an option contract. Each 

supply chain decision maker aims to maximize their expected profits given their risk 

constraints. For clear interpretation, we list the main notation in Table 2.  

Table 2. Summary of notations. 

Notation Definition 

 𝑝 Selling price 

𝑜 Per-unit option price 

𝑐 Procurement cost 

𝑒 Per-unit exercise price 

𝑥 Market demand level 

Retailer

Supplier

Decide option 

quantity    at 

Receive 

payment  
Production   

Exercise options 

               at 

Receive payment 

1 3 4
Time

Decide    and 

2

Sale incomes 

5
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𝑓(𝑥) Probability density function of market demand 

𝐹(𝑥) Cumulative distribution function of market demand 

𝑢 Mean of market demand  

𝜎 Standard variance of market demand  

𝑞 Commodity option quantity 

𝑆(𝑞) Expected sales  

𝑞𝑆𝐶,𝐸𝑃 Optimal order quantity that maximizes the expected profit of the 

supply chain 

𝑞𝑅,𝐸𝑃 Optimal order quantity that maximizes the expected profit of the 

retailer 

𝐸𝑃𝑖  Expected profit of agent 𝑖, where 𝑖 = 𝑆𝐶, 𝑆, 𝑅 

𝑃𝑖 Profit of agent 𝑖, where 𝑖 = 𝑆𝐶, 𝑆, 𝑅 

𝑆𝑃𝑖 Standard deviation of the expected profit of agent i , where 

𝑖 = 𝑆𝐶, 𝑆, 𝑅  

𝐾𝑖 Risk aversion threshold of agent 𝑖, where 𝑖 = 𝑆𝐶, 𝑆, 𝑅 

𝑞𝑆𝐶,𝑆𝑃 Supply chain’s maximum order quantity that satisfies the risk 

constraints 

𝑞𝑆,𝑆𝑃 Supplier’s maximum order quantity that satisfies the risk 

constraints 

𝑞𝑅,𝑆𝑃 Retailer’s maximum order quantity that satisfies the risk 

constraints 

𝑞𝑆𝐶,𝑀𝑉 Optimal order quantity that maximizes the mean–variance 

optimization problem for the supply chain 

𝑞𝑅,𝑀𝑉 Optimal option quantity that maximizes the mean–variance 

optimization problem for the retailer 

For convenience, we use the following notations throughout the paper: 𝐸𝑃 is 

short for expected profit, 𝑆𝑃 is short for standard deviation of profit, and 𝑀𝑉 is 

short for mean-variance. Furthermore, the subscripts 𝑆𝐶, 𝑆 and 𝑅 denote supply 

chain, supplier and retailer, respectively.  
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3. Supply chain coordination 

   In this section, we examine whether or not supply chain coordination can be 

achieved and, if achievable, under what conditions. Following the approach for supply 

chain coordination under the mean-variance model (Choi et al., 2008c), the supplier is 

supposed to play the role of supply chain coordinator. The supplier’s objective is to 

set an optimal option price and an optimal exercise price such that the retailer’s order 

quantity equals the supply chain’s optimal quantity.  

3.1 Supply chain optimal solution  

   To begin, we first look at the supply chain optimal solution. Suppose the 

production quantity is 𝑞. With the realized demand 𝑥, the sales quantity is given by 

𝑚𝑖𝑛{𝑥, 𝑞} , and the supply chain’s profit is given by 𝑃𝑆𝐶 = 𝑝𝑚𝑖𝑛{𝑥, 𝑞} − 𝑐𝑞 =

(𝑝 − 𝑐)𝑞 − 𝑝(𝑞 − 𝑥)+. Therefore, the supply chain’s expected profit is given by  

𝐸𝑃𝑆𝐶 = 𝑝𝑆(𝑞) − 𝑐𝑞 = (𝑝 − 𝑐)𝑞 − 𝑝 ∫ 𝐹(𝑥)𝑑𝑥
𝑞

0
.            (1) 

The standard deviation of the supply chain profit is given by 𝑆𝑃𝑆𝐶 = 𝑝√𝜉(𝑞), where 

        𝜉(𝑞) = 𝑉𝑎𝑟((𝑞 − 𝑋)+) = 2 ∫ (𝑞 − 𝑥)𝐹(𝑥)𝑑𝑥 − (∫ 𝐹(𝑥)𝑑𝑥
𝑞

0
)2𝑞

0
.      (2) 

   We now formulate the mean-variance model of the supply chain as follows:  

𝑚𝑎𝑥
𝑞

 𝐸𝑃𝑆𝐶 (𝑞) 

                         𝑠. 𝑡. 𝑆𝑃𝑆𝐶(𝑞) ≤ 𝐾𝑆𝐶 .                       (P1) 

The objective of (P1) is to maximize the supply chain’s expected profit subject to a 

constraint on the standard deviation of the supply chain’s profit, where 𝐾𝑆𝐶 ≥ 0 is 

the supply chain’s risk-aversion threshold. A small 𝐾𝑆𝐶 means a low risk tolerance of 

the supply chain. Compared with the case in which the risk is not considered, the 

supply chain uses a more conservative strategy for the mean-variance model, as 

illustrated in the following proposition. 

 

Proposition 1. (i) 𝑆𝑃𝑆𝐶(𝑞) is increasing in 𝑞; (ii) The supply chain optimal solution 

is 𝑞𝑆𝐶,𝑀𝑉 = 𝑚𝑖𝑛 {𝑞𝑆𝐶,𝐸𝑃, 𝑞𝑆𝐶,𝑆𝑃} , and 𝑞𝑆𝐶,𝑀𝑉  is non-decreasing in 𝐾𝑆𝐶 , where 
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𝑞𝑆𝐶,𝐸𝑃 = 𝐹−1(
𝑝−𝑐

𝑝
) and  𝑞𝑆𝐶,𝑆𝑃 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑞

  {𝑆𝑃𝑆𝐶(𝑞) ≤ 𝐾𝑆𝐶}. 

 

   It is worth noting that 𝑆𝑃𝑆𝐶(𝑞) is increasing in 𝑞, indicating that as the option 

quantity increases, so too does the standard deviation of the supply chain profit. The 

intuition is as follows. The leftover inventory 𝑞 − 𝑆(𝑞) can be viewed as the risk 

associated with the demand. Knowing  𝑞 − 𝑆(𝑞) = ∫ 𝐹(𝑥)𝑑𝑥
𝑞

0
, we observe that the 

leftover inventory increases in 𝑞, which suggests that the risk indicated by  𝑆𝑃𝑆𝐶  

also increases in q. Proposition 1(i) is consistent with the findings in Choi et al. 

(2008a,b,c). In the centralized case, the supply chain risk always increases with order 

quantity but is independent of the adopted contract.  

   Proposition 1(ii) gives the analytical solution of the supply chain optimal order 

quantity 𝑞𝑆𝐶,𝑀𝑉 under the mean-variance model. First, if the risk constraint is absent, 

then the supply chain optimal solution is given by 𝑞𝑆𝐶,𝐸𝑃 = 𝐹−1 (
𝑝−𝑐

𝑝
).  When 

considering the risk constraint, it is intuitive that the optimal order quantity 𝑞𝑆𝐶,𝑀𝑉 

will not exceed 𝑞𝑆𝐶,𝐸𝑃 . We find that the supply chain optimal quantity is the 

minimum of 𝑞𝑆𝐶,𝐸𝑃 and 𝑞𝑆𝐶,𝑆𝑃, the latter of which is the largest quantity satisfying 

the risk constraint. Specifically, when 𝑆𝑃𝑆𝐶(𝑞𝑆𝐶,𝐸𝑃) > 𝐾𝑆𝐶 , the risk constraint 

becomes active and the optimal solution will be 𝑞𝑆𝐶,𝑆𝑃, which is increasing in 𝐾𝑆𝐶. 

When 𝑆𝑃𝑆𝐶(𝑞𝑆𝐶,𝐸𝑃) ≤ 𝐾𝑆𝐶 , the impact of risk aversion on the supply chain 

performance is ignored and the optimal solution will be 𝑞𝑆𝐶,𝐸𝑃, which is independent 

of 𝐾𝑆𝐶 . Proposition 1(ii) shows that the order quantity in the centralized case 

increases with the supply chain risk tolerance when the risk is active. This result is 

similar to Choi et al. (2008c) in that with a buyback contract, the order quantity 

increases with the risk in the interval 𝐾𝑆𝐶 ∈ [0, 𝑆𝑃𝑆𝐶(𝑞𝑆𝐶,𝐸𝑃)].  

   In the mean-variance model, we can see that a tradeoff is made between the 

expected value and the standard deviation of the supply chain profit. Such a tradeoff 

can be illustrated by using Fig. 3, which depicts how the supply chain’s expected 

profit and the standard deviation vary with the option quantity. In the figure, we 
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consider three cases of risk-aversion thresholds 𝐾𝑆𝐶𝑗 , where 𝑗 = 1,2,3 . 

Correspondingly, 𝑞𝑆𝐶,𝑆𝑃𝑗 is the supply chain’s maximum order quantity, given 𝐾𝑆𝐶𝑗. 

Fig. 3 (also the proof of Proposition 1) reveals that the supply chain’s expected profit 

is a concave function of the option quantity and that the standard deviation increases 

with the option quantity. As can be seen from the figure, there are three scenarios for 

the supply chain optimal quantity. If 𝐾𝑆𝐶 = 𝐾𝑆𝐶1 < 𝑆𝑃𝑆𝐶(𝑞𝑆𝐶,𝐸𝑃), then 𝑞𝑆𝐶,𝑀𝑉1 =

𝑞𝑆𝐶,𝑆𝑃1 , and the   𝑆𝑃𝑆𝐶  constraint is active. If  𝐾𝑆𝐶 = 𝐾𝑆𝐶2 = 𝑆𝑃𝑆𝐶(𝑞𝑆𝐶,𝐸𝑃) , then 

𝑞𝑆𝐶,𝑀𝑉2 = 𝑞𝑆𝐶,𝑆𝑃2 = 𝑞𝑆𝐶,𝐸𝑃 , and the risk constraint is inactive. If 𝐾𝑆𝐶 = 𝐾𝑆𝐶3 >

𝑆𝑃𝑆𝐶(𝑞𝑆𝐶,𝐸𝑃), then 𝑞𝑆𝐶,𝑀𝑉3 = 𝑞𝑆𝐶,𝐸𝑃, implying that the risk constraint does not play 

a role either. 

 

Fig. 3.  𝐸𝑃𝑆𝐶(𝑞) and 𝑆𝑃𝑆𝐶(𝑞) 

3.2 Retailer’s ordering decision 

   As mentioned earlier, supply chain coordination refers to a situation where the 

retailer’s order matches the supply chain optimal quantity. In this subsection, we look 

at the retailer’s ordering decision for any given option contract (𝑜, 𝑒).  With the 

contract (𝑜, 𝑒), the retailer first pays the upfront fee 𝑜𝑞 for the 𝑞 units of options 

before the sales season. During the sales season, according to the realized demand, the 

retailer exercises the option by paying the exercise price. Let 𝑥 be the realized 

demand. Then, the retailer orders 𝑚𝑖𝑛{𝑥, 𝑞} units from the supplier at the exercise 

𝑞 
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price 𝑒. The retailer’s profit is given by 𝑃𝑅 = (𝑝 − 𝑒)𝑚𝑖𝑛{𝑥, 𝑞} − 𝑜𝑞 = (𝑝 − 𝑒 −

𝑜)𝑞 − (𝑝 − 𝑒)(𝑞 − 𝑥)+. Therefore, the retailer’s expected profit and the standard 

deviation are respectively 

𝐸𝑃𝑅 = (𝑝 − 𝑒 − 𝑜)𝑞 − (𝑝 − 𝑒) ∫ 𝐹(𝑥)𝑑𝑥
𝑞

0
             (3) 

𝑆𝑃𝑅 = (𝑝 − 𝑒)√𝜉(𝑞),                     (4) 

where 𝜉(𝑞) is given in Equation (2). It is noted that the standard deviation of the 

retailer’s profit depends on the exercise price 𝑒 but not the option price 𝑜.  

   In the mean-variance model, the objective of the retailer is to maximize 𝐸𝑃𝑅 

subject to a constraint on the standard deviation of the retailer’s profit. Therefore, the 

model of the retailer is formulated as follows: 

𝑚𝑎𝑥
𝑞

 𝐸𝑃𝑅 (𝑞) 

                          𝑠. 𝑡.  𝑆𝑃𝑅(𝑞) ≤ 𝐾𝑅,                       (P2) 

where 𝐾𝑅 ≥ 0  is the retailer’s risk-aversion threshold. We define 𝑞𝑅,𝑆𝑃(𝑒) = 

𝑎𝑟𝑔𝑚𝑎𝑥𝑞{𝑆𝑃𝑅(𝑞) ≤ 𝐾𝑅}, which gives the retailer’s maximum quantity that satisfies 

the condition 𝑆𝑃𝑅(𝑞) ≤ 𝐾𝑅.  

 

Proposition 2. For the retailer’s ordering problem, we obtain the following: (i) The 

retailer’s optimal order quantity is given by 𝑞𝑅,𝑀𝑉(𝑜, 𝑒) = 𝑚𝑖𝑛 {𝑞𝑅,𝐸𝑃(𝑜, 𝑒), 𝑞𝑅,𝑆𝑃(𝑒)}, 

where 𝑞𝑅,𝐸𝑃(𝑜, 𝑒) = 𝐹−1(
𝑝−𝑒−𝑜

𝑝−𝑒
)；(ii) There exists a threshold 𝑒1 = 𝑝 −

𝑜

𝐹(𝑞𝑅,𝑆𝑃(𝑒1))
, 

where 𝑞𝑅,𝑀𝑉(𝑜, 𝑒) is increasing in 𝑒 for  𝑒 ∈ (𝑐 − 𝑜, 𝑒1) and decreasing in 𝑒 for 

𝑒 ∈ [𝑒1, 𝑝 − 𝑜).  

 

   Proposition 2(i) characterizes the retailer’s optimal order quantity for any given 

option contract (𝑜, 𝑒). In the absence of the risk constraint, the retailer’s order 

quantity is given by 𝑞𝑅,𝐸𝑃(𝑜, 𝑒). In the presence of the risk constraint, however, the 

retailer’s order quantity may not maximize his expected profit. When 𝐾𝑅 is a small 

value, the retailer has a low risk tolerance and, hence, orders a relatively conservative 

quantity 𝑞𝑅,𝑀𝑉(𝑜, 𝑒) = 𝑞𝑅,𝑆𝑃(𝑒). When 𝐾𝑅 is a large value (i.e., high risk tolerance), 
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then the retailer orders the same amount as in the absence of risk constraint, that is, 

𝑞𝑅,𝑀𝑉(𝑜, 𝑒) = 𝑞𝑅,𝐸𝑃(𝑜, 𝑒).  

   As noted earlier, the standard deviation of the retailer’s profit depends on the 

exercise price 𝑒 but not the option price 𝑜. Proposition 2(ii) examines how the 

retailer’s optimal order quantity changes with the exercise price. Specifically, 

𝑞𝑅,𝑀𝑉(𝑜, 𝑒) first increases and then decreases in 𝑒. This is somewhat counterintuitive 

because common sense suggests that a higher price may lead to a smaller order 

quantity. Indeed, when the risk constraint is absent, the retailer’s order quantity 

𝑞𝑅,𝐸𝑃(𝑜, 𝑒) decreases in the exercise price 𝑒. However, in our mean-variance model, 

the retailer’s order quantity is the minimum between 𝑞𝑅,𝐸𝑃(𝑜, 𝑒) and 𝑞𝑅,𝑆𝑃(𝑒), and it 

can be readily shown that 𝑞𝑅,𝑆𝑃(𝑒) increases in 𝑒. As a result, when 𝑒 is small (i.e., 

𝑒 ∈ (𝑐 − 𝑜, 𝑒1)), the risk constraint is active, and the retailer’s order quantity is equal 

to 𝑞𝑅,𝑆𝑃(𝑒). Thus, a further increase in 𝑒 will lead to a larger order quantity. This 

explains why the retailer’s optimal order quantity first increases in the exercise price. 

On the other hand, when 𝑒 is large (i.e., 𝑒 ∈ [𝑒1, 𝑝 − 𝑜)), the retailer’s order quantity 

is equal to 𝑞𝑅,𝐸𝑃(𝑜, 𝑒). Therefore, for this case, the retailer’s order quantity decreases 

in the exercise price.  

3.3 Coordination mechanism 

   In this subsection, we identify the conditions of the option price 𝑜 and exercise 

price 𝑒 under which the retailer will order the supply chain optimal quantity 𝑞𝑆𝐶,𝑀𝑉. 

Proposition 3 summarizes the results.  

 

Proposition 3. When 𝑆𝑃𝑅(𝑞𝑅,𝐸𝑃((𝑜, 𝑒)𝑀)) ≤ 𝐾𝑅 , then the supply chain is 

coordinated under any option contract (𝑜, 𝑒)  in the set 𝑀 = {(𝑜, 𝑒): 𝑜 = (𝑝 −

𝑒)�̅�(𝑞𝑆𝐶,𝑀𝑉)}; When 𝑆𝑃𝑅(𝑞𝑅,𝐸𝑃((𝑜, 𝑒)𝑁)) ≥ 𝐾𝑅, then the supply chain is coordinated 

under any option contract (𝑜, 𝑒) in the set 𝑁 = {(𝑜, 𝑒): 𝑒 = 𝑝 −
𝐾𝑅

√𝜉( 𝑞𝑆𝐶,𝑀𝑉)
}; When 

𝑆𝑃𝑅(𝑞𝑅,𝐸𝑃((𝑜, 𝑒)𝑁)) < 𝐾𝑅 < 𝑆𝑃𝑅(𝑞𝑅,𝐸𝑃((𝑜, 𝑒)𝑀)), then the supply chain cannot be 

coordinated, where (𝑜, 𝑒)𝑀 denotes (𝑜, 𝑒) ∈ 𝑀 and (𝑜, 𝑒)𝑁 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 (𝑜, 𝑒) ∈ 𝑁. 
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   Proposition 3 shows that if 𝑆𝑃𝑅(𝑞𝑅,𝐸𝑃( (𝑜, 𝑒)𝑁)) < 𝐾𝑅 < 𝑆𝑃𝑅(𝑞𝑅,𝐸𝑃((𝑜, 𝑒)𝑀)), 

then there are no option contracts that can coordinate the supply chain; otherwise, we 

are able to characterize the conditions under which the supply chain is coordinated by 

adjusting the prices, as shown in Proposition 3. It is noted that the conditions involve 

a one-to-one relationship of the option and exercise prices. Specifically, when the 

option price is fixed: if 𝑆𝑃𝑅(𝑞𝑅,𝐸𝑃((𝑜, 𝑒)𝑀)) ≤ 𝐾𝑅 , setting 𝑒 = 𝑝 −
𝑜

𝐹(𝑞𝑆𝐶,𝑀𝑉)
 can 

achieve the supply chain coordination; if 𝑆𝑃𝑅(𝑞𝑅,𝐸𝑃((𝑜, 𝑒)𝑁)) ≥ 𝐾𝑅 , setting 

𝑒 = 𝑝 −
𝐾𝑅

√𝜉( 𝑞𝑆𝐶,𝑀𝑉)
 can achieve the supply chain coordination. When the exercise 

price is fixed: if 𝑆𝑃𝑅(𝑞𝑅,𝐸𝑃((𝑜, 𝑒)𝑀)) ≤ 𝐾𝑅 , setting 𝑜 = (𝑝 − 𝑒)�̅�(𝑞𝑆𝐶,𝑀𝑉)  can 

achieve the supply chain coordination; and if 𝑆𝑃𝑅(𝑞𝑅,𝐸𝑃((𝑜, 𝑒)𝑁)) ≥ 𝐾𝑅, the supply 

chain coordination is achieved only when 𝑒 = 𝑝 −
𝐾𝑅

√𝜉( 𝑞𝑆𝐶,𝑀𝑉)
. This is because in this 

situation, the retailer’s risk constraint is active. Furthermore, the retailer’s option 

quantity 𝑞𝑅,𝑆𝑃(𝑒) only depends on 𝑒 and is independent of 𝑜.  

   Choi et al. (2008c) show that when the risk constraints are considered, supply 

chain coordination is not always achievable by setting a returns price only. In this 

setting, maximizing the supply chain’s expected profit may hurt the supplier. A larger 

returns price brings the retailer greater expected profit and lower risk. However, it 

leads to smaller expected profit and higher risk for the supplier. Hence, offering a 

returns price that maximizes the supply chain’s expected profit may not be a wise 

decision for the supplier. With an option contract, the supplier can balance the tradeoff 

between the expected profit and risk by setting the option price and exercise price. 

Hence, compared to the buyback contract in Choi et al. (2008c), the option contract 

seems more powerful in terms of supply chain coordination.  

   Fig. 4 illustrates whether it is possible to coordinate the supply chain under the 

mean-variance model for a given option price 𝑜, where  𝑒𝑀,  𝑒𝑀′ ∈ 𝑀, 𝑒𝑁 , 𝑒𝑁′ ∈ 𝑁. 

For 𝑞𝑆𝐶,𝑀𝑉1 ≤ 𝑞𝑅,𝑀𝑉(𝑒1), the proof of Proposition 4 shows that 𝑞𝑅,𝑆𝑃(𝑒𝑁) = 𝑞𝑆𝐶,𝑀𝑉1 

and 𝑞𝑅,𝐸𝑃(𝑒𝑀) = 𝑞𝑆𝐶,𝑀𝑉1 , as indicated by points A and B in Fig. 4. If 

𝑆𝑃𝑅(𝑞𝑅,𝐸𝑃(𝑒𝑀)) ≤ 𝐾𝑅 , then 𝑞𝑅,𝑀𝑉(𝑒𝑀) = 𝑞𝑅,𝐸𝑃(𝑒𝑀) = 𝑞𝑆𝐶,𝑀𝑉1 . Therefore, setting 
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𝑒 = 𝑒𝑀 coordinates the supply chain. If 𝑆𝑃𝑅(𝑞𝑅,𝐸𝑃(𝑒𝑁)) ≥ 𝐾𝑅, then 𝑞𝑅,𝑀𝑉(𝑒𝑁) =

𝑞𝑅,𝑆𝑃(𝑒𝑁) = 𝑞𝑆𝐶,𝑀𝑉1. Setting 𝑒 = 𝑒𝑁 coordinates the supply chain. For 𝑞𝑆𝐶,𝑀𝑉2 >

𝑞𝑅,𝑀𝑉(𝑒1) , the proof of Proposition 3 shows that 𝑞𝑅,𝐸𝑃(𝑒𝑀′) = 𝑞𝑆𝐶,𝑀𝑉2  and 

𝑞𝑅,𝑆𝑃(𝑒𝑁′) = 𝑞𝑆𝐶,𝑀𝑉2 , as illustrated by points C and D in Fig. 4. If 

𝑆𝑃𝑅(𝑞𝑅,𝐸𝑃(𝑒𝑁′)) < 𝐾𝑅 < 𝑆𝑃𝑅(𝑞𝑅,𝐸𝑃(𝑒𝑀′)) , then 𝑞𝑅,𝑆𝑃(𝑒𝑀′) < 𝑞𝑅,𝐸𝑃(𝑒𝑀′)  and 

𝑞𝑅,𝐸𝑃(𝑒𝑁′) < 𝑞𝑅,𝑆𝑃(𝑒𝑁′) . Clearly, 𝑞𝑅,𝑀𝑉(𝑒𝑀′) = 𝑞𝑅,𝑆𝑃(𝑒𝑀′) < 𝑞𝑆𝐶,𝑀𝑉2  and 

𝑞𝑅,𝑀𝑉(𝑒𝑁′) = 𝑞𝑅,𝐸𝑃(𝑒𝑁′) < 𝑞𝑆𝐶,𝑀𝑉2. The retailer will not order at the supply chain’s 

optimal order quantity level. Therefore, coordination of the supply chain cannot be 

achieved.  

The above findings are significantly distinct from the results in Zhao et al. (2010). 

Their findings show that option contracts without risk constraints can always 

coordinate the supply chain and achieve Pareto improvement. This implies that the 

risk constraint has an important impact on the coordination of a supply chain. 

Therefore, ignorance of risk considerations may lead to misalignment between the 

retailer’s order and the supply chain optimal order.  

 

Fig. 4. 𝑞𝑅,𝐸𝑃(𝑒), 𝑞𝑅,𝑆𝑃(𝑒) and 𝑞𝑅,𝑀𝑉(𝑒) 

To gain further insight into the supply chain coordination conditions, we use 

Table 3 to demonstrate how the supplier sets her exercise price to coordinate the 

supply chain under different risk aversion thresholds. We maintain the following 
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assumptions over the simulations: (1) the random demand is normally distributed with 

𝑢 =100 and 𝜎 =50; and (2) 𝑝 =100 and 𝑐 =15 (Choi et al., 2008c). We also set 

𝑜 =10, with a focus on examining how the exercise price changes with the risk 

aversion thresholds. Table 3 illustrates that 𝑒 is decreasing in 𝐾𝑅 and 𝐾𝑆𝐶, while 

𝑞𝑆𝐶,𝑀𝑉 is increasing in 𝐾𝑅 and 𝐾𝑆𝐶. As 𝐾𝑆𝐶 and 𝐾𝑅 increase, the risk tolerance of 

both parties becomes greater, and hence, they are more willing to take the profit risk. 

The supplier therefore decreases 𝑒 and then the retailer orders more, which brings 

both parties more profit. We also note that under the option contract, the expected 

profit of the retailer with risk constraints and his standard deviation are substantially 

reduced compared to the risk-neutral case. In contrast, the expected profit and the 

standard deviation of the supplier’s profit with risk constraints are significantly 

increased. This is because the retailer reduces the order quantity to reduce the risk. 

Therefore, the mean-variance model is quite different from the risk-neutral case, and 

it provides important insights into how to achieve the coordination of the supply chain 

with risk considerations.  

Table 3. Exercise prices that coordinates the supply chain in the mean-variance model 

Parameters 
Optimal 

decision 
Expected profit Standard deviation 

𝐾𝑆𝐶 𝐾𝑅 𝑒 𝑞𝑆𝐶,𝑀𝑉 𝐸𝑃𝑆𝐶  𝐸𝑃𝑅  𝐸𝑃𝑆 𝑆𝑃𝑆𝐶  𝑆𝑃𝑅 𝑆𝑃𝑆 

∞ ∞ 33.3 157.0 7727.8 5151.9 2575.9 4180.3 2786.9 1393.4 

3200 1200 72.7 120.2 7367.0 1303.3 6063.7 3200.0 874.2 2325.8 

3000 1000 75.7 114.2 7224.0 1031.6 6192.2 3000.0 729.6 2270.4 

2500 800 80.9 100.0 6773.8 582.1 6191.7 2500.0 478.0 2022.0 

2000 1000 84.2 86.2 6185.4 319.6 5865.8 2000.0 315.3 1684.7 

1500 1000 86.4 71.9 5420.8 164.9 5255.9 1500.0 204.0 1296.0 

1000 500 88.0 56.2 4422.6 69.9 4352.7 1000.0 120.0 880.0 

 

4. Decentralized supply chain 

In this section, we study the strategic interaction between the supplier and the 

retailer in a decentralized supply chain. For this setting, each player’s objective is to 

maximize their own expected profit subject to their respective risk constraints. In the 
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centralized case, the information about the retailer’s risk aversion threshold is 

common knowledge for the players. However, in the decentralized case, the supplier 

may not know this information. Therefore, we consider two information cases in the 

decentralized case. We first study the information symmetry case in which the 

retailer’s risk aversion threshold is public information. Then, we explore the 

information asymmetry case in which the retailer’s risk aversion threshold is private. 

The timeline of the game is the following: The supplier determines o and e, and 

given these prices, the retailer decides the option quantity q and pays oq to the 

supplier. After that, the demand is realized, and the retailer purchases 𝑚𝑖𝑛{𝑥, 𝑞} units 

from the supplier at the exercise price 𝑒. As can be seen, this is a Stackelberg game 

where the supplier is the leader and the retailer is the follower. Following the standard 

backward induction approach, we start by analyzing the retailer’s ordering decision 

and then look at the supplier’s pricing decision.  

4.1. Symmetric information: the retailer’s risk aversion threshold is public  

The retailer’s ordering decision is the same as that for the supply chain 

coordination analysis (see Subsection 3.2). From Proposition 2, we know that the 

retailer’s optimal option quantity is given by 𝑞𝑅,𝑀𝑉(𝑜, 𝑒) = 𝑚𝑖𝑛 {𝑞𝑅,𝐸𝑃(𝑜, 𝑒), 

𝑞𝑅,𝑆𝑃(𝑒)}.  

Under the mean-variance model, the objective of the supplier is to maximize 𝐸𝑃𝑆 

subject to a constraint on 𝑆𝑃𝑆. Given any option quantity 𝑞 and the realized demand 

𝑥, the supplier’s profit is given by 𝑃𝑆 = (𝑜 − 𝑐)𝑞 + 𝑒𝑚𝑖𝑛 {𝑥, 𝑞} = (𝑒 + 𝑜 − 𝑐)𝑞 −

𝑒(𝑞 − 𝑥)+. Therefore, the supplier’s expected profit and the standard deviation of the 

supplier’s profit are respectively given by  

𝐸𝑃𝑆 = (𝑜 + 𝑒 − 𝑐)𝑞 − 𝑒 ∫ 𝐹(𝑥)𝑑𝑥
𝑞

0
              (5) 

𝑆𝑃𝑆 = 𝑒√𝜉(𝑞),                       (6) 

where 𝜉(𝑞) is given by Equation (2). We formulate the supplier’s pricing problem as 

follows: 

𝑚𝑎𝑥
𝑜,𝑒

  𝐸𝑃𝑆(𝑞𝑅,𝑀𝑉(𝑜, 𝑒)) 

   𝑠. 𝑡.  𝑆𝑃𝑆(𝑞𝑅,𝑀𝑉(𝑜, 𝑒)) ≤ 𝐾𝑆                    (P3) 
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where 𝐾𝑆 ≥ 0  is the supplier’s risk aversion threshold and 𝑞𝑅,𝑀𝑉(𝑜, 𝑒)  is the 

retailer’s optimal order quantity. Denote by 𝑞𝑆,𝑆𝑃(𝑒) the largest quantity 𝑞 such that 

𝑆𝑃𝑆(𝑞, 𝑒) ≤ 𝐾𝑆, that is, we have 𝑞𝑆,𝑆𝑃(𝑒) = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑞{ 𝑆𝑃𝑆(𝑞, 𝑒) ≤ 𝐾𝑆}. Regarding 

the constraint, if 𝑚𝑎𝑥𝑒{ 𝑆𝑃𝑆(𝑞𝑅,𝑀𝑉(𝑜, 𝑒))} ≤ 𝐾𝑆 , the supplier’s risk constraint is 

inactive. If 𝑚𝑎𝑥𝑒{ 𝑆𝑃𝑆(𝑞𝑅,𝑀𝑉(𝑜, 𝑒))} > 𝐾𝑆, the supplier’s risk constraint is active.  

 

Proposition 4. (i) 𝐸𝑃𝑅 = 𝛼𝐸𝑃𝑆𝐶  and 𝐸𝑃𝑆 = (1 − 𝛼)𝐸𝑃𝑆𝐶 , where 𝛼 =
(𝑝−𝑒)𝑆(𝑞)−𝑜𝑞

𝑝𝑆(𝑞)−𝑐𝑞
 

and 𝛼 is decreasing with  𝑜 and  𝑒 ; (ii) 𝑆𝑃𝑅 = 𝛽𝑆𝑃𝑆𝐶  and  𝑆𝑃𝑆 = (1 − 𝛽)𝑆𝑃𝑆𝐶 , 

where 𝛽 = (1 −
𝑒

𝑃
) and 𝛽 is decreasing in 𝑒.  

 

Proposition 4(i) indicates that the supplier’s expected profit and the standard 

deviation of her profit (𝐸𝑃𝑆 and 𝑆𝑃𝑆) are proportional to those of the supply chain 

(𝐸𝑃𝑆𝐶  and 𝑆𝑃𝑆𝐶). Similarly, the retailer’s expected profit and the standard deviation 

of his profit are proportional to those of the supply chain. We note that the retailer’s 

profit-sharing proportion 𝛼 is decreasing in both  𝑜 and  𝑒 and that the retailer’s 

risk-sharing proportion 𝛽 is decreasing in 𝑒. Hence, the retailer’s 𝐸𝑃 is decreasing 

in  𝑜 and 𝑒, and 𝑆𝑃 is decreasing in 𝑒. Correspondingly, the supplier’s 𝐸𝑃  is 

increasing in 𝑜 and 𝑒, and 𝑆𝑃 is increasing in 𝑒. The results are consistent with the 

classical investment theory that a higher profit is linked to a larger risk. Therefore, the 

adjustment of 𝑜 and 𝑒 can effectively allocate 𝐸𝑃𝑆 and 𝑆𝑃𝑆 between the supplier 

and retailer. However, the above result differs from that of Choi et al. (2008c) in that 

they find that a higher returns price brings the retailer greater expected profit and 

lower risk but leads to smaller expected profit and higher risk for the supplier. This 

result seems inconsistent with the classical investment theory, in which a high risk is 

often accompanied by a great expected profit. In our models, when the player bears a 

higher risk, it will obtain a greater expected profit. In particular, the supplier will 

balance the tradeoff between the expected profit and risk by adjusting the option price 

and exercise price.  

   With option contracts, we next examine the channel player’s optimal decisions 
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under the risk-neutral situation. To obtain analytical results, we consider demand 

distributions with the increasing generalized failure rate (IGFR). Define ℎ(𝑥) =
𝑥𝑓(𝑥)

𝐹(𝑥)
 

as the general failure rate. When 
𝜕ℎ(𝑥)

𝜕𝑥
≥ 0, the demand distribution satisfies IGFR 

(Wei and Choi, 2010). As is well known, IGFR is a mild condition that many 

commonly used distributions can satisfy, including Normal (as well as truncated 

normal at zero), Uniform, Exponential, Power, Gamma with shape parameter ≥ 1, 

Beta with parameters ≥ 1, and Weibull distribution with shape parameter ≥ 1. 

distributions (Lariviere and Porteus, 2001; Wei and Choi, 2010; Kouvelis and Zhao, 

2012).  

 

Lemma 1. Given 𝑜, 𝐸𝑃𝑅(𝑞0, 𝑒0) = 𝑚𝑎𝑥
𝑞

𝐸𝑃𝑅(𝑞, 𝑒) and 𝐸𝑃𝑠(𝑞0, 𝑒0) = 𝑚𝑎𝑥
𝑒

𝐸𝑃𝑠(𝑞, 𝑒), 

where 𝑝�̅�(𝑞0) − 𝑐 −
𝑜𝑓(𝑞0)

𝐹(𝑞0)2 ∫ �̅�(𝑥)
𝑞0

0
𝑑𝑥 = 0 and 𝑒0 = 𝑝 −

𝑜

𝐹(𝑞0)
.  

 

The risk-neutral case is equivalent to the mean-variance model, where 𝐾𝑅 and 

𝐾𝑆 go to infinity. This is because when 𝐾𝑅 and 𝐾𝑆 go to infinity, the risk constraints 

will not affect either party’s optimal decisions. Lemma 1 characterizes the supplier’s 

optimal exercise price 𝑒0 and the retailer’s optimal option quantity 𝑞0. Consider the 

extreme case where the option price is zero (𝑜 = 0). We observe that 𝑞0 = �̅� (
𝑐

𝑝
), 

which gives the supply chain optimal quantity, and the exercise price is given by 

𝑒0 = 𝑝. 

When 𝐾𝑅 and 𝐾𝑆 are not significantly large, the retailer’s order quantity may 

satisfy 𝑞𝑅,𝑀𝑉(𝑜, 𝑒) ≤ 𝑞0 . In this case, the supplier will set 𝑒  according to 

𝑞𝑅,𝑀𝑉(𝑜, 𝑒). Proposition 5 gives the optimal exercise price 𝑒∗  for different risk 

thresholds. 

 

Proposition 5. Given  𝑜, (i) if 𝐾𝑆 ≥ 𝑚𝑎𝑥 {𝑆𝑃𝑆 (𝑞𝑅,𝑀𝑉(𝑜, 𝑒0)) , 𝑆𝑃𝑆(𝑞𝑅,𝑀𝑉(𝑜, 𝑒1))}, 

then 𝑒∗ = 𝑚𝑎𝑥 { 𝑒0, 𝑒1}; (ii) if 𝐾𝑆 < 𝑚𝑎𝑥 {𝑆𝑃𝑆 (𝑞𝑅,𝑀𝑉(𝑜, 𝑒0)) , 𝑆𝑃𝑆(𝑞𝑅,𝑀𝑉(𝑜, 𝑒1))}, 
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then 𝑒∗ = 𝑎𝑟𝑔𝑚𝑎𝑥{𝐸𝑃𝑆 (𝑞𝑅,𝑀𝑉(𝑜, 𝑒𝑙)) , 𝐸𝑃𝑆 (𝑞𝑅,𝑀𝑉(𝑜, 𝑒𝑢))} , where 𝑒𝑡  satisfies 

𝑞𝑅,𝑀𝑉(𝑜, 𝑒𝑡) = 𝑞𝑆,𝑆𝑃(𝑒𝑡), 𝑡 = 𝑙, 𝑢.  

 

Because 𝐾𝑆 ≥ 𝑚𝑎𝑥 {𝑆𝑃𝑆 (𝑞𝑅,𝑀𝑉 (𝑜, 𝑒0)) , 𝑆𝑃𝑆(𝑞𝑅,𝑀𝑉(𝑜, 𝑒1))}, the supplier’s risk 

constraint is inactive. The equilibrium exercise price 𝑒∗ is dependent on 𝐾𝑅. Hence, 

𝑒∗ = 𝑚𝑎𝑥 {𝑒1, 𝑒0} . Because 𝐾𝑆 < 𝑚𝑎𝑥{𝑆𝑃𝑆(𝑞𝑅,𝑀𝑉(𝑜, 𝑒0), 𝑆𝑃𝑆(𝑞𝑅,𝑀𝑉(𝑜, 𝑒1)} , the 

supplier’s risk constraint is active. The equilibrium exercise price 𝑒∗ is dependent on 

𝐾𝑆  and 𝐾𝑅 . Hence, 𝑒∗ = 𝑎𝑟𝑔𝑚𝑎𝑥{𝐸𝑃𝑆 (𝑞𝑅,𝑀𝑉(𝑜, 𝑒𝑙)) , 𝐸𝑃𝑆 (𝑞𝑅,𝑀𝑉(𝑜, 𝑒𝑢))}  and 

𝑆𝑃𝑆 (𝑞𝑅,𝑀𝑉(𝑜, 𝑒∗)) = 𝐾𝑆. In the decentralized case, Choi et al. (2008c) find that if the 

optimal returns price for the supplier is unique, then there will exist a unique 

equilibrium. In line with this finding, we obtain a unique equilibrium for the 

Stackelberg game with option contracts (Proposition 5). 

Based on the settings in Table 3, we examine how the supplier’s 𝐸𝑃 and 𝑆𝑃 

change with 𝑒 in Fig. 5. Given 𝐾𝑅, the solid lines are the supplier’s expected profits, 

and the dashed lines are the supplier’s standard deviations. We can also calculate the 

equilibrium prices using the results in Lemma 1 and Proposition 5. For the 

risk-neutral case, 𝑒∗ = 𝑒0 =78.5. For the risk constraints case, given 𝐾𝑅1 =1,000, 

we have 𝑒1 = 70 < 𝑒0 = 78.5. When 𝐾𝑆 ≥ 2338.7, then 𝑒∗ =  𝑒0 = 78.5. When 

𝐾𝑆 = 1000 <2338.7, then 𝑒𝑙 =50 and 𝑒𝑢 =87.6. The efficient region of 𝑒∗  is 

𝑒 ∈ (5, 50] ∪ [87.6, 90) . We have 𝑒∗ =  𝑒𝑢 = 87.6. Given 𝐾𝑅2 = 400 , we have 

𝑒1 =82.9> 𝑒0 =78.5. When 𝐾𝑆 ≥ 2000, then 𝑒∗ = 𝑒1 =82.9. When 𝐾𝑆 = 1000 <

2000, then 𝑒𝑙 =71.5 and 𝑒𝑢 =87.6. The efficient region of 𝑒∗ is 𝑒 ∈ (5, 71.5] ∪

[87.6, 90). We have 𝑒∗ =  𝑒𝑢 =87.6.  
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Fig. 5. 𝐸𝑃𝑠(𝑒) and 𝑆𝑃𝑠(𝑒) 

   To show the impact of risk aversion on the equilibrium decisions of the 

Stackelberg game in the decentralized supply chain, given different values of 𝐾𝑆 and 

𝐾𝑅, Table 4 shows different values of 𝑒∗, 𝑞𝑅,𝑀𝑉(𝑜, 𝑒) and the corresponding 𝐸𝑃 

and 𝑆𝑃. By comparing Table 3 with Table 4, we find that both players in the 

centralized case have greater expected profit (EP) than in the decentralized case. In 

the meantime, we note that both players with greater expected profit in the centralized 

case also bear larger risk (𝑆𝑃) than in the decentralized case. This finding is consistent 

with the classical investment theory in that a high expected profit is often 

accompanied by a large risk. We observed that as 𝐾𝑆  increases, 𝑒∗  decreases, 

whereas the 𝐸𝑃s and 𝑆𝑃s of the retailer, supplier and supply chain all increase. The 

decreasing 𝑒∗ leads to increasing 𝑞𝑅,𝑀𝑉(𝑜, 𝑒), which further leads to increasing 𝐸𝑃s 

and 𝑆𝑃s. As 𝐾𝑅 increases, the 𝑒∗, 𝐸𝑃s and 𝑆𝑃s exhibit the same changes as those 

indicated above. We also note that as 𝐾𝑅 (𝐾𝑆) increases, the retailer’s (the supplier’s) 

profit sharing proportion 𝛼 and risk sharing proportion 𝛽 increase (see Proposition 
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4). This suggests that the party facing a higher risk always requires more profit to 

compensate for potential losses. Our findings are distinct from the results in Choi et al. 

(2008c), in which, with a buyback contract, a larger return price brings the supplier a 

lower profit sharing proportion and a higher risk sharing proportion.
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Table 4. The optimal 𝑒∗ and 𝑞𝑅,𝑀𝑉 for different 𝐾𝑆 and 𝐾𝑅 in the decentralized case. 

𝐾𝑆 𝐾𝑅 𝑒∗ 𝑞𝑅,𝑀𝑉 𝐸𝑃𝑆𝐶  𝐸𝑃𝑅 𝐸𝑃𝑠 𝑆𝑃𝑆𝐶  𝑆𝑃𝑅 𝑆𝑃𝑆 𝐸𝑃𝑠/𝐸𝑃𝑆𝐶  

500 100 89.00 39.7 3228.9 23.9 3204.9 561.9 61.9 500.0 99.2% 

 200 89.00 39.7 3228.9 23.9 3204.9 561.9 61.9 500.0 99.2% 

 500 89.00 39.7 3228.9 23.9 3204.9 561.9 61.9 500.0 99.2% 

 1000 89.00 39.7 3228.9 23.9 3204.9 561.9 61.9 500.0 99.2% 

 1500 89.00 39.7 3228.9 23.9 3204.9 561.9 61.9 500.0 99.2% 

750 100 88.36 50.9 4054.8 51.4 4003.4 848.7 98.7 750.0 98.7% 

 200 88.36 50.9 4054.8 51.4 4003.4 848.7 98.7 750.0 98.7% 

 500 88.36 50.9 4054.8 51.4 4003.4 848.7 98.7 750.0 98.7% 

 1000 88.36 50.9 4054.8 51.4 4003.4 848.7  98.7 750.0 98.7% 

 1500 88.36 50.9 4054.8 51.4  4003.4 848.7 98.7 750.0 98.7% 

1000 100 88.35 51.0 4072.8 52.2 4020.6 850.0 100.0 750.0 98.7% 

 200 87.60 60.9 4736.8 92.3 4644.5 1141.7 141.7 1000.0 98.0% 

 500 87.60 60.9 4736.8 92.3 4644.5 1141.7 141.7 1000.0 98.0% 

 1000 87.60 60.9 4736.8 92.3 4644.5 1141.7 141.7 1000.0 98.0% 

 1500 87.60 60.9 4736.8 92.3 4644.5 1141.7 141.7 1000.0 98.0% 

1500 100 88.35 51.0 4072.8 52.2 4020.6 850.0 100.0 750.0 98.7% 

 200 86.40 71.0 5370.2 164.9 5205.3 1470.6 200.0 1270.6 96.9% 

 500 85.30 79.5 5844.9 237.0 5607.9 1762.2 262.2 1500.0 95.9% 

 1000 85.30 79.5 5844.9 237.0 5607.9 1762.2 262.2 1500.0 95.9% 

 1500 85.30 79.5 5844.9 237.0 5607.9 1762.2 262.2 1500.0 95.9% 

2000 100 88.35 51.0 4072.8 52.2 4020.6 850.0 100.0 750.0 98.7% 

 200 86.40 71.0 5370.2 164.9 5205.3 1470.6 200.0 1270.6 96.9% 

 500 81.20 98.9 6736.3 558.5 6177.8 2464.1 464.1 2000.0 91.7% 

 1000 81.20 98.9 6736.3 558.5 6177.8 2464.1 464.1 2000.0 91.7% 

 1500 81.20 98.9 6736.3 558.5 6177.8 2464.1 464.1 2000.0 91.7% 



ACCEPTED MANUSCRIPT
 

26 
  

   To further depict the impacts of risk on 𝑒 and the 𝐸𝑃s, we examine how 𝑒 and 

the 𝐸𝑃s change with the standard variance 𝜎. Fig. 6, 7 and 8 illustrate that in both 

cases, as 𝜎 increases, the supplier increases 𝑒 and that the 𝐸𝑃s of the retailer and 

supply chain both decrease. When facing the high demand risk indicated by a large 𝜎, 

the retailer reduces the option quantity to lower the potential risk. The supplier 

correspondingly increases 𝑒 to compensate the expected profit. Both actions reduce 

the 𝐸𝑃s of the retailer and supply chain. 

 

    Fig. 6. The changes in 𝑒 with 𝜎       Fig. 7. The changes in 𝐸𝑃𝑅 with 𝜎       

            in both cases                         in both cases 

                  

      

Fig. 8. The changes in 𝐸𝑃𝑆𝐶  with 𝜎 in both cases 

4.2 Asymmetric information: the retailer’s risk aversion threshold is private 

In the previous section, we focused on the information symmetry case in which 

the retailer’s risk attitude is known. However, in practice, the supplier may not know 
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the retailer’s risk aversion threshold before offering her prices. It is an interesting 

question to examine how information asymmetry affects all the decisions in the 

decentralized case. The sequence of events is as follows: First, the retailer discloses 

his risk aversion threshold to the supplier, which may not be truthful. Second, the 

supplier offers an option price and an exercise price to the retailer. Third, the retailer 

decides the option quantity according to his true risk aversion threshold.  

4.2.1 Retailer’s problem 

   Suppose that 𝐾𝑅
′  is the retailer’s risk aversion threshold disclosed to the supplier. 

Correspondingly, the supplier adjusts the exercise prices 𝑒1 and 𝑒𝑡 to 𝑒1(𝐾𝑅
′ ) and 

𝑒𝑡(𝐾𝑅
′ ) based on Propositions 2 and 5. Lemma 2 presents the retailer’s information 

disclosure decision. 

 

Lemma 2. If 𝐾𝑅
′ > 𝐾𝑅, then 𝐸𝑃𝑅(𝐾𝑅

′ ) ≥ 𝐸𝑃𝑅(𝐾𝑅). 

 

   Lemma 2 shows that the retailer has an incentive to pretend to be less risk averse. 

By disclosing a smaller risk aversion threshold, the retailer makes the supplier believe 

that he will likely order more. This incentivizes the supplier to reduce the exercise 

price. The proof of Lemma 2 indicates that the retailer’s expected profit is decreasing 

in the exercise price. Therefore, pretending to be less risk averse will lead to a greater 

profit for the retailer. 

4.2.2 Supplier’s problem 

   Lemma 2 shows that the retailer has an incentive to set 𝐾𝑅
′ > 𝐾𝑅. This untruthful 

disclosure benefits the retailer. What action can the supplier take as a Stackelberg 

leader to prevent this from happening? Motivated by Wei and Choi (2010), we 

construct a minimum option quantity contract in which both the exercise price and 

minimum option quantity qmin are specified. If the retailer chooses a certain contract, 

then he will order no less than qmin at a corresponding exercise price. Proposition 6 

shows how the minimum option quantity contracts are designed.  
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Proposition 6. (i) When 𝐾𝑆 ≥ 𝑚𝑎𝑥 {𝑆𝑃𝑆 (𝑞𝑅,𝑀𝑉(𝑜, 𝑒0)) , 𝑆𝑃𝑆(𝑞𝑅,𝑀𝑉(𝑜, 𝑒1))} , if 

𝑒0 < 𝑒1(𝐾𝑅
′ ), then 𝑞𝑚𝑖𝑛 = 𝑞𝑅,𝑆𝑃(𝑒1(𝐾𝑅

′ ), 𝐾𝑅
′ ) and 𝑒∗(𝐾𝑅

′ ) = 𝑒1(𝐾𝑅
′ ) ; if 𝑒1(𝐾𝑅

′ ) <

𝑒0 , then 𝑞𝑚𝑖𝑛 = 𝑞𝑅,𝐸𝑃(𝑜, 𝑒0)  and 𝑒∗(𝐾𝑅
′ ) = 𝑒0 ; (ii) When 

𝐾𝑆 < 𝑚𝑎𝑥 {𝑆𝑃𝑆 (𝑞𝑅,𝑀𝑉(𝑜, 𝑒0)) , 𝑆𝑃𝑆(𝑞𝑅,𝑀𝑉(𝑜, 𝑒1))} , if 𝑒∗(𝐾𝑅) = 𝑒𝑙(𝐾𝑅) , then 

𝑞𝑚𝑖𝑛 = 𝑞𝑆,𝑆𝑃(𝑒𝑙(𝐾𝑅
′ ), 𝐾𝑅

′ )  and 𝑒∗(𝐾𝑅
′ ) = 𝑒𝑙(𝐾𝑅

′ ) ; if 𝑒∗(𝐾𝑅) = 𝑒𝑢 , then 𝑞𝑚𝑖𝑛 =

𝑞𝑅,𝐸𝑃(𝑜, 𝑒𝑢) and 𝑒∗(𝐾𝑅
′ ) = 𝑒𝑢. 

 

   We explain the result in Proposition 6 as follows. First, in the case of 𝐾𝑆 ≥

𝑚𝑎𝑥 {𝑆𝑃𝑆 (𝑞𝑅,𝑀𝑉(𝑜, 𝑒0)) , 𝑆𝑃𝑆(𝑞𝑅,𝑀𝑉(𝑜, 𝑒1))}, the supplier is more risk tolerant and 

the risk constraint is inactive. If the risk constraint with 𝐾𝑅
′  is active for the retailer, 

then the supplier sets the minimum option quantity as 𝑞𝑚𝑖𝑛 = 𝑞𝑅,𝑆𝑃(𝑒1(𝐾𝑅
′ ), 𝐾𝑅

′ ). If 

the risk constraint with 𝐾𝑅
′  is inactive for the retailer, the supplier sets the minimum 

option quantity as 𝑞𝑚𝑖𝑛 = 𝑞𝑅,𝐸𝑃(𝑜, 𝑒0).  

   Second, in the case of 𝐾𝑆 < 𝑚𝑎𝑥 {𝑆𝑃𝑆 (𝑞𝑅,𝑀𝑉(𝑜, 𝑒0)) , 𝑆𝑃𝑆(𝑞𝑅,𝑀𝑉(𝑜, 𝑒1))}, the 

supplier is less risk tolerant and the risk constraint is active. If 𝐾𝑅
′  is active for the 

retailer, then the supplier sets the minimum option quantity as 

𝑞𝑚𝑖𝑛 = 𝑞𝑅,𝑀𝑉(𝑜, 𝑒𝑙(𝐾𝑅
′ )) = 𝑞𝑆,𝑆𝑃(𝑒𝑙(𝐾𝑅

′ )). If 𝐾𝑅
′  is inactive for the retailer, then the 

supplier sets the minimum option quantity as 𝑞𝑚𝑖𝑛 = 𝑞𝑅,𝐸𝑃(𝑜, 𝑒𝑢).  

   For 𝐾𝑅  to be active, since 𝑆𝑃𝑆(𝑞𝑅,𝑀𝑉(𝑜, 𝑒∗(𝐾𝑅
′ )) ≥ 𝑞𝑚𝑖𝑛) ≥ 𝐾𝑅 , the retailer 

bears the larger risk. The retailer will have to disclose his true risk aversion 

information. For 𝐾𝑅 to be inactive, the retailer’s untruthful disclosure has no impact 

on the supplier’s decision. Thus, the supplier sets 𝑞𝑚𝑖𝑛 = 𝑞𝑅,𝐸𝑃(𝑜, 𝑒∗(𝐾𝑅
′ )) only 

based on her risk constraint. Overall, the contract proposed in Proposition 6 efficiently 

prevents the retailer from reporting untruthfully. 

   In Wei and Choi (2010), the retailer’s largest order quantity that satisfies his risk 

constraint is independent of the wholesale price. The retailer can therefore control his 

risk. However, in our model, the retailer’s largest option quantity that satisfies his risk 

constraint depends on the exercise price, which is determined by the supplier based on 
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the retailer’s disclosed risk aversion information and the supplier’s risk constraint. 

Therefore, the information that the retailer intentionally discloses can influence the 

actual option quantity.  

   To gain further insights into the supplier’s action, we use Table 5 to illustrate how 

the supplier sets minimum option quantity contracts. The scenario of 𝐾𝑅 = 𝐾𝑅
′  

represents the case where the retailer provides the true information of the risk 

aversion threshold. Compared to case (1a), case (1b) presents the case where the 

retailer pretends to be less risk averse (𝐾𝑅
′ = 1500 > 𝐾𝑅 =1000). Then, the supplier 

sets a smaller exercise price 𝑒∗(𝐾𝑅
′ ) =84.50 than 𝑒∗(𝐾𝑅) =86.50 based on the true 

information. This is consistent with 𝑒0 < 𝑒1(𝐾𝑅
′ ) < 𝑒1(𝐾𝑅) in Proposition 6. The 

supplier’s estimated option quantity is 84.35. However, based on 𝑒∗(𝐾𝑅
′ ) =84.50 and 

the true 𝐾𝑅 =1000, the retailer’s actual option quantity is 65.58. This benefits the 

retailer but hurts the supplier. To prevent this from happening, the supplier sets the 

minimum option quantity 𝑞𝑚𝑖𝑛 = 𝑞𝑅,𝑆𝑃(𝑒1(𝐾𝑅
′ ), 𝐾𝑅

′ ) =84.35. Compared to case (2a), 

case (2b) is consistent with 𝑒1(𝐾𝑅
′ ) < 𝑒0 < 𝑒1(𝐾𝑅) in Proposition 6. Then, the 

supplier sets the minimum option quantity 𝑞𝑚𝑖𝑛 = 𝑞𝑅,𝐸𝑃(𝑜, 𝑒0) =107.2. Compared to 

case (3a), case (3b) is consistent with case 𝑒1(𝐾𝑅
′ ) < 𝑒1(𝐾𝑅) < 𝑒0. The supplier’s 

optimal exercise price 𝑒0 is independent of the retailer’s risk aversion threshold. The 

faked information 𝐾𝑅
′  therefore has no impact on the supplier’s decision. The 

supplier’s estimated option quantity equals the retailer’s actual option quantity, i.e., 

𝑞𝑅,𝑀𝑉(𝑜, 𝑒∗(𝐾𝑅)) = 𝑞𝑅,𝑀𝑉(𝑜, 𝑒∗(𝐾𝑅
′ )) = 𝑞𝑅,𝐸𝑃(𝑜, 𝑒0) =107.2. Similarly, in cases (4) 

and (5), the faked information 𝐾𝑅
′  has no impact on the supplier’s decision. 
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Table 5. The optimal 𝑒∗ and 𝑞𝑅,𝑀𝑉 for different 𝐾𝑆 and 𝐾𝑅 when the retailer’s risk-aversion threshold is private. 

    𝐾𝑆 𝐾𝑅 𝐾𝑅
′  𝑒𝑎(𝐾𝑅

′ )(𝐾𝑅) 𝑒∗(𝐾𝑅
′ )(𝐾𝑅) 𝑞𝑅,𝑀𝑉(𝐾𝑅

′ )(𝐾𝑅) 𝑞𝑚𝑖𝑛 𝐸𝑃𝑠 𝐸𝑃𝑅 𝑆𝑃𝑆 𝑆𝑃𝑅 

(1a) 2500 200 200 86.50(86.50) 86.50(86.50) 71.2(71.2) 71.2 5218.6 158.4 1275.1 200.0 

(1b) 2500 200 300 84.50(86.50) 84.50(86.50) 84.35(65.58) 84.35 4759.9 277.5 1090.2 200.0 

(2a) 2500 500 500 80.50(80.50) 80.50(80.50) 101.2(101.2) 101.2 6207.3 613.8 2049.7 500.0 

(2b) 2500 500 1000 70.00(80.50) 78.50(80.50) 107.2(95.2) 107.2 5815.9 771.3 1827.3 500.0 

(3a) 2500 1000 1000 70.00(70.00) 78.50(78.50) 107.2(107.2) 107.2 6239.0 783.8 2165.5 593.4 

(3b) 2500 1000 1500 60.00(70.00) 78.50(78.50) 107.2(107.2) 107.2 6239.0 783.8 2165.5 593.4 

(4a) 1000 200 200 87.00(87.00) 88.14(88.14.) 60.58(60.58) 60.58 4652.2 61.6 1000.0 134.6 

(4b) 1000 200 300 87.00(87.00) 88.14(88.14.) 60.58(60.58) 60.58 4652.2 61.6 1000.0 134.6 

(5a) 1000 500 500 87.00(87.00) 88.14(88.14.) 60.58(60.58) 60.58 4652.2 61.6 1000.0 134.6 

(5b) 1000 500 500 87.00(87.00) 88.14(88.14.) 60.58(60.58) 60.58 4652.2 61.6 1000.0 134.6 

          Note: The symbols “a” and “b” represent the retailer’s true and faked information disclosure, respectively. 
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5. Conclusion and management insights  

In this paper, we analyze supply chain coordination and option contract design 

under the mean-variance model. In this model, each party aims to maximize their 

expected profits subject to constraints on the risk. Our main results are fourfold.  

First, the supply chain is not always coordinated under option contracts with 

risk constraints. By leveraging the exercise price, the supplier achieves the channel 

coordination only when the retailer’s risk aversion threshold falls within certain 

intervals. Such a result is distinct from existing research on option contracts without 

risk constraints, in which the coordination of a supply chain can always be achieved. 

The option contract with risk constraints may help the supplier balance the tradeoff 

between the expected profit and risk. In particular, setting the option and exercise 

prices that maximize the supply chain’s expected profit may benefit the supplier. 

Second, the adjustment of the option price and exercise price reallocates the 

proportion of the expected profit and risk sharing between the supplier and retailer. 

As the option price increases, the supplier’s expected profit increases, whereas the 

retailer’s expected profit decreases. As the exercise price increases, the supplier’s 

expected profit and risk increase, whereas the retailer’s expected profit and risk 

decrease. This suggests that a supplier with a higher risk tolerance always prefers to 

reduce the exercise price and that a retailer with a higher risk tolerance prefers to 

increase option quantity. This finding is consistent with classical investment theories, 

in which a higher profit always accompanies a higher risk.  

   Third, there exists a unique equilibrium for the Stackelberg game in a 

decentralized supply chain. Both the equilibrium exercise price and the option 

quantity depend on the risk aversion thresholds and the solutions for the risk-neutral 

case. When the supplier and retailer both have high risk tolerance, which 

corresponds to large risk thresholds, they will adopt relatively positive operational 

strategies. 

   Finally, in the scenario where the retailer’s risk aversion threshold is private, we 

find that the retailer has an incentive to pretend to be less risk averse. We also find 

that by constructing a minimum option quantity contract, the supplier is able to 
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prevent the retailer from intentionally disclosing faked information. When the 

retailer’s risk constraint is active, a minimum option quantity commitment proposed 

by the supplier places a higher risk on the retailer than his true risk tolerance. The 

retailer is therefore motivated to disclose his true information. When the retailer’s 

risk constraint is inactive, the retailer’s faked information has no impact on the 

supplier’s decision, and thus, the supplier sets a minimum option quantity based 

solely on her risk constraint.  

   Our work points to two important managerial insights. First, all decisions 

involved in option contracts are dependent on the risk tolerance. A supplier with a 

higher risk tolerance always prefers to reduce the exercise price to induce the retailer 

to order more. A retailer with a higher risk tolerance is willing to increase option 

quantity to gain more expected profit. Such actions lead to a higher supply chain risk. 

Second, the adjustment of the option price and exercise price causes the reallocation 

of the expected profit and risk sharing between the supplier and retailer. By setting 

prices, the supplier is able to determine who can enjoy more profit or take less risk in 

the supply chain under an option contract.  

   Finally, we discuss several potential extensions arising from this research. First, 

the current paper considers a deterministic selling price. It is a potentially 

meaningful research direction to consider the selling price as an endogenous decision 

variable (Choi and Chiu, 2012). Second, both the supplier and the retailer in our 

model are endowed with unlimited capital. However, in reality, supply chain parties 

may be financially constrained. Thus, another possible extension is to consider the 

players’ financial constraints in the presence of bankruptcy risk. Third, we model 

risk within the commonly used mean-variance framework. It would be interesting to 

explore other modeling frameworks. A notable example is the CVaR framework, 

which focuses on the decision maker’s expected profit from the lower quantile (Lotfi 

and Zenios, 2018). By considering different risk modeling frameworks, one may 

draw comparisons with our mean-variance framework. We leave these extensions as 

future research.  
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Appendixes 

Appendix A (Proof of Proposition 1) 

   (i) Taking the first-order condition of 𝑆𝑃𝑆𝐶  with respect to 𝑞 yields 
𝜕𝑆𝑃𝑆𝐶

𝜕𝑞
=

𝑃

√𝜉(𝑞)
�̅�(𝑞) ∫ 𝐹(𝑥)𝑑𝑥

𝑞

0
. Obviously, 

𝜕𝑆𝑃𝑆𝐶

𝜕𝑞
> 0. Furthermore, we have that 𝑆𝑃𝑆𝐶  is 

increasing in 𝑞. 

   (ii) Taking the first-order condition of 𝐸𝑃𝑆𝐶  with respect to 𝑞  yields 

𝜕𝐸𝑃𝑆𝐶

𝜕𝑞
= (𝑝 − 𝑐) − 𝑝𝐹(𝑞) . Since 

𝜕2𝐸𝑃𝑆𝐶

𝜕𝑞2
= −𝑝𝑓(𝑞) < 0 ,  𝐸𝑃𝑆𝐶  is concave. Let 

𝜕𝐸𝑃𝑆𝐶

𝜕𝑞
= 0. We have 𝑞𝑆𝐶,𝐸𝑃 = 𝐹−1(

𝑝−𝑐

𝑝
). Since 

𝜕𝜉(𝑞)

𝜕𝑞
= 2(1 − 𝐹(𝑞)) ∫ 𝐹(𝑥)𝑑𝑥

𝑞

0
> 0, 

𝜉(𝑞)  is increasing in 𝑞 . Let 𝑞𝑆𝐶,𝑆𝑃 = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑞{ 𝑆𝑃𝑆𝐶(𝑞) ≤ 𝐾𝑆𝐶} . When 

𝑆𝑃𝑆𝐶(𝑞𝑆𝐶,𝐸𝑃) > 𝐾𝑆𝐶 , then 𝑞𝑆𝐶,𝑆𝑃 < 𝑞𝑆𝐶,𝐸𝑃 . Since 𝐸𝑃𝑆𝐶  is increasing in 𝑞  in the 

interval (0, 𝑞𝑆𝐶,𝐸𝑃) , the optimal option quantity that satisfies (P1) 𝑞𝑆𝐶,𝑀𝑉 =

𝑞𝑆𝐶,𝑆𝑃 < 𝑞𝑆𝐶,𝐸𝑃 . When 𝑆𝑃𝑆𝐶(𝑞𝑆𝐶,𝐸𝑃) ≤ 𝐾𝑆𝐶 , then 𝑞𝑆𝐶,𝐸𝑃 ≤ 𝑞𝑆𝐶,𝑆𝑃 . The optimal 

option quantity that satisfies (P1) 𝑞𝑆𝐶,𝑀𝑉 = 𝑞𝑆𝐶,𝐸𝑃 ≤ 𝑞𝑆𝐶,𝑆𝑃. Therefore, 𝑞𝑆𝐶,𝑀𝑉 =

𝑚𝑖𝑛 {𝑞𝑆𝐶,𝐸𝑃, 𝑞𝑆𝐶,𝑆𝑃} . Since 𝑞𝑆𝐶,𝑆𝑃 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑞
  {𝑆𝑃𝑆𝐶(𝑞) ≤ 𝐾𝑆𝐶}  is increasing in 

𝐾𝑆𝐶 and 𝑞𝑆𝐶,𝐸𝑃 is independent of 𝐾𝑆𝐶, we have that 𝑞𝑆𝐶,𝑀𝑉 is non-decreasing in 

𝐾𝑆𝐶. 

 

Appendix B (Proof of Proposition 2) 

   Taking the first-order condition of 𝐸𝑃𝑅  with respect to 𝑞  yields 
𝜕𝐸𝑃𝑅

𝜕𝑞
=

(𝑝 − 𝑒 − 𝑜) − (𝑝 − 𝑒)𝐹(𝑞). Since 
𝜕2𝐸𝑃𝑅

𝜕𝑞2 = −(𝑝 − 𝑒)𝑓(𝑞) < 0, 𝐸𝑃𝑅   is concave. 
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Let 
𝜕𝐸𝑃𝑅

𝜕𝑞
= 0. We have 𝑞𝑅,𝐸𝑃(𝑜, 𝑒) = 𝐹−1(

𝑝−𝑒−𝑜

𝑝−𝑒
). Taking the first-order condition 

of 𝑞𝑅,𝐸𝑃(𝑜, 𝑒)  with respect to 𝑒  yields  
𝜕𝑞𝑅,𝐸𝑃(𝑜,𝑒)

𝜕𝑒
= −

𝑜

(𝑝−𝑒)2𝑓(𝑞𝑅,𝐸𝑃(𝑜,𝑒))
< 0 . 

Therefore, 𝑞𝑅,𝐸𝑃(𝑜, 𝑒) is decreasing in 𝑒. 

   Since 𝑞𝑅,𝑆𝑃(𝑒) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑞

{ 𝑆𝑃𝑅(𝑞) ≤ 𝐾𝑅} and  𝜉(𝑞) is increasing in 𝑞 , we 

have (𝑝 − 𝑒)√𝜉(𝑞𝑅,𝑆𝑃(𝑒)) = 𝐾𝑅  given any risk-aversion threshold 𝐾𝑅 . 

Furthermore, 
𝜕𝑞𝑅,𝑆𝑃(𝑒)

𝜕𝑒
=

𝜉(𝑞𝑅,𝑆𝑃(𝑒))

(𝑝−𝑒)𝐹(𝑞𝑅,𝑆𝑃(𝑒)) ∫ 𝐹(𝑥)𝑑𝑥
𝑞𝑅,𝑆𝑃(𝑒)

0

> 0 . Therefore, 𝑞𝑅,𝑆𝑃(𝑒)  is 

increasing in 𝑒. 

   Let 𝑒1 =  𝑝 −
𝑜

𝐹(𝑞𝑅,𝑀𝑉(𝑜,𝑒))
 be a unique root of 𝑞𝑅,𝐸𝑃(𝑜, 𝑒) = 𝑞𝑅,𝑆𝑃(𝑒). When 

 𝑒 < 𝑒1 , then 𝑞𝑅,𝑆𝑃(𝑒) < 𝑞𝑅,𝐸𝑃(𝑜, 𝑒)  and 𝑆𝑃𝑅(𝑞𝑅,𝐸𝑃(𝑜, 𝑒)) > 𝐾𝑅 . The optimal 

option quantity that satisfies (P1) 𝑞𝑅,𝑀𝑉(𝑜, 𝑒) = 𝑞𝑅,𝑆𝑃(𝑒) < 𝑞𝑅,𝐸𝑃(𝑜, 𝑒) . Hence, 

𝑞𝑅,𝑀𝑉(𝑜, 𝑒)  is increasing in 𝑒 . When 𝑒 ≥ 𝑒1 , then 𝑞𝑅,𝑆𝑃(𝑒) ≥ 𝑞𝑅,𝐸𝑃(𝑜, 𝑒)  and 

𝑆𝑃𝑅(𝑞𝑅,𝐸𝑃(𝑜, 𝑒)) ≤ 𝐾𝑅 . The optimal option quantity that satisfies (P1) 

𝑞𝑅,𝑀𝑉(𝑜, 𝑒) = 𝑞𝑅,𝐸𝑃(𝑜, 𝑒) ≤ 𝑞𝑅,𝑆𝑃(𝑒). Furthermore, 𝑞𝑅,𝑀𝑉(𝑜, 𝑒) is decreasing in 𝑒. 

Therefore, we have 𝑞𝑅,𝑀𝑉(𝑜, 𝑒) = 𝑚𝑖𝑛 {𝑞𝑅,𝐸𝑃(𝑜, 𝑒), 𝑞𝑅,𝑆𝑃(𝑒)}.  

 

Appendix C (Proof of Proposition 3)  

   Taking 𝑜 and 𝑒 as variables and solving the equation 𝑞𝑅,𝐸𝑃(𝑜, 𝑒) =  𝑞𝑆𝐶,𝑀𝑉, 

we obtain the following option contract set, denoted as  𝑀, where 𝑀 = {(𝑜, 𝑒): 𝑜 =

(𝑝 − 𝑒)�̅�(𝑞𝑆𝐶,𝑀𝑉)} . If 𝑆𝑃𝑅(𝑞𝑅,𝐸𝑃((𝑜, 𝑒)𝑀)) ≤ 𝐾𝑅 , then 𝑞𝑅,𝑀𝑉((𝑜, 𝑒)𝑀) =

𝑞𝑅,𝐸𝑃((𝑜, 𝑒)𝑀) = 𝑞𝑆𝐶,𝑀𝑉. The supply chain is coordinated under any option contract 

(𝑜, 𝑒) in the set 𝑀. Let 𝑞𝑅,𝑆𝑃(𝑒) =  𝑞𝑆𝐶,𝑀𝑉. We have 𝑒 = 𝑝 −
𝐾𝑅

√𝜉( 𝑞𝑆𝐶,𝑀𝑉)
. Taking 

𝑜 and 𝑒 as variables and solving the equation 𝑞𝑅,𝑆𝑃(𝑒) =  𝑞𝑆𝐶,𝑀𝑉, we obtain the 

following option contract set, denoted as 𝑁, where 𝑁 = {(𝑜, 𝑒): 𝑒 = 𝑝 −
𝐾𝑅

√𝜉( 𝑞𝑆𝐶,𝑀𝑉)
 }. 

If 𝑆𝑃𝑅(𝑞𝑅,𝐸𝑃((𝑜, 𝑒)𝑁)) ≥ 𝐾𝑅, then 𝑞𝑅,𝑀𝑉((𝑜, 𝑒)𝑁) = 𝑞𝑅,𝑆𝑃((𝑜, 𝑒)𝑁) = 𝑞𝑆𝐶,𝑀𝑉. The 

supply chain is coordinated under any option contract (𝑜, 𝑒) in the set 𝑁. If 

𝑆𝑃𝑅(𝑞𝑅,𝐸𝑃((𝑜, 𝑒)𝑁)) < 𝐾𝑅 < 𝑆𝑃𝑅(𝑞𝑅,𝐸𝑃((𝑜, 𝑒)𝑀)) , then 𝑞𝑅,𝐸𝑃((𝑜, 𝑒)𝑀) = 𝑞𝑆𝐶,𝑀𝑉 

and 𝑞𝑅,𝑆𝑃((𝑜, 𝑒)𝑁) = 𝑞𝑆𝐶,𝑀𝑉 . Since 𝑞𝑅,𝑆𝑃((𝑜, 𝑒)𝑀) < 𝑞𝑅,𝐸𝑃((𝑜, 𝑒)𝑀)  and 
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𝑞𝑅,𝐸𝑃((𝑜, 𝑒)𝑁) < 𝑞𝑅,𝑆𝑃((𝑜, 𝑒)𝑁) , we have 𝑞𝑅,𝑀𝑉((𝑜, 𝑒)𝑀) = 𝑞𝑅,𝑆𝑃((𝑜, 𝑒)𝑀) <

𝑞𝑆𝐶,𝑀𝑉 and 𝑞𝑅,𝑀𝑉((𝑜, 𝑒)𝑁) = 𝑞𝑅,𝐸𝑃((𝑜, 𝑒)𝑁) < 𝑞𝑆𝐶,𝑀𝑉. Therefore, the supply chain 

cannot be coordinated. 

 

Appendix D (Proof of Proposition 4) 

   From the expressions of the 𝐸𝑃 s and 𝑆𝑃 s of the supplier and retailer, 

Proposition 4 can be easily obtained. The details are therefore omitted. 

 

Appendix E (Proof of Lemma 1) 

   From Proposition 2(i), the retailer’s optimal order quantity is 𝑞 = 𝐹−1 (
𝑝−𝑒−𝑜

𝑝−𝑒
).  

For any given 𝑜 , 𝑒 = 𝑝 −
𝑜

𝐹(𝑞)
. Thus, 𝐸𝑃𝑆 = (𝑜 + 𝑒 − 𝑐)𝑞 − 𝑒 ∫ 𝐹(𝑥)𝑑𝑥 =

𝑞

0

(𝑝 − 𝑐 −
𝑜𝐹(𝑞)

𝐹(𝑞)
) 𝑞 − (𝑝 −

𝑜

𝐹(𝑞)
) ∫ 𝐹(𝑥)𝑑𝑥

𝑞

0
. The supplier’s problem of choosing 𝑒 is 

therefore equivalent to choosing 𝑞. Taking the first-order condition of 𝐸𝑃𝑆 with 

respect to 𝑞  yields 
𝜕𝐸𝑃𝑆

𝜕𝑞
= 𝑝�̅�(𝑞) − 𝑐 −

𝑜𝑓(𝑞)

𝐹(𝑞)2 ∫ �̅�(𝑥)𝑑𝑥 = 𝑝�̅�(𝑞) − 𝑐 −
𝑞

0

𝑜ℎ(𝑞)

𝑞𝐹(𝑞)
∫ �̅�(𝑥)𝑑𝑥

𝑞

0
. Taking the second-order derivative of 𝐸𝑃𝑆  with respect to  𝑞 

yields 
𝜕2𝐸𝑃𝑆

𝜕𝑞2
= −𝑝𝑓(𝑞) −

𝑜

𝑞2�̅�(𝑞)
{𝑞

𝜕ℎ(𝑞)

𝜕𝑞
∫ �̅�(𝑥)𝑑𝑥

𝑞

0
+ ℎ(𝑞)(𝑞�̅�(𝑞) + (ℎ(𝑞) −

1) ∫ �̅�(𝑥)𝑑𝑥)
𝑞

0
} . Let 𝑔(𝑞) = 𝑞�̅�(𝑞) + (ℎ(𝑞) − 1) ∫ �̅�(𝑥)𝑑𝑥)

𝑞

0
. Then, taking the 

first-derivative of 𝑔(𝑞)  with respect to 𝑞  yields 
𝜕𝑔(𝑞)

𝜕𝑞
= �̅�(𝑞) − 𝑞𝑓(𝑞) +

𝜕ℎ(𝑞)

𝜕𝑞
∫ �̅�(𝑥)𝑑𝑥

𝑞

0
+ (ℎ(𝑞) − 1)�̅�(𝑞) =

𝜕ℎ(𝑞)

𝜕𝑞
∫ �̅�(𝑥)𝑑𝑥

𝑞

0
. Since ℎ(𝑞) is increasing in 

𝑞 , 
𝜕ℎ(𝑞)

𝜕𝑞
> 0 . Furthermore, 

𝜕𝑔(𝑞)

𝜕𝑞
> 0 . Thus, 𝑔(𝑞) > 𝑔(0) = 0 . Therefore, 

𝜕2𝐸𝑃𝑆

𝜕𝑞2 < 0  and 𝐸𝑃𝑆  is concave. Based on 
𝜕𝐸𝑃𝑆

𝜕𝑞
= 0 , we have 𝑝�̅�(𝑞0) − 𝑐 −

𝑜𝑓(𝑞0)

𝐹(𝑞0)2 ∫ �̅�(𝑥)
𝑞0

0
𝑑𝑥 = 0.  

 

Appendix F (Proof of Proposition 5) 

   We first prove that the supplier’s expected profit is concave in 𝑒 when both the 

supplier and the retailer are risk-neutral. Then, we prove Proposition 5. 
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   Taking the first-order condition of 𝐸𝑃𝑆  with respect to 𝑒  yields 
𝜕𝐸𝑃𝑆

𝜕𝑒
=

(𝑜 − 𝑐 + 𝑒�̅�(𝑞𝑅,𝐸𝑃(𝑜, 𝑒))) 
𝜕𝑞𝑅,𝐸𝑃(𝑜,𝑒)

𝜕𝑒
+ ∫ �̅�(𝑥)𝑑𝑥 = (𝑝�̅�(𝑞𝑅,𝐸𝑃(𝑜, 𝑒)) − 𝑐)

𝑞𝑅,𝐸𝑃(𝑜,𝑒)

0
  

𝜕𝑞𝑅,𝐸𝑃(𝑜,𝑒)

𝜕𝑒
+ ∫ �̅�(𝑥)𝑑𝑥

𝑞𝑅,𝐸𝑃(𝑜,𝑒)

0
. Since �̅�(𝑞𝑅,𝐸𝑃(𝑜, 𝑒)) =

𝑜

𝑝−𝑒
, we have 

𝜕𝑞𝑅,𝐸𝑃(𝑜,𝑒)

𝜕𝑒
=

−
𝐹(𝑞𝑅,𝐸𝑃(𝑜,𝑒))

2

𝑜𝑓(𝑞𝑅,𝐸𝑃(𝑜,𝑒))
. Substituting 

𝜕𝑞𝑅,𝐸𝑃(𝑜,𝑒)

𝜕𝑒
 into  

𝜕𝐸𝑃𝑆

𝜕𝑒
 yields 

𝜕𝐸𝑃𝑆

𝜕𝑒
= −

𝐹(𝑞𝑅,𝐸𝑃(𝑜,𝑒))
2

𝑜𝑓(𝑞𝑅,𝐸𝑃(𝑜,𝑒))
(𝑝�̅� (�̅�(𝑞𝑅,𝐸𝑃(𝑜, 𝑒))) − 𝑐 −

𝑜𝑓(𝑞𝑅,𝐸𝑃(𝑜,𝑒))

𝐹(𝑞𝑅,𝐸𝑃(𝑜,𝑒))
2 ∫ �̅�(𝑥)𝑑𝑥)

𝑞

0
. From 

the proof of Lemma 1, 𝐸𝑃𝑆 (𝑞𝑅,𝐸𝑃(𝑜, 𝑒)) is increasing in the interval (0, 𝑞0] and 

decreasing in the interval [𝑞0, +∞) . Hence, if 𝑞𝑅,𝐸𝑃(𝑜, 𝑒) < 𝑞0 , then 

𝑝�̅� (𝑞𝑅,𝐸𝑃(𝑜, 𝑒)) − 𝑐 −
𝑜𝑓(𝑞𝑅,𝐸𝑃(𝑜,𝑒))

𝐹(𝑞𝑅,𝐸𝑃(𝑜,𝑒))
2 ∫ �̅�(𝑥)𝑑𝑥)

𝑞𝑅,𝐸𝑃(𝑜,𝑒)

0
> 0 . If 𝑞𝑅,𝐸𝑃(𝑜, 𝑒) ≥ 𝑞0 , 

then 𝑝�̅� (𝑞𝑅,𝐸𝑃(𝑜, 𝑒)) − 𝑐 −
𝑜𝑓(𝑞𝑅,𝐸𝑃(𝑜,𝑒))

𝐹(𝑞𝑅,𝐸𝑃(𝑜,𝑒))
2 ∫ �̅�(𝑥)

𝑞𝑅,𝐸𝑃(𝑜,𝑒)

0
𝑑𝑥 < 0. Since 

𝜕𝑞𝑅,𝐸𝑃(𝑜,𝑒)

𝜕𝑒
<

0, 
𝜕𝐸𝑃𝑆

𝜕𝑒
≥ 0 if 𝑒 ≤ 𝑒0 and 

𝜕𝐸𝑃𝑆

𝜕𝑒
< 0 if 𝑒 > 𝑒0. Therefore, the supplier’s expected 

profit without risk constraints is concave in 𝑒.  

   (i) If 𝐾𝑆 ≥ 𝑚𝑎𝑥𝑒{ 𝑆𝑃𝑆(𝑞𝑅,𝑀𝑉(𝑜, 𝑒))}, the supplier’s risk constraint is inactive.    

If 𝑒 ≤ 𝑒1 , then 𝑞𝑅,𝑀𝑉(𝑜, 𝑒) = 𝑞𝑅,𝑆𝑃(𝑒) ≤ 𝑞𝑅,𝐸𝑃(𝑜, 𝑒)  based on Proposition 2(i). 

Hence,  
𝜕𝐸𝑃𝑆

𝜕𝑒
= ∫ �̅�(𝑥)𝑑𝑥

𝑞𝑅,𝑆𝑃(𝑒)

0
+ (𝑜 − 𝑐 + 𝑒�̅�(𝑞𝑅,𝑆𝑃(𝑒)))

𝜕𝑞𝑅,𝑆𝑃(𝑒)

𝜕𝑒
. Since 

𝑞𝑅,𝑆𝑃(𝑒) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑞

{𝑆𝑃𝑅(𝑞, 𝑒) ≤ 𝐾𝑅} and  𝑆𝑃𝑅(𝑞, 𝑒) is increasing in 𝑞𝑅,𝑆𝑃(𝑒), we 

have (𝑝 − 𝑒)�̅� (𝑞𝑅,𝑆𝑃(𝑒)) ∫ 𝐹(𝑥)𝑑𝑥
𝑞𝑅,𝑆𝑃(𝑒)

0

𝑞𝑅,𝑆𝑃(𝑒)

𝜕𝑒
= 𝜉 (𝑞𝑅,𝑆𝑃(𝑒)) = 2𝑞𝑅,𝑆𝑃(𝑒) 

∫ 𝐹(𝑥)𝑑𝑥 − 2 ∫ 𝑥𝐹(𝑥)𝑑𝑥
𝑞𝑅,𝑆𝑃(𝑒)

0
− (∫ 𝐹(𝑥)𝑑𝑥

𝑞𝑅,𝑆𝑃(𝑒)

0
)

2𝑞𝑅,𝑆𝑃(𝑒)

0
= 𝑞𝑅,𝑆𝑃(𝑒) 

∫ 𝐹(𝑥)𝑑𝑥
𝑞𝑅,𝑆𝑃(𝑒)

0
+ ∫ (𝑞𝑅,𝑆𝑃(𝑒) − 2𝑥 )𝐹(𝑥)𝑑𝑥 + ∫ (𝑞𝑅,𝑆𝑃(𝑒) −

𝑞𝑅,𝑆𝑃(𝑒)
𝑞𝑅,𝑆𝑃(𝑒)

2

𝑞𝑅,𝑆𝑃(𝑒)

2
0

2𝑥)𝐹(𝑥) 𝑑𝑥 − (∫ 𝐹(𝑥)𝑑𝑥
𝑞𝑅,𝑆𝑃(𝑒)

0
)

2

< 𝑞𝑅,𝑆𝑃(𝑒) ∫ 𝐹(𝑥)𝑑𝑥 + 𝐹 (
𝑞𝑅,𝑆𝑃(𝑒)

2
)

𝑞𝑅,𝑆𝑃(𝑒)

0
 

(∫ (𝑞𝑅,𝑆𝑃(𝑒) − 2𝑥)𝑑𝑥 + ∫ (
𝑞𝑅,𝑆𝑃(𝑒)

𝑞𝑅,𝑆𝑃(𝑒)

2

𝑞𝑅,𝑆𝑃(𝑒)

2
0

𝑞𝑅,𝑆𝑃(𝑒)  − 2𝑥)𝑑𝑥) −

(∫ 𝐹(𝑥)𝑑𝑥
𝑞𝑅,𝑆𝑃(𝑒)

0
)

2

= 𝑞𝑅,𝑆𝑃(𝑒) ∫ 𝐹(𝑥)𝑑𝑥 −
𝑞𝑅,𝑆𝑃(𝑒)

0
(∫ 𝐹(𝑥)𝑑𝑥

𝑞𝑅,𝑆𝑃(𝑒)

0
)

2

.  

Furthermore, (𝑝 − 𝑒)�̅� (𝑞𝑞𝑅,𝑆𝑃(𝑒))
𝜕𝑞𝑅,𝑆𝑃(𝑒)

𝜕𝑒
≤ ∫ �̅�(𝑥)𝑑𝑥

𝑞𝑅,𝑆𝑃(𝑒)

0
. Hence, we have  
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𝜕𝐸𝑃𝑆

𝜕𝑒
≥

𝜕𝑞𝑅,𝑆𝑃(𝑒)

𝜕𝑒
(𝑝�̅� (𝑞𝑅,𝑆𝑃(𝑒)) + 𝑜 − 𝑐). Let  𝑒𝑠 satisfy the equation  

𝑞𝑅,𝑆𝑃( 𝑒𝑠) = 𝐹−1(
𝑝+𝑜−𝑐

𝑝
). If 𝑒1 <  𝑒𝑠, then 𝑞𝑅,𝑆𝑃(𝑒) ≤ 𝑞𝑅,𝑆𝑃( 𝑒1) < 𝑞𝑅,𝑆𝑃( 𝑒𝑠).  

Furthermore, �̅�(𝑞𝑅,𝑆𝑃(𝑒)) + 𝑜 − 𝑐 > 𝑝�̅� (𝑞𝑅,𝑆𝑃( 𝑒𝑠)) + 𝑜 − 𝑐＝0 . Therefore, 

𝜕𝐸𝑃𝑆

𝜕𝑒
> 0. If 𝑒1 ≥  𝑒𝑠, then �̅�(𝑞0) >

𝑐

𝑝
>

𝑐−𝑜

𝑝
= �̅�(𝑞𝑅,𝑆𝑃(𝑒𝑆)) based on Lemma 1. 

Furthermore, 𝑞0 < 𝑞𝑅,𝑆𝑃(𝑒𝑆) ≤ 𝑞𝑅,𝑆𝑃(𝑒1) = 𝑞𝑅,𝐸𝑃(𝑜, 𝑒1) . Therefore, 𝑒 ≤ 𝑒1 < 𝑒0 . 

Since 𝑞𝑅,𝑆𝑃(𝑒) is increasing in 𝑒, 𝐸𝑃𝑆  is increasing in 𝑒. Furthermore, 𝐸𝑃𝑆  is 

increases with 𝑒 in the interval (𝑐 − 𝑜, 𝑒1). Therefore, we have 𝑒∗ =  𝑒1. If 𝑒 > 𝑒1, 

then 𝑞𝑅,𝑀𝑉(𝑜, 𝑒) = 𝑞𝑅,𝐸𝑃(𝑜, 𝑒) based on Proposition 2(ii). In this case, the retailer’s 

risk constraint is inactive. Therefore, if 𝑒0 ≥ e1, then  𝑒∗ =  𝑒0. If 𝑒0 < e1, then 

𝐸𝑃𝑆  is decreasing in 𝑒  in the interval (𝑒1, 𝑝 − 𝑜) , and we have 𝑒∗ = 𝑒1 . 

Furthermore, 𝑒∗ = 𝑚𝑎𝑥 {𝑒1, 𝑒0}. 

   If 𝐾𝑆 < 𝑚𝑎𝑥𝑒{ 𝑆𝑃𝑆(𝑞𝑅,𝑀𝑉(𝑜, 𝑒))} , then there exists 𝑞𝑆,𝑆𝑃(𝑒)  to satisfy 

𝑞𝑆,𝑆𝑃(𝑒) < 𝑞𝑅,𝑀𝑉(𝑜, 𝑒). Since 𝑞𝑆,𝑆𝑃(𝑒) = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑞{ 𝑆𝑃𝑆(𝑞, 𝑒) ≤ 𝐾𝑆} and  𝜉(𝑞) is 

increasing in 𝑞, we have 𝑒√𝜉(𝑞𝑆,𝑆𝑃(𝑒)) = 𝐾𝑆 given any risk-aversion threshold 

𝐾𝑆 . Furthermore, 
𝜕𝑞𝑆,𝑆𝑃(𝑒)

𝜕𝑒
=

−𝜉(𝑞𝑆,𝑆𝑃(𝑒))

𝑒𝐹(𝑞𝑅,𝑆𝑃(𝑒)) ∫ 𝐹(𝑥)𝑑𝑥
𝑞𝑆,𝑆𝑃(𝑒)

0

< 0 . Therefore, 𝑞𝑆,𝑆𝑃(𝑒)  is 

decreasing in 𝑒 . Furthermore, the equation 𝑞𝑅,𝑀𝑉(𝑜, 𝑒) = 𝑞𝑆,𝑆𝑃(𝑒)  has two 

solutions. Define by 𝑒𝑡 the corresponding exercise price such that 𝑞𝑅,𝑀𝑉(𝑜, 𝑒𝑡) =

𝑞𝑆,𝑆𝑃(𝑒𝑡), where 𝑡 = 𝑙, 𝑢. 

 If 𝑚𝑎𝑥 {𝑆𝑃𝑆 (𝑞𝑅,𝑀𝑉(𝑜, 𝑒0)) , 𝑆𝑃𝑆(𝑞𝑅,𝑀𝑉(𝑜, 𝑒1))} ≤ 𝐾𝑆 < 𝑚𝑎𝑥
𝑒

{𝑆𝑃𝑆 (𝑞𝑅,𝑀𝑉(𝑜, 𝑒))} , 

then 𝑚𝑎𝑥{ 𝑒0, 𝑒1} ≤ 𝑒𝑙  or  𝑚𝑎𝑥{ 𝑒0, 𝑒1} > 𝑒𝑢 . The supplier maximizes the 

expected profit at point 𝑒 = 𝑒0 or 𝑒 = 𝑒1. Therefore, if 𝑒0 ≥ 𝑒1, then  𝑒∗ =  𝑒0. If 

𝑒0 < 𝑒1, then 𝐸𝑃𝑆 is increasing in 𝑒 in the interval (𝑐 − 𝑜, 𝑒1] and is decreasing 

in 𝑒  in the interval (𝑒1, 𝑝 − 𝑜) . Hence, 𝑒∗ = 𝑒1 . Furthermore, we have 𝑒∗ =

𝑚𝑎𝑥 {𝑒1, 𝑒0}.  

    (ii) If  𝐾𝑆 < 𝑚𝑎𝑥 {𝑆𝑃𝑆 (𝑞𝑅,𝑀𝑉(𝑜, 𝑒0)) , 𝑆𝑃𝑆(𝑞𝑅,𝑀𝑉(𝑜, 𝑒1))}, then 𝑒𝑙 ≤ 𝑚𝑎𝑥 { 𝑒0,

𝑒1} ≤ 𝑒𝑢. When 𝑒𝑙 < 𝑒 < 𝑒𝑢, then 𝑞𝑆,𝑆𝑃(𝑒) < 𝑞𝑅,𝑀𝑉(𝑜, 𝑒). Therefore, the supplier 

chooses 𝑒 ∈ (𝑐 − 𝑜, 𝑒𝑙]𝑈[𝑒𝑢, 𝑝 − 𝑜). From the proof of (i), 𝐸𝑃𝑆 (𝑞𝑅,𝑀𝑉(𝑜, 𝑒)) is 
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increasing in 𝑒  in the interval (𝑐, 𝑒𝑙]  and decreasing in 𝑒  in the interval 

[𝑒𝑢, 𝑝 − 𝑜) . Therefore, we have 

𝑒∗ = 𝑎𝑟𝑔𝑚𝑎𝑥{𝐸𝑃𝑆 (𝑞𝑅,𝑀𝑉(𝑜, 𝑒𝑙)) , 𝐸𝑃𝑆 (𝑞𝑅,𝑀𝑉(𝑜, 𝑒𝑢))}. 

 

Appendix G (Proof of Lemma 2) 

    If 𝐾𝑅
′ > 𝐾𝑅 , then 𝑞𝑅,𝑆𝑃(𝑒1, 𝐾𝑅) < 𝑞𝑅,𝑆𝑃(𝑒1, 𝐾𝑅

′ ) . Furthermore, 𝑒1(𝐾𝑅
′ ) <

𝑒1(𝐾𝑅).  

    (i) If 𝐾𝑆 ≥ 𝑚𝑎𝑥 {𝑆𝑃𝑆 (𝑞𝑅,𝑀𝑉(𝑜, 𝑒0)) , 𝑆𝑃𝑆(𝑞𝑅,𝑀𝑉(𝑜, 𝑒1))}, then 𝑒∗ = 𝑚𝑎𝑥 { 𝑒0,

𝑒1} and the supplier’s risk constraint is inactive. There exist the following three 

subcases.  

Subcase 1: if  𝑒0 < 𝑒1(𝐾𝑅
′ ) < 𝑒1(𝐾𝑅), then the estimated exercise price is 

𝑒∗(𝐾𝑅
′ ) = 𝑒1(𝐾𝑅

′ ), while the optimal exercise price based on the true information is 

𝑒∗(𝐾𝑅) = 𝑒1(𝐾𝑅). Thus, 𝑒∗(𝐾𝑅
′ ) < 𝑒∗(𝐾𝑅).  

    Subcase 2: if 𝑒1(𝐾𝑅
′ ) < 𝑒0 < 𝑒1(𝐾𝑅), then the estimated exercise price is 

𝑒∗(𝐾𝑅
′ ) = 𝑒0, while the optimal exercise price based on the true information is 

𝑒∗(𝐾𝑅) = 𝑒1(𝐾𝑅). Thus, 𝑒∗(𝐾𝑅
′ ) < 𝑒∗(𝐾𝑅). 

    Subcase 3: if 𝑒1(𝐾𝑅
′ ) < 𝑒1(𝐾𝑅) < 𝑒0, then the estimated exercise price is equal 

to the optimal exercise price based on the true information, i.e., 𝑒∗(𝐾𝑅
′ ) = 𝑒∗(𝐾𝑅) =

𝑒0.  

(ii) If 𝐾𝑆 < 𝑚𝑎𝑥 {𝑆𝑃𝑆 (𝑞𝑅,𝑀𝑉(𝑜, 𝑒0)) , 𝑆𝑃𝑆(𝑞𝑅,𝑀𝑉(𝑜, 𝑒1))} , then 𝑒∗ =

𝑎𝑟𝑔𝑚𝑎𝑥{𝐸𝑃𝑆 (𝑞𝑅,𝑀𝑉(𝑜, 𝑒𝑙)) , 𝐸𝑃𝑆 (𝑞𝑅,𝑀𝑉(𝑜, 𝑒𝑢))}. Since 𝐾𝑅
′ > 𝐾𝑅 , 𝑞𝑅,𝑆𝑃(𝑒, 𝐾𝑅) <

𝑞𝑅,𝑆𝑃(𝑒, 𝐾𝑅
′ ). Furthermore, 𝑞𝑅,𝑀𝑉(𝑒, 𝐾𝑅) < 𝑞𝑅,𝑀𝑉(𝑒, 𝐾𝑅

′ ). From Proposition 5(i), we 

know that 𝑞𝑆,𝑆𝑃(𝑒)  is decreasing in 𝑒 . Since 𝑞𝑅,𝑀V(𝑒, 𝐾𝑅) < 𝑞𝑅,𝑀𝑉(𝑒, 𝐾𝑅
′ ) , 

𝑒𝑡(𝐾𝑅
′ ) ≤ 𝑒𝑡(𝐾𝑅), where 𝑡 = 𝑙, 𝑢. From Proposition 2, 𝑞𝑅,𝑆𝑃(𝑒) is increasing in 𝑒 

while 𝑞𝑅,𝐸𝑃(𝑜, 𝑒) is decreasing in 𝑒. Therefore, the equation 𝑞𝑅,𝑆𝑃(𝑒) = 𝑞𝑆,𝑆𝑃(𝑒) 

has at most one solution, 𝑒 = 𝑒𝑙. The equation 𝑞𝑅,𝐸𝑃(𝑜, 𝑒) = 𝑞𝑆,𝑆𝑃(𝑒) has at least 

one solution, 𝑒 = 𝑒𝑢. There exist the following two subcases.  

   Subcase 1: if 𝑒∗ = 𝑒𝑙, then the estimated exercise price is 𝑒∗(𝐾𝑅
′ ) = 𝑒𝑙(𝐾𝑅

′ ), 
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while the optimal exercise price based on the true information is 𝑒∗(𝐾𝑅) = 𝑒𝑙(𝐾𝑅). 

Therefore, 𝑒∗(𝐾𝑅
′ ) < 𝑒∗(𝐾𝑅).  

   Subcase 2: if 𝑒∗ = 𝑒𝑢, then the estimated exercise price is equal to the optimal 

exercise price based on the true information, i.e., 𝑒∗(𝐾𝑅
′ ) = 𝑒∗(𝐾𝑅) = 𝑒𝑢.  

   To summarize the proofs of (i) and (ii), we have 𝑒∗(𝐾𝑅
′ ) ≤ 𝑒∗(𝐾𝑅).   

   Taking the first derivative of 𝐸𝑃𝑅  with respect to 𝑒  yields 
𝜕𝐸𝑃𝑅

𝜕𝑒
= ((𝑝 −

𝑒)�̅� (𝑞𝑅,𝑀𝑉(𝑜, 𝑒)) − 𝑜)
𝜕𝑞𝑅,𝑀𝑉(𝑜,𝑒)

𝜕𝑒
− ∫ �̅�(𝑥)𝑑𝑥

𝑞𝑅,𝑀𝑉(𝑜,𝑒)

0
. When 𝑞𝑅,𝑀𝑉(𝑜, 𝑒) =

𝑞𝑅,𝑆𝑃(𝑒), then (𝑝 − 𝑒)�̅� (𝑞𝑅,𝑆𝑃(𝑒))
𝜕𝑞𝑅,𝑆𝑃(𝑒)

𝜕𝑒
≤ ∫ �̅�(𝑥)𝑑𝑥

𝑞𝑅,𝑆𝑃(𝑒)

0
 based on the proof of 

Proposition 5(i). Furthermore, 
𝜕𝐸𝑃𝑅

𝜕𝑒
< 0 . When 𝑞𝑅,𝑀𝑉(𝑜, 𝑒) = 𝑞𝑅,𝐸𝑃(𝑜, 𝑒) , then 

�̅�(𝑞𝑅,𝐸𝑃(𝑜, 𝑒)) =
𝑜

𝑝−𝑒
. Furthermore, 

𝜕𝐸𝑃𝑅

𝜕𝑒
= − ∫ �̅�(𝑥)𝑑𝑥 < 0

𝑞𝑅,𝑀𝑉(𝑜,𝑒)

0
. Therefore, 

𝐸𝑃𝑅  is decreasing in 𝑒 . Since 𝑒∗(𝐾𝑅
′ ) ≤ 𝑒∗(𝐾𝑅) , 𝐸𝑃𝑅(𝐾𝑅

′ ) ≥ 𝐸𝑃𝑅(𝐾𝑅) . The 

retailer has an incentive to pretend to be less risk averse.  

 

Appendix H (Proof of Proposition 6) 

   (i) When 𝐾𝑆 ≥ 𝑚𝑎𝑥 {𝑆𝑃𝑆 (𝑞𝑅,𝑀𝑉(𝑜, 𝑒0)) , 𝑆𝑃𝑆(𝑞𝑅,𝑀𝑉(𝑜, 𝑒1))} , then 𝑒∗ =

𝑚𝑎𝑥 { 𝑒0, 𝑒1}  and the supplier’s risk constraint is inactive. If 𝐾𝑅
′ > 𝐾𝑅 , then 

𝑞𝑅,𝑆𝑃(𝑒1, 𝐾𝑅) < 𝑞𝑅,𝑆𝑃(𝑒1, 𝐾𝑅
′ ) . Furthermore, 𝑒1(𝐾𝑅

′ ) < 𝑒1(𝐾𝑅) . There exist the 

following three subcases. 

   Subcase 1: if  𝑒0 < 𝑒1(𝐾𝑅
′ ) < 𝑒1(𝐾𝑅) , then 𝑒∗(𝐾𝑅

′ ) = 𝑒1(𝐾𝑅
′ ) < 𝑒∗(𝐾𝑅) =

𝑒1(𝐾𝑅). Therefore, the supplier’s estimated option quantity is 𝑞𝑅,𝑀𝑉(𝑜, 𝑒∗(𝐾𝑅
′ )) =

𝑞𝑅,𝑆𝑃(𝑒1(𝐾𝑅
′ ), 𝐾𝑅

′ ). Based on 𝑒∗(𝐾𝑅
′ ) and the true 𝐾𝑅, the retailer orders the option 

quantity of 𝑞𝑅,𝑆𝑃(𝑒1(𝐾𝑅
′ ), 𝐾𝑅) . Since 𝐾𝑅

′ > 𝐾𝑅 , 

𝑞𝑅,𝑆𝑃(𝑒1(𝐾𝑅
′ ), 𝐾𝑅) < 𝑞𝑅,𝑆𝑃(𝑒1(𝐾𝑅

′ ), 𝐾𝑅
′ ). Hence, 𝑞𝑚𝑖𝑛 = 𝑞𝑅,𝑆𝑃(𝑒1(𝐾𝑅

′ ), 𝐾𝑅
′ ).    

   Subcase 2: if 𝑒1(𝐾𝑅
′ ) < 𝑒0 < 𝑒1(𝐾𝑅), then 𝑒∗(𝐾𝑅

′ ) = 𝑒0 < 𝑒∗(𝐾𝑅) = 𝑒1(𝐾𝑅). 

Therefore, the supplier’s estimated option quantity is 𝑞𝑅,𝑀𝑉(𝑜, 𝑒∗(𝐾𝑅
′ )) =

𝑞𝑅,𝐸𝑃(𝑜, 𝑒0). Based on 𝑒∗(𝐾𝑅
′ ) and the true 𝐾𝑅, the retailer orders the actual option 

quantity of 𝑞𝑅,𝑆𝑃(𝑒0, 𝐾𝑅). From the proof of Proposition 2, 𝑞𝑅,𝑆𝑃(𝑒) is increasing 

in 𝑒 , while 𝑞𝑅,𝐸𝑃(𝑜, 𝑒)  is decreasing in 𝑒 . Furthermore, 𝑞𝑅,𝑆𝑃(𝑒0, 𝐾𝑅) <
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𝑞𝑅,𝑆𝑃(𝑒1(𝐾𝑅), 𝐾𝑅) = 𝑞𝑅,𝐸𝑃(𝑜, 𝑒1(𝐾𝑅)) < 𝑞𝑅,𝐸𝑃(𝑜, 𝑒0) . Hence, 

𝑞𝑚𝑖𝑛 = 𝑞𝑅,𝑀𝑉(𝑜, 𝑒∗(𝐾𝑅
′ )) = 𝑞𝑅,𝐸𝑃(𝑜, 𝑒0). 

   Subcase 3: if 𝑒1(𝐾𝑅
′ ) < 𝑒1(𝐾𝑅) < 𝑒0 , then 𝑒∗(𝐾𝑅

′ ) = 𝑒(𝐾𝑅) = 𝑒0 . Therefore, 

the supplier’s estimated option quantity equals the retailer’s actual option quantity, 

i.e.,  𝑞𝑅,𝑀𝑉(𝑜, 𝑒∗(𝐾𝑅)) = 𝑞𝑅,𝑀𝑉(𝑜, 𝑒∗(𝐾𝑅
′ )) = 𝑞𝑅,𝐸𝑃(𝑜, 𝑒0) . Furthermore, the 

supplier’s optimal exercise price 𝑒0 is independent of the retailer’s risk aversion 

threshold. The faked information 𝐾𝑅
′  has no impact on the supplier’s decision. 

Hence, 𝑞𝑚𝑖𝑛 = 𝑞𝑅,𝐸𝑃(𝑜, 𝑒0). 

   (ii) When 𝐾𝑆 < 𝑚𝑎𝑥 {𝑆𝑃𝑆 (𝑞𝑅,𝑀𝑉(𝑜, 𝑒0)) , 𝑆𝑃𝑆(𝑞𝑅,𝑀𝑉(𝑜, 𝑒1))} , then 𝑒∗ =

𝑎𝑟𝑔𝑚𝑎𝑥{𝐸𝑃𝑆 (𝑞𝑅,𝑀𝑉(𝑜, 𝑒𝑙)) , 𝐸𝑃𝑆 (𝑞𝑅,𝑀𝑉(𝑜, 𝑒𝑢))} . If 𝐾𝑅
′ > 𝐾𝑅 , then 𝑒𝑙(𝐾𝑅

′ ) <

𝑒𝑙(𝐾𝑅) and 𝑒𝑢(𝐾𝑅
′ ) = 𝑒𝑢(𝐾𝑅) = 𝑒𝑢 based on the proof of Lemma 2(ii). There exist 

the following two subcases. 

   Subcase 1: if 𝑒∗ = 𝑒𝑙 , then 𝑒∗(𝐾𝑅
′ ) = 𝑒𝑙(𝐾𝑅

′ ) < 𝑒∗(𝐾𝑅) = 𝑒𝑙(𝐾𝑅). Therefore, 

the supplier’s estimated option quantity is 𝑞𝑅,𝑀𝑉(𝑜, 𝑒∗(𝐾𝑅
′ )) = 𝑞𝑅,𝑆𝑃(𝑒𝑙(𝐾𝑅

′ ), 𝐾𝑅
′ ). 

Based on 𝑒∗(𝐾𝑅
′ ) and the true 𝐾𝑅, the retailer orders the actual option quantity of 

𝑞𝑅,𝑆𝑃(𝑒𝑙(𝐾𝑅
′ ), 𝐾𝑅) . Obviously, 𝑞𝑅,𝑆𝑃(𝑒𝑙(𝐾𝑅

′ ), 𝐾𝑅) < 𝑞𝑅,𝑆𝑃(𝑒𝑙(𝐾𝑅
′ ), 𝐾𝑅

′ ) . Hence, 

𝑞𝑚𝑖𝑛 = 𝑞𝑅,𝑆𝑃(𝑒𝑙(𝐾𝑅
′ ), 𝐾𝑅

′ ). 

   Subcase 2: if 𝑒∗ = 𝑒𝑢, then 𝑒∗(𝐾𝑅
′ ) = 𝑒∗(𝐾𝑅) = 𝑒𝑢. Therefore, the supplier’s 

estimated option quantity equals the retailer’s actual option quantity, 

i.e., 𝑞𝑅,𝑀𝑉(𝑜, 𝑒∗(𝐾𝑅
′ )) = 𝑞𝑅,𝑀𝑉(𝑜, 𝑒∗(𝐾𝑅)) = 𝑞𝑅,𝐸𝑃(𝑜, 𝑒𝑢). Therefore, the supplier’s 

optimal exercise price 𝑒𝑢 is independent of the retailer’s risk aversion threshold. 

The faked information 𝐾𝑅
′  has no impact on the supplier’s decision. Hence, 

𝑞𝑚𝑖𝑛 = 𝑞𝑅,𝐸𝑃(𝑜, 𝑒𝑢).  
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