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Finding the optimized trade-off relationship between cost and time, two important objectives of construction
projects, helps project managers and their teams select a more suitable schedule for a given project. This
trade-off relationship can roughly be estimated using past and cumulative knowledge, but since the early
1970s, researchers have been working on a systematic and mathematical solution to define this relationship
more accurately. These researchers have used different optimization techniques such as the genetic algorithm
(GA), ant colony, and fuzzy logic to further explore the relationship.
In the present paper, the authors have used their previously introduced construction schedule generator algo-
rithm to present graphical relationships between pre-defined objectives of schedule optimizations. The process
starts with developing construction schedules from the project's Building InformationModel (BIM) as part of the
input along with resource data. Then the process continues with optimization of all developed construction
schedules according to the two mentioned objectives along with the introduced job-site movement objective,
which mathematically helps the sequence of installation be more logical and practical. Finally generation of a
3D space for all the created and calculated construction schedules in the form of a 3D solution cloud point.
These 3D construction schedules show solution cloud points and three Pareto Fronts for the given project.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Extending or shortening a construction project's duration clearly af-
fects the total construction cost. The most important aspect is how pro-
ject time and cost are related, and howmuch a single change in either of
them, can effect and change the other one. This means the in-between
relationship needs to be formulated and shown graphically in order to
bring a better understanding of the effects. Several successful attempts
have been conducted to show this relationship. Different optimization
tools have been applied to find the time–cost relationship of projects
[10]. In most cases, optimization tools that can produce numerous out-
puts while optimizing the solutions (e.g., genetic algorithm) are se-
lected for this type of research. This feature of having numerous
outputs can result in a Pareto Front graph representing the relationship
between the defined objectives. Therefore, for each optimization output
(project schedule in this context), multiple objective scores are needed.
A common problem is whether the original project schedules are com-
prehensive enough to cover all project elements and needed tasks. It is
important to make sure that the initial project schedule represents the
reinschmidt@civil.tamu.edu
project well so that the optimization makes sense. The Building Infor-
mation Model (BIM), on the other hand, contains all the project infor-
mation in a 3D representation view. This source of project data can be
and possibly should be used for the mentioned optimization purposes
and to generate project specific time–cost optimization (TCO) graphs
and reports.

The contribution of the current research is the ability to use the in-
herent data of a construction project from its BIM to generate the pro-
ject schedule initially and then find and calculate the relationship
between predefined objectives for the given project. Thus, the main
purpose of this paper is to use the outputs of the previously developed
algorithm to find the relationship between the defined objectives.
These objectives are “cost,” “time,” and “job-site movements.” As the
first step toward conducting this research of finding objective relation-
ships, the authors extracted and calculated a matrix of constructability
relationships between all the elements directly from the BIMof the pro-
ject and called our calculations a matrix of constructability constraints
(MoCC).

Using the GA and the MoCC as the primary calculation basis for the
GA fitness function, the authors developed a method that was able to
generate valid construction sequencing of the building structure for
the given 3Dmodel [11]. By “a valid construction sequence,” the authors
imply that all the project elements are scheduled for installation in a
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way that the structural stability requirements of the building are pre-
served throughout the construction process. To make the algorithm
more mature and complete, the authors defined a new objective as
“job-site movements.” This new objective is supposed to make element
installation patternsmore logical and acceptable byminimizing the dis-
tance between installation groups of each type of element. By minimiz-
ing the distances, the installation patterns of the elements tend to get
more logical and doable in the construction process. The authors imple-
mented this new objective alongwith cost and time in the GA optimiza-
tion process. By developing this three-objective GA (cost, time, and
minimal distance), the entire proposed method is able to generate con-
structible and optimized construction schedules only from the BIM of a
project.

This section is followed by a comprehensive literature review on
multi-objective genetic algorithmas the chosenmethodology in this re-
search. Then, Section 4 will provide a descriptive section on how the 3D
model input is handled along with the process of generating MoCC.
Next, Section 5 gives a definition of the genetic algorithm and lists the
objectives. After that, input parameters of the entire algorithm are elab-
orated upon in Section 6, followed by Section 7 with tests and their re-
sults. Finally, the conclusion section and future works are summarized
in Section 8.

2. Literature review

This research is mainly focused on using the genetic algorithm for the
calculation and optimization of defined objectives. The genetic algorithm
is selected as the optimization tool for this research, not because it is the
only or the best optimization tool for multi-objective optimization prob-
lems, but because of the nature of the extracted data from the BIM of
the project and how easily data can be translated to GA genomes. Obvi-
ously, other optimization methods, as long as they can use existing data
from BIM, can replace GA in further research for evaluation and compar-
ison purposes. The other optimization methods that have already been
used for the time–cost optimization problem in the construction industry
and are known by their ant colony optimization (e.g. [18,22,31]), particle
swarm optimization (e.g. [20,32,33]), linear and integer programming
(e.g. [21]), artificial intelligent system (e.g. [6]), andmathematicalmodel-
ing (e.g. [23]). Thesemethods can be evaluated later and compared to GA
when using BIM data to do time–cost optimization, which can also be re-
ferred to as ant colony optimization. In current research, a 3Dmodel along
with other GA variables are imported into the genetic algorithm, after
which, the algorithm yields numerous logical and constructible schedules
for the given 3D model. These results from GA are used to generate 3D
cloud point and Pareto front graphs. Therefore, the literature review for
this research is limited to multi-objective genetic algorithms used for
the optimization of construction projects.

For multi-objective optimization of construction schedules, the GA
has been used successfully among researchers solving engineering
problems [12]. In 1997, Feng et al. [12]) introduced a GA methodology
for optimizing time–cost relationships in construction projects. They
also produced a computer application based on their methodology,
which could run the algorithm. Zheng et al. [35]) also showed their in-
terests in using GA for time–cost trade-off optimization problems in
construction projects. By comparing GA with other techniques, they
showed that GA is capable of generating the most optimum results for
the time–cost optimization (TCO) problems in large construction pro-
jects. They also presented their ownmulti-objective GA using the adap-
tive weight approach, which was able to point out an optimal total
project cost and duration [36]. In their next step, they showed that
using niche formation, Pareto ranking, and the adaptive weighting ap-
proach in multi-objective GA could result in more robust time–cost op-
timization results [37].

In 2005, Azaron et al. [4]) introduced theirmulti-objectiveGA for solv-
ing time–cost relationship problems, specifically in PERT networks. In
their research they defined four objectives as minimizing project direct
cost,minimizingmean of project duration,minimizing variance of project
duration, and maximizing probability of reaching project duration limit.
Another group of researchers developed their own multi-objective GA
to reach set of project schedules with near optimum duration, cost, and
resource allocation and embedded their algorithm as a MS Project
macro [9]. In 2008, a multi-objective GA was introduced for scheduling
linear construction projects and focused on optimizing both project cost
and time as its objectives [26]. Hooshyar et al. [13] presented their GA
time–cost tradeoff problem solver with higher calculation speed than
made possible in the highly efficient Siemens' algorithm [27].

Abd El Razek et al. [1]) developed an algorithm that used the line-of-
balance technique and critical path method concepts in a multi-
objective GA. This proposed algorithm was designed to help project
planners in optimizing resource usage. This resource usage optimization
was conducted by minimizing cost and timewhile maximizing the pro-
ject quality by increasing the resource usage efficiency. Late in 2011,
Mohammadi [25]) introduced his MOGA (multi-objective genetic algo-
rithm) that generated Pareto front in its approach toward solving the
time cost optimization (TCO) problem in industrial environment. In
2012, Lin et al. [19] designed and introduced their multi-section GA
model for scheduling problems. They combined that model with their
proposed network modeling technique to perform automatic schedul-
ing in the manufacturing system.

In recent years also, researchers have shown interest in newways to
solve the time–cost optimization problem. Amiri et al. [3] added quality
to the TCO problem and used the Non-dominated Sorting Genetic
Algorithm-II (NSGA-II) for time–cost–quality trade-off project schedul-
ing problems (GPDTCQTP). Ke [15]) considered the indeterminacy of
the environment in the proposedmodel and used the genetic algorithm
to solve uncertain time–cost trade-off problems. Using Line of Balance
(LoB) technique, Agrama [2]) used her MOGA for schedulingmultistory
buildings, in which project duration, total crews, and total interruptions
were defined as conflicting objectives. Cheng and Tran [7]) proposed a
novel approach by introducing their two-phase differential evolution
(DE)modelwhichwas able to successfully reflect both time–cost effects
and resource constraints. They [8] included opposition technique to
their multi-objective DE, introducing the Opposition-based Multiple
Objective Differential Evolution (OMODE), to solve the time–cost-utili-
zation work shift tradeoff (TCUT) problem. They continued their work
[28] on the TCO problem by proposing a new hybrid multiple objective
evolutionary algorithm that is based on the hybridization of an artificial
bee colony and DE (MOABCDE-TCQT). Later on Tran et al. [29]) showed
the benefits of using their novel approach named “Multiple Objective
Symbiotic Organisms Search” (MOSOS) to solve multiple work shift
problems in the context of TCO problems by adding labor utilization.
Lee et al. [17]) used the existing data from the project schedules for
each individual task to find optimal set of parameters for GA as an ad-
vanced stochastic time–cost tradeoff (ASTCT) method to solve the TCO
problem. Zhang et al. [34]) applied genetic algorithm in repetitive con-
struction projects, such as bridges, to solve discrete time/cost trade–off
problem (DTCTP) adding soft logic to make it more complex.

All of these researchers successfully tackled the time–cost trade-off
problem in construction schedules, but a research information gap ex-
ists due to the lack of a way to ensure the complete and automated cov-
erage of all the project elements in the calculations and scheduling. The
techniques mentioned herein were able to calculate and retrieve
enough data from the existing project schedules to solve TCO problem.
However, the project schedules used had some inherent scheduling
problems such as incompleteness in not covering the entire scope of
the project and a lack of logic in not satisfying proper relations. It is ob-
vious that problematic input will result in wrong and useless output in
this type of optimization problem. Therefore, enriching the existing ap-
proach with automated project scheduling technique is a needed step
toward eliminating the above mentioned problems.

In the current research, since the key input to the algorithm is the BIM
of the project and the algorithm uses all the inherent geometry data from
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this input, full coverage of the project elements as well as well-defined
processor relationships between elements is guaranteed. Considering all
the project elements in both schedule development and later analysis,
the end result of the new algorithm is more realistic and has proven
accurate.

3. Methodology

The entire methodology is summarized in Fig. 1. As shown in this fig-
ure, the user inputs the BIM along with resource-related information on
the project. Then, the matrix of constructability constraint (MoCC) algo-
rithm detects the geometric information of the 3D elements and creates
the matrix. This matrix will be the basis for the genetic algorithm to en-
sure all the generated construction schedules are structurally stable.
Using the resource-related data, initially provided by the user, GA opti-
mizes the resulting schedules towardmultiple project objectives. This cal-
culation canbe repeatedwhenever there is any change in designs or other
project parameters to obtain updated project schedules. In the proposed
MoCC algorithm, in addition to beams and columns [11], other common
building components are included. These other building components
are slabs (floors), roofs, walls, doors, and windows. Adding this support
for more element types makes it possible to input a more realistic 3D
model into the algorithm. In addition, three more objective functions
were defined to help generate more workable and reasonable project
schedules by optimizing time, cost, and required job-site movements.

4. Reading the geometry

In this research, the 3D model input to the algorithm is in a standard
data format, called Industry Foundation Classes (IFC). The IFC file format,
as an open and neutral specification, is an object-based file format. The
data model of this neutral file format is developed by buildingSMART
with the main goal of facilitating interoperability between the AEC com-
panies, as a commonly used file format for BIM [5]. The IFC model speci-
fication is listed as an official International Standard ISO 16739:2013 [14].

4.1. Detecting more 3D elements

The previously developed algorithm, which served to prove the use-
fulness of the methodology [11] supported the structural elements, col-
umns (IfcColumn) and beams (IfcBeam). The extended research
supports more general 3D elements from the IFC file format of the
BIM of a project. These general 3D elements are geometric information
Fig. 1. Schematic view o
of basic element types, such as slabs (IfcSlab), roofs (IfcRoof), walls
(IfcWall), doors (IfcDoor) and windows (IfcWindow) to be detected,
read, and calculated. For simplification of the geometric calculations,
these element types were assumed as either lines or plain squares
with a boundary box around them. The boundary boxes around ele-
ments are calculated with tolerances, different for each type, that
make them slightly larger than their actual size. These tolerances of
the boundary boxes ensure that when two elements are connected,
they will be close enough to have intersecting boundary boxes that
are interpreted by the algorithm as the connection of the two elements.
An example of how the boundary boxes of beams or columns are as-
sumed is shown in Fig. 2.

In this research, whenever two elements are close enough to have
intersecting boundary box regions, they are assumed to be physically
connected. After locating these connections by performing geometric
calculation on the data retrieved from IFC files and applying stability
rules as shown in Table 1, the MoCC can be generated. The information
presented in this table simply shows the construction prerequisites that
must be constructed. For instance, to install a wall, the lower level
beams in the same region must be installed prior to the wall as well as
any columns and/or beams that the wall is covering.

4.2. Generating MoCC

In theMoCC (shown in Eq. (1)), Ai represents elements aswell as ac-
tivities associated with each element indicating installation of that ac-
tivity. Values of si,j could be either one or zero, indicating immediate
prerequisite installation or no relationship, respectively. For instance,
s2,6 = 1 means that the element number 6, A6, should be installed
prior to installation of element 2, A2. This matrix can be used in the ge-
netic algorithm fitness function for checking the constructability of ge-
nomes in each generation. The following gives the MoCC calculation as

Eq. (1) — matrix of constructability constraints.

Matrix of constructability constraints MoCCð Þ

¼

A1 A2 … An
A1
A2
⋮
An

s1;1 s1;2 ⋯ s1;n
s2;1 s2;2 ⋯ s2;n
⋮ ⋮ ⋱ ⋮

sn;1 sn;2 ⋯ sn;n

2
664

3
775

where:
f the methodology.



Fig. 2. 3D Element simplification, a) actual element, b) element section and extrusion line, c) element boundary box.
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Ai: project tasks (geometric elements in the 3D model or the activi-
ties to be scheduled)

sj,i represents dependencies between elements (that could be either
0 or 1 showing not dependent or dependent respectively).

These relationships represent parent–child dependencies in the
model. This means if s2,6 = 1 then element A6 has a child relation to el-
ement A2. For example, element 6 is a door and element 2 is a wall with
that door installed in it.

Having the MoCC generated and ready, the next step would be de-
fining the GA that can generate optimized construction schedules and
produce 2D and 3D Pareto Fronts. The GA calculations are restricted
by the constructability rules and constraints detected and defined in
MoCC as well as resource limitations defined by the user. The resource
limitations are representing the availability of materials and project
crew to perform project tasks.

5. Genetic algorithm

The genetic algorithm is an optimization tool that uses a heuristic
search and mimics the natural evolutionary process [24]. Using a well-
defined fitness function as the objective function or core metric ran-
domly generates initial genomes that can evolve into optimized
solution(s) for a given problem, considering objectives that are mathe-
matically defined by the fitness function. The GA has become a practical
optimization tool in construction-related fields of research due to its in-
herent features and characteristics. In this paper, each GA genome ma-
trix (MoG), to be used as a construction schedule in this case, is
defined as shown in Eq. (2) to be used in the GA.

Eq. (2) — genome matrix (MoG).

Genome matrix MoGð Þ ¼

D1 D2 … Dk
A1
A2
⋮
An

g1;1 g1;2 ⋯ g1;k
g2;1 g2;2 ⋯ g2;k
⋮ ⋮ ⋱ ⋮

gn;1 gn;2 ⋯ gn;k

2
664

3
775

or

genome ¼ g1;1;…; g1;k; g2;1;…; g2;k;…; gn;1;…; gn;k
� �

where:
Ai: project tasks i (geometric elements in the 3D model, also

interpreted as the activities to be scheduled)
Table 1
Stability prerequisites.

Lower level Same level

Column Column –
Beam – Supporting columns or beams
Wall Beams Adjacent columns and beams
Slab Regional beams –
Roof Regional beams –
Door – Container wall
Window – Container wall
Dj: duration (time span) number j
gi,j: indicates if the installation of element i is occurring in time span j

or not, with 1 or 0, respectively.
n: number of project tasks (geometric elements in the 3D model or

the number of activities to be scheduled)
k: total project time-unit (e.g., days, weeks, or months)
For instance, if g2,6=1, itmeans that element number 2 is scheduled

to be installed in the 6th timespan.

5.1. Objective definition

The following three fitness function scores, which are calculated for
each member (genome) of GA populations, should be summed up to a
single value to treat the multi-objective GA as a single objective GA.
The summation approach is described later in this section.

5.1.1. Project duration
As shown in Eq. (2), the length of a genome is equal to the number of

project elements multiplied by the number of time units (duration). For
any given genome, the duration can be calculated by dividing the length
of the genome by the number of 3D elements. With the same concept
the total construction duration associated with a MoG is equal to the
number of matrix columns.

5.1.2. Project labor cost
As described earlier in this paper, the current research aims to intro-

duce a framework that is capable of detecting the relationship between
major construction schedule objectives, which are cost, time, and job-
site movements. To build this framework, a few simplifications and as-
sumptions are needed. For instance, a precise material take-off calcula-
tion is not in the scope of this research; therefore, the calculation of the
project cost does not reflect the cost for material. The authors have cal-
culated the project labor cost as follows: Initially, the algorithm collects
resource-related data from the user. These user inputs contain themax-
imum number of each element type that could be installed in each day
aswell as the associated labor cost for those installations. The algorithm
assigns the full labor cost for the days that the element installations do
not exceed the maximum defined by the user. In case there is a day
where the installation number exceeds the maximum limit, the extra
installationswill be assigned a labor cost 1.5 times that of the regular in-
stallation, considering them as overtime work. This increase in cost is
based on the U.S. Fair Labor Standards Act of 1938 [30] that guarantees
“time-and-a-half” for overtime in certain jobs.

5.1.3. Job-site movements
Workability of construction processes can be increased by reducing

the required movements of the crew and machinery installing the pro-
ject elements. Having the location information for all the pieces of the
project from its BIM in addition to the installation sequence of them
from a given schedule (genome), the distances between all installations
in a single time-unit and also between time-units can be calculated. A
short mathematical description of the calculation is that in each time-
unit, the distances of all the scheduled installations for that time-unit
to the central positioning point of those elements are calculated, and
then the distances between the central positioning points of each



Fig. 4. Top-view of the installation distances for sample MoG: (a) for the columns and
(b) for the beams.
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time-unit are added to the sum. Minimizing the sum of total distances
between installations of elements of each typewill be another objective
for the fitness function.

5.1.4. Calculation example
As an example of how to calculate the defined objectives, a simple

structure and its represented MoG (Fig. 3b) for the construction se-
quence of the 3D model (Fig. 3a) is demonstrated.

5.1.4.1. Calculating duration objective. As mentioned earlier in the objec-
tive definition section, the construction duration for the given genome
is equal to the number of the matrix columns, which is 5 unit-times.
One unit-time will be described and defined by the user.

5.1.4.2. Calculating cost objective. If a user entered the following inputs to
the algorithm:
M
aximum number of columns per day: 4
Fig. 3. (a) Sample structure and (b) a sam
Cost for this installation: $400/day

aximum number of beams per day: 5
 Cost for this installation: $300/day
M
Then, the calculation of the cost objectivewill be $400 for any project
day that has 1 to 4 column installations and/or $300 for any day with 1
to 5 beam installations. If there is a day inwhich no column is scheduled
to be installed, there would be no calculated cost associated to the col-
umn costs. On the other hand, if there are more than 4 columns (e.g. 6
columns) scheduled for a single day to be installed, the algorithm will
multiply the cost of the extra column installations by 1.5, simulating
the cost for overtimework. Therefore, if there is a day with six columns
scheduled to be installed, the associated cost for that day for column in-
stallations would be:

Cost ¼ 400þ 400
4�1:5�2¼700

The total cost for the given genome shown in Fig. 3b will be equal to
a three-day cost of column installations ($400) and a three-day cost of
beam installations ($300):

Cost ¼ 400� 3þ 300� 3 ¼ 2100

5.1.4.3. Calculating movement objective. In the given genome, which has
five unit-times as the total construction duration, the associated instal-
lation duration for each element of the model is indicated as one time-
unit. For instance, element numbers 1 and 3 are scheduled to be
installed in the first time-unit, and element number 8 is scheduled for
the second. For calculation purposes, the authors assume that the dis-
tances between columns 1 and 3 is 10 ft, the height of the structure is
also 10 ft, and it is symmetric in all directions.

To visualize the installation distances associated with the MoG and
3D model shown in Fig. 3, a schematic top-view of the distances with
consideration of the sequencing is drawn in Fig. 4. In this figure when
multiple elements are installed in a single time-span, the distances are
shown with a dotted line with an arrow head on both ends, connecting
ple construction sequence.
all elements to be installed in that time span. The distance between
installed elements in two time spans following each other is shown
with a dotted line with arrow head on one end showing the direction
of the steps, which connect the central positioning point of both sets
of installing elements.

Fig. 4a shows a top-view for installation distances of the columns
whereby columns 1 and 3 are installed together in the first time unit,
column number 2 is in the third time unit, and column number 4 is in
the fourth time unit. In the first time unit, the installation distance is
equal to the distance between columns 1 and 3, which is 10 ft. There
are no columns scheduled for the second time unit, which is accordingly
skipped. In the third timeunit, there is only one column installed; there-
fore, the installation distance would be equal to the distance from col-
umn 2 to the central positioning point of the previous installations
(i.e., columns 1 and 3). For the fourth time-unit, the installation distance
is simply calculated as the distance between column 4 and the last in-
stallation of the previous time span, column 2. With a similar concept
and calculations, the total installation distances for beams shown in
Fig. 4b can be calculated. Calculated lengths of installations for the
given example are shown in Eq. (3a) and (3b). Notice that the total in-
stallation distances (or job-site movements required for installations)
is equal to the sum of all the element types. In this example, the move-
ment objective score is equal to the sum of total installation distances of
columns and beams as shown in Eq. (3c).

Eq. (3) — the total installation distances in the sample presented as
Fig. 4.

að Þ Total installation distances for columns ¼ 10þ 11:18þ 10
¼ 31:18ft

bð Þ Total installation distances for beams ¼ 7:07þ 7:91þ 7:07
¼ 22:05ft

cð Þ Total installation distances ¼ 31:18þ 22:05 ¼ 53:23ft

By defining this method in the fitness function of the GA in even
more complex models, schedules with less job-site movement distance
can be found in each generation cycle. By implementing this objective
into the fitness function of the GA, the resulting construction schedules
will have a more reasonable pattern of installation sequences as briefly
shown in the above example.

5.1.5. Objective summation
Among the different approaches to calculate the fitness function

score in multi-objective GAs [16], the classic “weighted sum approach”
is adopted as a very computationally efficient approach. In this ap-
proach, the user needs to simply assign weights for each of the objec-
tives defined in the fitness function. For each objective, the score for
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each genome is divided by the average score of the entire population for
the same score to normalize the scores as shown in Eq. (4). This normal-
ization of objective scores forbids any individual objective to dominate
the final score. The user-definedweights would bemultiplied by the re-
spective normalized scores, and then all three scores are summed up to
form the final score. Theminimizing function is shown in Eq. (5), where
theweight factors (wd,we, andwm) are inputs received fromuser defin-
ing any desired priority for objectives. The following calculation shows
how to obtain the normalized score for a genome objective

Eq. (4) — normalization of an objective score of a genome.

Normalized score for an objective of a genome

¼ Objective score to the genome
Objective score average from entire populations

Eq. (5) — weighted sum approach.

minZ ¼ wd � Fduration xð Þ þwc � Fcost xð Þ þwm � Fmovement xð Þ

6. Inputs and variables

The model shown in Fig. 5a is a generic turbine building structural
model with 42 columns and 58 beams, adding up to 100 elements.
This genericmodel of a turbine buildingwas previously used for proving
the usefulness of this algorithm in developing structurally stable con-
struction schedules extracted from a real-world and complex structural
3D model [11]. To test the extended research, a typical 3D model of a
two-story residential building was selected, as shown in Fig. 5b. For
the purpose of better internal viewing, the roof element is made invisi-
ble in the figure. This 3Dmodel consists of 38 columns, 56 beams, 1 roof,
1 floor, 18 walls, 24 windows, and 7 doors, summing up to 145 ele-
ments. The 3D model shown in Fig. 5b is used in this research for elab-
oration of the results and Pareto Fronts.

The 3D model input along with the other input variables (shown in
Table 2) was used to run the GA for testing the proposed algorithmwith
new extensions.

7. Results

Running the developed GA for 20,000 rounds of population genera-
tion with 10 genomes in each, for the 3D model, as shown in Fig. 5b,
Fig. 5. 3D model input, (a) generic turbine building struc
produced 200,000 valid construction schedules. Each of these generated
construction schedules has three fitness function scores for the three
objectives defined earlier.
7.1. 2D Pareto Fronts

Plotting each of two objectives, calculated in the results on a single
2D coordinate system, shapes the following outputs. Fig. 6 shows that
by increasing the project duration, the labor cost for the project will
be reduced before it starts to slightly increase. The reduction is due to
decreasing the overtime work for the project. The latter increase of
labor cost is caused by the growth in the number of working days.
This interpretation matches the correct relationship between time and
cost in real projects.

The time–movement Pareto Front graph as presented in Fig. 7 shows
a constant and exponential increase in themovementswhen theproject
duration increases. This constant increase is a result of spreading out the
element installations over the construction duration. Thus the distances
between elements are not minimized by being installed as a group in a
single day to have a shorter mid-point distance to the other set or set-
ting up installation at the next time step.

As shown in Fig. 8, when the movement score is at its minimum
(meaning that elements are installed in groups in each time step), the
associated labor cost is higher, which is due to overtime installations
of the elements. When elements are installed in sets of groups in each
time step (e.g., six columns in a day), the total distance between each
of these elements and also the distance between the mid-point of this
installation group and the next onewill be reduced based on the similar
formulation and calculations shown in Eq. (3). On the other hand, when
there are more elements to be installed in a single day than the user de-
finedmaximum limit (e.g., maximumof four columns per day), the sur-
plus elements (e.g., two columns) have a labor cost 1.5 times higher
than the regular installation. These two facts together make labor cost
higher when the movement score lowers.

When themovement score exceeds a certain number and continues
to increase, it indicates that the project elements installed are becoming
muchmore scattered each day. Based on the authors' definition of labor
cost, any number of installations per day can be equal to or less than the
user-definedmaximum andwill have the user-defined associated labor
cost for the day. Putting these two factors together, we know that the
more the element installations are spread out in each day, the higher
the labor cost will be.

Demonstrations of Pareto Fronts in all three graphs mentioned in
this section show that this methodology shows the correct behavior of
the three objectives defined in this research. The time–cost–movement
relations described in this section match the same inter-relationships
tural model, (b) typical 2-story residential building.



Table 2
Variable inputs to the GA calculations.

Title Value

Population per generation 10
Elite rate 20%
Installment (maximum number of installations in each time-unit) –
- Columns 2
- Beams
- Walls 1
- Slabs 1
- Roofs 1
- Doors 2
- Windows 4

Cost/wage
(dollars per each time-unit)

–

- Columns 500
- Beams 600
- Walls 300
- Slabs 400
- Roofs 450
- Doors 200
- Windows 320

Objective weights –
- Duration 1
- Cost 1
- Movement 1

Fig. 7. Time–movement Pareto Front.
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between these objectives as known in the construction field. These
demonstrations and descriptions validate the use of this methodology.

7.2. Solutions cloud point

As described earlier in this paper, each of the generated project
schedules has three objective scores for time, cost, and movement ob-
jectives. Fig. 6 through Fig. 8 showed how all 200,000 solutions can be
represented in the 2D coordinate systems. Since there are three objec-
tives in this paper, it is possible to showall the solution points in a single
3D scattered plot, as shown in Fig. 9. Further development of this anal-
ysis can generate a 3D Pareto Front surface showing the optimum rela-
tionship between the defined three objectives of this research.

7.3. Objective-driven analysis

Other than generating three previously shown Pareto Fronts and the
solution cloud points, the proposed algorithm is capable of responding
to the different project characteristics as being objective driven. For in-
stance, the solutions from this algorithm can properly demonstrate the
nature of cost- or time-driven schedules. To receive these types of
Fig. 6. Cost–time Pareto Front.
reactions, the user needs to input the desired behavior for the project
schedules when defining the objective weights right before running
the GA calculations. In the previously shown 200,000 results from the
algorithm, the defined weights for the objectives were set as equal.
This equality of objective weights means that the GA calculations con-
sidered all three objectives with the same importance when the scores
were summing up. Therefore, the changes in each objective had the
same impact on the overall score for the genomes and thus on the
chance for being selected as an elite member or for the crossover func-
tion of the GA.

In this paper, the authors show how the solution cloud points will be
changed reflecting different objective weights. For this reason, three dif-
ferent runswith the same input 3Dmodel and data have been conducted.
In each of these three runs, one of the objectives received a weight of 100
while the other twowere set to one. By inputting objectiveweights in this
manner, in each of the new calculations, one of the objectiveswill be con-
sidered 100 times more important than the other two. This assumption
will reflect the expectation of the user to have scheduling solutions driven
toward a specific objective. For example, if the user sets the cost objective
weight at 100 times more than the duration and movement objective
weights, the algorithm will understand that the cost object is much
more important than time and distance. In other words, the cost-driven
solutions are requested by the user. Then, the algorithm will use that
input to produce the construction schedules for the project.

Fig. 6 through Fig. 8 shows results from the calculation with the
same objective weights for all three objectives. The following figures
show how the cost-driven and time-driven calculations can differ.
Fig. 8.Movement–cost Pareto Front.



Fig. 9. Solutions 3D cloud point.

Fig. 11. Time–movement cloud point comparing objective-driven calculations.

86 V. Faghihi et al. / Automation in Construction 69 (2016) 79–88
As described earlier in this paper, by changing theweighting param-
eter for time and cost objectives in two different sets of runs from 1 to
100, while the other objective weights remain at one in that algorithm
run, 200,000 new project schedules are generated for each run. Fig. 10
shows how the cloud points for the two new sets of calculations and
construction schedules are different from the earlier run. As shown in
the figure, when the calculation is set to be time-driven (time objective
has aweight 100 times greater than theother two objectives), the entire
cloud point (red pluses in the figure) shifts to the left of the graph. This
left-shift means that the entire solution cloud point has construction
schedules shorter than the normal calculation (blue dots) in which
the weighted objectives are equal. The calculated average of the cloud
points is shown as big red, green, and blue dots indicating average
values for time-driven, cost-driven, and normal calculations,
respectively.

Fig. 10 also shows that when the calculation is set to be time-driven
(or cost-driven) the entire cloudpoint aswell as the average point of the
cloud shifts to the left for shorter construction durations (or shifts down
for less construction labor costs in cost-driven runs). When the user
Fig. 10. Time–cost cloud points comparing objective-driven calculations. (For
interpretation of the references to color in this figure, the reader is referred to the web
version of this article.)
intends to run the algorithm as time-driven, the algorithm produces
more construction schedules with shorter duration. Imagine this exam-
ple project has a constraint of a construction plan for a building to be
built in less than 23 days. To satisfy this constraint the user needs to
put more weight on the time objective in the calculation (e.g., 100 for
time and 1 for the other objectives). By running the algorithm with
this setting, the normal run generated 11 construction schedules with
a duration of less than 23 days while the time-driven run generated
more than 38,000 different construction schedules satisfying the con-
straint. Similar results can be discussed with the cost-driven algorithm
calculations.

Also it is visible that in cost-driven calculation results, since the time
objective had less weight (importance) set by the user, the average of
the cloud point has been shifted to the right. This means that for cost-
driven construction sequences, while the average cost has been re-
duced, the average time has been increased due to less importance of
the time objective. Similar descriptions can be explained for other ob-
jectives and calculations.

Similar to Fig. 10, Fig. 11 shows the objective-driven calculations
versus the normal ones, which had equal weights assigned to all the ob-
jectives. As seen in this figure, in both cost and time driven calculations,
the average value for the movement objective has been increased. As
similarly described before, this behavior is due to less importance (ob-
jective weight) assigned to the movement objective for calculations by
the user. Fig. 12 shows the same behavior in its movement–cost graph.
Fig. 12.Movement–cost cloud point comparing objective-driven calculations.



Table 3
Average score difference for normal vs. objective driven runs.

Normal Cost-driven Time-driven

Cost 35,214.6 33,718.4 35,255.3
Time 29.1 36.5 28.5
Movements 2154 2311.4 2192.8
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The differences in the average values of the cloud points in all three
runs are shown in Table 3. As described before and as visible in Table 3,
the cost objective score is increased in time-driven runs and decreased
in cost-driven runs as expected. Likewise, the time score was reduced
when calculations were time-driven and enlarged when cost-driven.
The movement objective score was increased in both runs since the
user-defined objectiveweight of this objectivewas set to theminimum.

8. Conclusion and future work

This article shows useful benefits of the proposed construction
scheduling algorithm through the Pareto front relationship between op-
timization objectives of a construction project. The entire algorithm, as
described in earlier papers, is able to read through the 3D model input
in the form of IFC, detect all the structural stability dependencies and re-
lations, and form a structural stability matrix called MoCC. Then, it uses
that matrix as the basis for the GA fitness function to validate the struc-
tural stability wellness of the populations and produces project sched-
ules while showing 4D construction animation [11]. The generated
populations that contain construction schedules are ordered and han-
dled based on their objective scores. Those construction schedules
with better scores will have a better chance of reaching the next
generations.

As mentioned in this paper, in addition to automatic construction
schedule development, the proposed algorithm can also provide several
managerial tools to help project managers and project management
teams in their scheduling of projects. These managerial tools can pro-
vide two-by-two Pareto Front graphs for objectives, solution cloud
points and a 3D Pareto Front surface (with later extensions). The
algorithm's tools can also be used to reflect the objective driven nature
of the project in the provided solutions for construction project schedul-
ing problems.

Besides all of thementioned benefits and advantages of thismethod,
it still has some limitations, one of which is that it takes some time to
produce the required number of rounds for GA calculations. When the
project gets bigger, and its BIM model gets relatively more complex,
the number of elements will increase and the time needed to prepare
will also increase if acceptable results are to increase exponentially. An-
other limitation to the current algorithm is its support for a building's ir-
regular shaped elements. If, for example, a building contains curved
walls (similar to the Walt Disney Concert Hall) the existing algorithm
cannot address that type of dimensions and connecting points for
those walls and elements. Therefore, it cannot do the required calcula-
tions to generate a graph as shown in this paper.

For further extension on this research, othermulti-objective optimi-
zationmethods can be evaluated and investigated to see if better repre-
sentation of the objectives' relationships can be determined. We also
need to find a way to support more 3D element types so the input
model can generate more realistic results.
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