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The distributed permutation flowshop problem has been recently proposed as a generalization of the reg-
ular flowshop setting where more than one factory is available to process jobs. Distributed manufacturing
is a common situation for large enterprises that compete in a globalized market. The problem has two
dimensions: assigning jobs to factories and scheduling the jobs assigned to each factory. Despite being
recently introduced, this interesting scheduling problem has attracted attention and several heuristic
and metaheuristic methods have been proposed in the literature. In this paper we present a scatter search
(SS) method for this problem to optimize makespan. SS has seldom been explored for flowshop settings.
In the proposed algorithm we employ some advanced techniques like a reference set made up of
complete and partial solutions along with other features like restarts and local search. A comprehensive
computational campaign including 10 existing algorithms, together with statistical analyses, shows that
the proposed scatter search algorithm produces better results than existing algorithms by a significant
margin. Moreover all 720 known best solutions for this problem are improved.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction from the literature like Framinan, Gupta, and Leisten (2004), Ruiz
Scheduling deals with the allocation of resources, typically
machines, to tasks (commonly referred to as jobs) over time with
the goal of optimizing a given objective (Pinedo, 2012). Scheduling
is an important problem that appears mainly in manufacturing
industries. It is well known that good schedules contribute greatly
to the overall performance of a company (McKay, Pinedo, &
Webster, 2002). The layout of the machines on the production
floor, along with the flow of the jobs in the machines, together with
a myriad of constraints and real life settings determine the type of
scheduling problem to solve. The flowshop scheduling problem
(FSP) is arguably the most common processing layout in practice
as it is typical for manufacturing plants to manufacture a given
family of products that have to visit machines in a known order.
For example, in car manufacturing, the painting of the car body
must go after the body as been welded and before any assembly
operation, hence a flowshop structure. Reisman, Kumar, and
Motwani (1997) reviewed practical cases and concluded that the
flowshop problem has many real life applications. This applicabil-
ity of the flowshop is also highlighted in the many exiting reviews
and Maroto (2005), Hejazi and Saghafian (2005) and Gupta and
Stafford (2006). As a matter of fact, once generalized to hybrid
flowshops or flexible flowline problems, many production prob-
lems can be modeled after a flowshop (Linn & Zhang, 1999;
Vignier, Billaut, & Proust, 1999; Wang, 2005; Quadt & Kuhn,
2007; Ruiz & Vázquez-Rodríguez, 2010; Ribas, Leisten, &
Framinan, 2010). The FSP can be formally described as follows: A
set N of n different and independent jobs has to be scheduled. Jobs
usually model client orders or batches of products to be manufac-
tured after a production planning process has been carried out
(Pochet & Wolsey, 2006). Each job j; j 2 N has to visit, in order,
all m machines in the set of machines M. Without loss of generality,
each job visits first machine 1, then machine 2 and so on until
machine m. A job cannot go to the next machine until it is finished
in the current machine and a machine cannot process more than
one job at the same time. As a result of the machines being
disposed in series, each job is broken down into m tasks, one per
machine. Each task from a job j; j 2 N needs a given processing
time at each machine i; i 2 M. This processing time is denoted as
pij and it is deterministic, known in advance and usually non-
negative, represented by an integer quantity.

The objective in the FSP is to find a schedule or processing
sequence of all the jobs in the machines such that a given
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optimization criterion is optimized. According to the previously
cited review papers, the most commonly studied objective is the
minimization of the maximum completion time or makespan,
denoted as Cmax. Given the completion time of a job in the last
machine m, denoted as Cj, the makespan is then the minimization
of the maximal Cj; j ¼ 1; . . . ;n. Since there are as many possible
schedules as job sequences at each machine, the total number of
solutions is ðn!Þm, i.e., all possible job permutations at each
machine, considering that these permutations can change from
machine to machine. Given this huge search space, the FSP is usu-
ally simplified to what is called the Permutation Flowshop Sched-
uling Problem or PFSP by forbidding job-passing, i.e., once the
production sequence is fixed for a machine, all machines follow
the same production sequence. This brings down the total number
of solutions to n!. Using the well known three field notation for
scheduling problems (Graham, Lawler, Lenstra, & Rinnooy Kan,
1979; Pinedo, 2012), the PFSP with makespan criterion is denoted
as F=prmu=Cmax.

This problem was first studied almost 60 years ago by Johnson
(1954) where the well known Johnson’s algorithm was proposed
for solving the two machine version. For three or more machines,
the problem is known to be NP-Complete in the strong sense
Garey, Johnson, and Sethi (1976). Nowadays, the literature on the
PFSP is immense and the problem and many variants have been
thoroughly studied. The topic is so widely studied that there are
even some dedicated monographs such as Chakraborty (2009)
and Emmons and Vairaktarakis (2012), or even for some variants,
like lot streaming in Sarin and Jaiprakash (2007). However, there
is one extension that was only recently presented. In Naderi and
Ruiz (2010) and Naderi and Ruiz (2010) studied a variant that
was referred to as the Distributed Permutation Flowshop Schedul-
ing Problem or DPFSP. In essence, the regular PFSP considers one
single factory where products are manufactured. However, multi-
factory enterprises are much more competitive in a globalized
economy. The literature on manufacturing systems abounds with
examples where it is shown that distributed manufacturing is
key for high product quality, low production costs and reduced
management risks, among many other benefits (Wang, 1997;
Moon, Kim, & Hur, 2002; Kahn, 2004, among many others). Distrib-
uted manufacturing is now a topic of interest as the recent editorial
in a special issue of a reputable manufacturing journal shows
(Chan & Chung, 2013). In that editorial and in many of the papers
of the cited special issue the importance and benefits of distributed
manufacturing are praised and highlighted. In the DPFSP there is
an important added complexity with respect to the PFSP: Jobs need
to be assigned to factories and then a schedule must be built for
each factory. More formally, the DPFSP extends the regular permu-
tation flowshop in the following way: The set N of n jobs must be
processed by a set G of F identical factories. Each factory has the
same set M of m machines. The processing times of all the tasks
of a given job do not change from factory to factory. Once assigned
to a factory, a job has to be completed in that factory. The objective
is to minimize the maximum makespan among all factories. Naderi
and Ruiz (2010) referred to this problem as DF=prmu=Cmax. The
same authors demonstrated that no factory must be left empty
with no jobs assigned (given n > F) as this does not improve the
makespan value. They also concluded that the total number of

solutions in the DPFSP is n� 1
F � 1

� �
n! Additionally, since the DPFSP

reduces to the regular PFSP if F ¼ 1, it is easy to conclude that the
DPFSP is also an NP-Hard problem.

From the paper of Naderi and Ruiz (2010), several other authors
built upon those results and several methodologies have been pro-
posed to solve this new problem. Naderi and Ruiz (2010) proposed
some mathematical models, simple heuristics and local search
methods. Therefore, more complex methodologies might reveal
new interesting solutions to this hard combinatorial problem. Fur-
thermore, given the existing recent methods proposed, it is also
worthwhile comparing the effectiveness and efficiency of existing
approaches to ascertain which are the state-of-the-art methods.
These are some of the objectives of this paper. When deciding
about which advanced techniques could be applied to the DPFSP
we observed that simple local search based methods failed to
escape strong local optima and therefore we chose a powerful
methodology: Scatter Search (Glover, Laguna, & Martí, 2000;
Laguna & Martí, 2003; Martí, Laguna, & Glover, 2006, among oth-
ers). Contrary to many existing metaheuristic frameworks, which
have been applied several times to flowshop problems, scatter
search (SS) has seldom been used for these scheduling settings.
References with applications of scatter search to regular flowshops
are scarce. Nowicki and Smutnicki (2006) presented some meth-
ods, including ideas from path relinking and scatter search to the
regular PFSP with makespan criterion but failed to significantly
advance the state-of-the-art. In a short paper, Saravanan, Noorul
Haq, Vivekraj, and Prasad (2008) proposed another scatter search
method for the same problem and reported average percentage
deviations over the best known solutions for the benchmark of
Taillard (1993) of a little over 1%. This is clearly not better than
the deviations below 0.5% given by the simpler Iterated Greedy
(IG) method of Ruiz and Stützle (2007) or the deviations of just
0.22% given in Vallada and Ruiz (2009). As regards the PFSP, it
seems that there are no other noteworthy scatter search applica-
tions. Therefore, it is plausible to think that scatter search methods
for flowshop problems still have some headroom for improvement
and therefore we choose them for this paper. Furthermore, the
controlled diversification in scatter search shows, as we will
empirically demonstrate, great strength in the DPFSP.

The remainder of this paper is organized as follows: Section 2
provides a comprehensive literature review on the DPFSP. Section 3
presents in detail the proposed scatter search approach. This
method is calibrated in Section 4. In the same Section, almost all
relevant algorithms from the literature on the DPFSP are reimple-
mented and carefully evaluated. Through comprehensive compu-
tational and statistical analyses we show that the presented
scatter search algorithm can be considered as the new state-
of-the-art method for the DPFSP and makespan minimization.
Finally, Section 5 concludes this paper and proposes some avenues
for future research.

2. Literature review

In Naderi and Ruiz (2010) the authors presented six different
Mixed Integer Linear Programming models for the DPFSP together
with 12 heuristics that resulted from applying two different job to
factory assignment rules to six famous heuristics for the regular
flowshop problem. The two rules are the following:

� Assign a given job j to the factory with the lowest current Cmax,
not including job j.
� Assign job j to the factory which completes it at the earliest time,

i.e., the factory resulting in the lowest Cmax after assigning job j.

The rules are applied each time a job is scheduled. From the six
tested heuristics the NEH method of Nawaz, Enscore, and Ham
(1983) with the second job to factory assignment rule (referred
to as NEH2) resulted in the best heuristic performance. Apart from
the heuristic methods, Naderi and Ruiz (2010) presented a simple
Variable Neighborhood Descent (VND, Mladenović & Hansen
(1997)) starting with the NEH2 solution and with two neighbor-
hoods. One being the insertion local search for all factories (until
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local optima at each factory) and the second local search takes the
factory generating the makespan value and extracts all of its jobs
and testes them in all other factories. Two different acceptance cri-
teria are used: (a) accept the new solution if the critical makespan
(the largest makespan among all factories) is reduced and (b)
accept the solution if there is a net gain in the makespan values
between the involved factories in the local search. More details
are given in Naderi and Ruiz (2010). The resulting VND methods
with both acceptance criteria were referred to as VND(a) and
VND(b), respectively. The experimental results showed that
VND(a) produced an average percentage deviation over the best
known solutions for large problems of up to 500 jobs, 20 machines
and 7 factories of just 0.10%. Note that all presented methods by
Naderi and Ruiz (2010) are fast, as the slowest method – VND(a)
– needed less than 0.15 seconds on average on a Intel Core 2 Duo
computer running at 2.4 Gigahertz with 2 Gigabytes of RAM
memory.

As Naderi and Ruiz (2010) pointed out, prior to 2010 there was
almost no literature on distributed flowshop scheduling apart from
some loosely related papers. However, after the publication of that
paper, several authors published follow up studies. The first was
the work of Liu and Gao (2010). The authors presented a complex
electromagnetism metaheuristic (referred to as EM in this paper).
They improved the VND local search of Naderi and Ruiz (2010)
and extended it to a more powerful Variable Neighborhood Search
(VNS, Mladenović & Hansen (1997)) with several neighborhoods
such as insertion within the critical factory (the one generating
the makespan), swap in the critical factory and general insertion
and swap. In their computational evaluation, Liu and Gao (2010)
did not directly compare against the VND(a) but rather pointed
out the improvement of 151 best known solutions out of the 720
large instances presented in Naderi and Ruiz (2010). As we will
later highlight, these comparisons can be misleading. Furthermore,
the CPU times of the EM method are significantly larger than those
of VND(a). Therefore, it remains to be seen if EM is competitive
with VND(a).

Later, Gao and Chen (2011a) presented a Hybrid Genetic Algo-
rithm with local search (GA_LS) which we simply refer to as
HGA. The genetic method is inspired by the GA for the regular per-
mutation flowshop of Ruiz, Maroto, and Alcaraz (2006). The algo-
rithm employs NEH2 and VND(a) as initialization. The local
search phase is similar to that of VND(a) but a third neighborhood
is included in which exchange of jobs from the critical factory and
all other jobs in all other factories are tested. In their experiments,
HGA reported better solutions than VND(a) but again at the
expense of much larger CPU times. According to the results of
Gao and Chen (2011a), their HGA method uses almost 246 times
more CPU time than VND(a). In the same paper the authors test
their proposed HGA with the same CPU time as VND(a) and the
results are quite the contrary with HGA showing apparently worse
performance than VND(a). Therefore, another interesting experi-
ment is to test HGA versus VND(a) in a completely comparable
scenario.

Gao and Chen (2011b) presented an improvement of the NEH
heuristic of Nawaz et al. (1983) and the NEH2 of Naderi and Ruiz
(2010). The enhancement consists of inserting F jobs at a time
(one to each factory) instead of one job at a time as it is usual in
the NEH heuristic. This multi-insertion is carried out through an
unspecified branch and bound procedure and the authors also
employ the previously commented second job to factory assign-
ment rule as well as other published improvements of the NEH.
The best combined proposed method is referred to as NEHdf. In
the computational experiments, NEHdf is shown to slightly outper-
form NEH2 (however, in a provided statistical experiment, NEHdf
is not shown to statistically outperform NEH2). Again, this outper-
formance comes at an additional CPU cost.
More recently, Gao, Chen, and Liu (2012b), presented a genetic
algorithm which is shown to slightly outperform the HGA of Gao
and Chen (2011a). In their comparisons, the average relative per-
centage deviation of the new algorithm, referred to as GA_KB, is
reduced by 0.3%, which is a rather marginal improvement. The
CPU times are also slightly reduced but remain more than 200
times larger than those of VND(a).

In the same year, related authors (Gao, Chen, Deng, & Liu,
2012a) have presented a revised VNS method. Basically, the
authors mix VND(a) of Naderi and Ruiz (2010) with their improved
NEHdf method presented in Gao and Chen (2011b). The resulting
algorithm is refereed to as VNS(B&B). Computational analyses
show that VNS(B&B) is superior to VND(a) but obviously at the
expense of additional CPU time.

More recently, the rate of publications in the DPFSP area is
increasing. Gao, Chen, and Deng (2013) have presented a tabu
search method. The proposed algorithm builds upon the local
search schemes presented in Gao and Chen (2011a) and includes
some more extended local search processes. In the experimental
section this new TS method is shown to outperform the HGA of
Gao and Chen (2011a) by a good margin, improving also the com-
putational efficiency. However, from the tables given in Gao et al.
(2013), the proposed TS is still almost 117 times slower than
VND(a).

Also recently, Lin, Ying, and Huang (2013) have presented an
iterated greedy method inspired by the work of Ruiz and Stützle
(2007). Four IG variants are presented and the best one, denoted
as IGVST is compared against the HGA of Gao and Chen (2011a)
and the TS of Gao et al. (2013). The results favor the IGVST method
by a wide margin and also with greatly reduced CPU times albeit
the conditions are not fully comparable and the reported CPU
times are still much larger than those of VND(a).

After all experimentation and analyses of this paper had been
finished we became aware of a recently published paper (Wang,
Wang, Liu, & Xu, 2013). The authors have presented an estimation
of distribution algorithm (EDA). While the proposed method is
shown to outperform VND(a), the new solutions obtained are not
as good as those reported in other recent papers. Furthermore,
the presented algorithm is much slower than VND(a), needing no
less than almost 788 times more CPU time than VND(a).

As we can see, a myriad of metaheuristic methods have been
recently presented for the DPFSP. As our critical review shows,
many of these methods have not been compared against each
other. Most comparisons are done against VND(a), which is basi-
cally a heuristic improved by some local search mechanism. Newer
and more advanced methods might improve the solutions much
further.
3. Scatter search method

Scatter search is a type of evolutionary algorithm which is
strongly based on a principled approach to solution generation
and recombination and steers away from the randomness of other
evolutionary methods like genetic algorithms. The main character-
istic of SS is the diversification of solutions as a means for high
quality optimization. Its roots date back to the 1970s with the
works of Glover (1977) or Glover (1998), to be later formalized
in Glover et al. (2000); Laguna and Martí (2003) or Martí et al.
(2006) to name just a few.

The SS employed in this paper follows the basic template given
in Laguna and Martí (2003) and in Martí et al. (2006) which is
based on the known ‘‘‘five methods’’: (1) Diversification generation
method. The initial population of the method is created using an
input solution. Here a pool P of PSize diverse solutions is created.
(2) Improvement method. A mechanism, usually a form of local
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search, to improve solutions from any of the working sets. Nor-
mally it is also applied to the set P at the beginning of the SS pro-
cedure. (3) Reference set update method. In SS the reference set or
RefSet usually contains the b best solutions of P initially. This set is
desired to be as diverse as possible, so selecting not only the best
but also the maximally diverse solutions is preferable. RefSet is
an ordered list with the best solution first. As the SS method iter-
ates, new solutions enter RefSet according to their quality and
diversity. (4) Subset generation method. Here, some solutions from
RefSet are selected for later processing. The simplest procedure is to
generate all possible pairs of solutions from RefSet as subsets. (5)
Solution combination method. The selected solutions in the subset
generation method are recombined to create new solutions. Nor-
mally, new solutions are enhanced with the improvement method
and later considered for insertion in RefSet in the reference set
update method. The entire process iterates while there are changes
in RefSet, i.e., while new different solutions are being discovered.
Let us instantiate all these methods in our proposed SS algorithm.

3.1. Solution representation and diversification generation method

In the PFSP literature, the most common solution representa-
tion is a permutation of the n jobs. Since in the DPFSP this permu-
tation is divided among the F factories, the most straightforward
representation is to have F lists, one per factory. Each list contains
a partial permutation with the order in which the jobs have to be
processed at each factory. This is the solution representation that
Naderi and Ruiz (2010) and subsequent authors have employed.
For example, if we have a problem with 10 jobs (n ¼ 10) and three
factories (F ¼ 3), one possible solution is:

4;8;1
2;10;5
7;6;3;9

8><
>:
In this solution, jobs 4, 8 and 1 are assigned to factory 1 and follow
that order, jobs 2, 10 and 5 to factory 2 and so on. The sequence at
each factory is obtained by scanning each job list from left to right.

In our proposed SS procedure for the DPFSP we have two spe-
cially constructed sets inside the reference set. The first is set H
which contains a number b of the best ever found solutions. The
second set, denoted as S, is made up of l factory assignment vec-
tors. The union of these two sets makes the reference set, i.e.,
RefSet ¼ H [ S of size bþ l. The sets are clearly different. Set H con-
tains full solutions according to the aforementioned solution repre-
sentation. However, set S only contains factory assignments for
jobs, i.e., given a 10 job, 3 factory DPFSP instance, a member of
the set S could be the following: f2;3;1;1;2;2;2;3;1;3g meaning
that job 1 is assigned to factory 2, job 2 to factory 3 and so on until
job 10 which is assigned to factory 3. These are not complete solu-
tions but just factory assignments as no job ordering at each fac-
tory is given. The rationale behind these two distinct sets inside
the reference sets will be clear after the solution combination
method.

For the initial construction of set H we start with a Psize of 25
random job permutations. 24 of these permutations are used as
an initial ordering that is passed to the NEH2 method of Naderi
and Ruiz (2010). Recall that this is an extension of the NEH method
of Nawaz et al. (1983). For the last 25th permutation we use the
regular NEH initial ordering instead of random. Basically, in the
NEH2, jobs are inserted, one by one and according to the initial
ordering into all positions of all factories. The job is finally placed
in the position resulting in the minimal partial makespan. The
second job to factory assignment rule (see Section 2) is used. Let
us give an example following the previous case with 10 jobs
and 3 factories. Let us consider the initial ordering of jobs as
f4;2;7;6;1;3;10;5;9;8g. Starting from the following partial
solution:

4;1
2
7;6

8><
>:
the next job to insert is job 3, as 4, 2, 7, 6 and 1 (the previous jobs in
the initial ordering) are already in the solution. Therefore, job 3 has
to be inserted in 8 different positions in the previous solution,
resulting in the following alternatives:

3;4;1
2
7;6

8><
>: ;

4;3;1
2
7;6

8><
>: ;

4;1;3
2
7;6

8><
>: ;

4;1
3;2
7;6

8><
>: ;

4;1
2;3
7;6

8><
>: ;

4;1
2
3;7;6

8><
>: ;

4;1
2
7;3;6

8><
>: ;

4;1
2
7;6;3

8><
>:

The alternative resulting in the best partial makespan is selected. In
order to speed up the insertion procedure, the well known acceler-
ations of Taillard (1990) are used. This procedure is applied to all
job permutations to have 25 NEH2 improved solutions. Then, the
best b solutions among these 25 are included in set H. Note that this
applies to the initial H set construction. Later, at each iteration of
the SS procedure, set H contains the best b visited solutions.

As for set S, used for diversification, we simply initialize it with
random job to factory assignments. As we will see, at each iteration
of the SS algorithm, sets H and S are combined. Therefore, and in
order to keep the diversity, set S is randomly regenerated at each
iteration of the SS method.

3.2. Subset generation and solution combination methods

In the proposed SS method, the subset generation method is
also different from most scatter search applications given the nat-
ure of the two sets H and S inside RefSet. The procedure consists of
selecting all possible combinations of solutions in set H with fac-
tory assignments in set S. Therefore, at each iteration, b � l pairs
are considered. For example, let us suppose we have b ¼ 3 and
l ¼ 2, i.e., H ¼ fh1;h2;h3g and S ¼ fs1; s2g. Therefore we have six
combinations: ðh1; s1Þ; ðh1; s2Þ; ðh2; s1Þ; ðh2; s2Þ; ðh3; s1Þ and ðh3; s2Þ.

The combination method is crucial in the SS procedure. All pairs
selected in the previous subset generation method undergo combi-
nation. We refer to the solution selected from set H as p1 and to the
factory assignment vector selected from S as p2. The new com-
bined solution, referred to as pn is at first identical to p1. The com-
bination method has n iterations. At each iteration, a job from pn is
randomly selected, without repetition, so at the end all jobs have
been selected. We refer to this randomly selected job as h. If a ran-
dom number uniformly distributed between 0 and 1 (rand) is less
than a given value p the combination method checks if job h is
assigned to different factories in pn and in the job to factory assign-
ment vector p2. If this is the case, job h is extracted from its current
factory in pn and tested in all possible positions of the factory indi-
cated in p2. The final placement of job h is the position resulting in
the lowest makespan at the factory indicated in p2. If rand is
greater or equal than p then the job is not assigned to another fac-
tory and left untouched. Let us further illustrate the combination
mechanism by applying it to an example with 10 jobs and 10 fac-
tories. Let us suppose the subsets are:

hi ¼
2;5;6;1
10;3;7
4;9;8

8><
>: and sj ¼ f3;1;2;2;1;1;3;2;1;2g
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The randomly selected job is job 4 and the random value is 0.12
(p ¼ 0:2); hence, we check job 4. This job in hi is assigned to factory
3 and in sj in factory 2. Therefore, we remove the job from factory 3
and assign to factory 2. To put this job into the sequence of jobs in
factory 2, there are 4 possible positions as follows:

2;5;6;1
4;10;3;7
9;8

8><
>: ;

2;5;6;1
10;4;3;7
9;8

8><
>: ;

2;5;6;1
10;3;4;7
9;8

8><
>: ;

2;5;6;1
10;3;7;4
9;8

8><
>:

The makespan of each solution is calculated and the solution
resulting in the best makespan marks the new position for job 4.
Suppose the next randomly selected job is job 8 and the random
value is 0.43. Since this value is greater than p ¼ 0:2, we skip
changing the position of this job and go to the next job. The proce-
dure repeats for all jobs. Fig. 1 shows a pseudoalgorithmic listing of
the proposed combination method.

Note that the parameter p controls the intensity of the diversi-
fication. Too low of a p value and pn will be essentially similar to p1
whereas if p is large, most jobs will be assigned to different facto-
ries. Initial experiments indicated that a low p value of 0.1 sufficed
to maintain the diversification. In Section 4.1 we will calibrate,
using sound statistical techniques, other more important parame-
ters of the proposed SS method.

3.3. Improvement method

The improvement procedure is applied at each iteration of the
SS to each solution pn obtained by the solution combination
method. Note that we do not apply it after the RefSet initial gener-
ation. The proposed method is a simplification of the VND proce-
dure of Naderi and Ruiz (2010). Two local search procedures are
iteratively applied until the improved solution is a local optima
with respect to both neighborhoods. More precisely, in the first
local search, for each factory, each job assigned to that factory is
extracted and inserted into all possible positions of the sequence
at that factory. The position resulting in the best makespan for that
factory is chosen. If there has been an improvement in the make-
span value for that factory, the procedure is repeated. Therefore,
at the end of this first local search, each factory contains local
optima solutions with respect to the insertion neighborhood. Note
that the accelerations of Taillard (1990) are also applied here.

In the second local search, each job from the critical factory (the
factory with the maximal makespan value) is extracted and
inserted into all possible positions of the sequence of all other fac-
tories. The procedure continues while no improvements in the
maximal makespan are found. However, once the maximal make-
span is improved, the second local search terminates and we go
back to the first local search scheme as in a Variable Neighborhood
Descent (VND) method. Contrarily, the process terminates (and the
VND too) if all jobs from the critical factory are inserted into all
Fig. 1. Solution combination m
positions of all other factories unsuccessfully. Again the accelera-
tions of Taillard (1990) are used in the second local search as well.
It is important to note also that after an improvement in the max-
imal makespan, only two factories are affected (the one from
which the job has been extracted and the one to which the job
has been inserted) therefore, when applying again the first local
search procedure, only these two factories are examined.

3.4. Reference set update method and restart procedure

After the improvement method is applied to pn we need to
check if this new solution is incorporated into the set H of RefSet.
Inspired by the generational schemes of Ruiz et al. (2006) and
Vallada and Ruiz (2010), pn is included into H if and only if: (1)
the makespan of pn is better than the makespan of the worst solu-
tion in set H and (2) it is unique, i.e., there are no other identical
solutions in set H.

If all conditions are satisfied, pn substitutes the worst solution
in set H, otherwise, pn is simply discarded. Note that we tested
some other more elaborated diversity mechanisms, like adding a
third condition by which pn should not decrease the diversity of
set H, even if better than the worst and strictly unique. However,
continuously checking for diversity is expensive and after further
detailed experiments and calibrations (not shown here due to
space constraints) the results were not better. As a result, we
dropped diversity checking from the proposed SS. This also simpli-
fies the final algorithm. However, after initial experiments, the
removal of the diversity checking also resulted in a fast conver-
gence to local optima solutions. We have to consider that set H
contains full solutions and these are never diversified after the ini-
tial diversification generation method. Only set S, which contains
random job to factory assignments is randomly regenerated at
each iteration. Therefore, we include a procedure to restart set H
after a number of iterations without improvements in the best
solution. The procedure is simple; after a iterations without
improvements in the best solution, the worst 50% of solutions in
set H are discarded and the diversification generation method is
employed to generate new solutions. An important remark is that
this restart procedure is applied until the best solution is improved,
i.e., the counter of iterations without improvement is not reset
after the restart procedure is applied.

The complete proposed SS method is given in pseudoalgorith-
mic form in Fig. 2.
4. Calibration, computational comparisons and statistical
analyses

In this section we first calibrate the presented scatter search.
Then we carry out a detailed and comprehensive computational
comparison of the proposed scatter search method against the best
ethod pseudoalgorithm.



Fig. 2. Proposed Scatter Search (SS) method. Note the parameters b, l and a.
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existing methods from the literature. We carefully explain the
aspects of the comparison, instances tested and all conditions that
facilitate the generalization and replicability of the results
obtained.

4.1. Calibration of the proposed scatter search method

We have chosen to calibrate only the most meaningful param-
eters. The size b of RefSet is typically not greater than 20 (Martí
et al., 2006). According to these and other well known indications,
the following factors are tested at the following levels, resulting in
48 combinations: (1) Size b of set H in the RefSet. Tested at four lev-
els: f2;5;10;15g. (2) Size l of set H in the RefSet. Tested at three lev-
els: f2;5;10g and (3) Number of iterations a before restart occurs.
Tested at four levels: f10;20;30;40g.

Naderi and Ruiz (2010) presented two sets of instances for the
DPFSP. The first set contains 420 small instances of up to 16 jobs,
5 machines and 4 factories. These small instances were used for
solving the proposed MILP models in that paper and are deemed
too easy for calibration and testing. They are therefore not used
in the remainder of this paper. Naderi and Ruiz (2010) also pre-
sented a set of 720 large instances based on the 120 instances of
Taillard (1993) which has 12 sets with the following different com-
binations of number of jobs n and number of machines m (n�m):
fð20;50;100Þ � ð5;10;20Þg; f200� ð10;20Þg and 500� 20. Each
combination has 10 replicates and therefore the 120 instances in
total. All these 120 instances are considered with a different num-
ber of factories. We have F ¼ f2;3;4;5;6;7g, which gives us 720
instances in total. All instances are available from http://soa.iti.es.

It has to be noted that calibrating the proposed scatter search
using the 720 instances of Naderi and Ruiz (2010) would result
in an over fitting or over calibration. Calibrating methods on the
same instances on which they are going to be tested later is bad
practice and potentially unfair. Instead, we present a set of 50 ran-
dom instances. In this set n; m and F are randomly chosen from the
previous combinations. Once chosen, the processing times are ran-
domly sampled from a uniform distribution in the range [1,99] as
it is common in the scheduling literature. Therefore, the 50 calibra-
tion instances are different from the 720 test instances. These cal-
ibration instances are also available online.

We have used the Design of Experiments (DOEs) approach
(Montgomery, 2012) for the calibration. The experimental configu-
ration is a full factorial experiment with as many treatments as the
previous combinations (48). b; l and a are controlled factors. The
response variable is the relative percentage deviation over the best
solution known for each instance, calculated as follows:
RPD ¼ Somesol�Bestsol

Bestsol
� 100. Somesol is the solution obtained by any of

the 48 SS configurations over a given instance and Bestsol is the
lowest makespan known for that instance. In order to increase
the power of the experiment we used 5 replicates raising the total
number of treatments to 48� 50� 5 ¼ 12;000. With such a large
number of results the power of the experiment is expected to be
high.

The results of the experiment are analyzed using the Analysis of
Variance (ANOVA) technique. ANOVA is a parametric statistical
tool and three hypotheses must checked. From more to less impor-
tant these are independence of the residuals, homoscedasticity of
the factor’s levels (also known as homogeneity of variance) and
normality of the residuals. After careful checking we found no sig-
nificant deviations from the hypotheses. Note that a screening full
factorial experimental design is by no means an elaborated and
fine-tuned calibration process. Actually, a full factorial design ana-
lyzed by means of ANOVA can be considered as the first step in an
algorithm calibration. For more exhaustive approaches, the reader
is referred to Bartz-Beielstein, Chiarandini, Paquete, and Preuss
(2012) where advanced techniques are shown. The reason behind
our choice of a simple calibration is none other than to avoid an
unfair comparison with existing approaches. After all, if a thorough
and extensive fine tuning calibration was carried out over the pro-
posed scatter search methods, we would not be able to ascertain in
the computational evaluation if a better performance is obtained
because of good algorithm constructs and operators or just because
of a better calibration process.

For the computational experiments we have at our disposal a
cluster with 30 computing blades, each one has two Intel XEON
E5420 processors running at 2.5 Gigahertz. with 4 cores each
(which makes 8 cores per blade). Each blade has 16 Gigabytes of
RAM memory. Therefore, in total we have 240 cores and 480 Giga-
bytes. This cluster allows us to use many different virtual machines
for the experiments, each one running Windows XP operating sys-
tem with one single virtualized processor and 2 Gigabytes of RAM
memory each. These virtual machines were used for the computa-
tional experiments to distribute the computational load.

It is important to set a meaningful stopping criterion for each
scatter search configuration. A common error in the literature
when calibrating algorithms is to give a fixed number of iterations
to each combination of factors. Obviously, a larger RefSet needs
substantially larger CPU times and one can finally conclude that
a configuration with larger sets is better while the real truth is that
it is better just because more CPU time was allowed. Therefore, we

http://soa.iti.es
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use an elapsed CPU time termination criterion that is a function of
the number of jobs n, number of machines m and number of facto-
ries F. This is needed in order to observe the statistical effect of the
tested factors. If a fixed CPU time was used, smaller instances
would end up with very good results as a relatively large CPU time
would have been employed. The effect would be the contrary for
large instances where the same CPU time would probably be not
enough. This scenario would be disastrous as a lurking variable
‘‘CPU time’’ would mask the effect of the factors. As a result, we
employ the following expression as a CPU time termination crite-
rion for each run of the proposed scatter search configurations:
n�m� F � C, where C is set to 10 and the whole expression is in
milliseconds. This is a moderately short CPU time as for the largest
instances of 500 jobs, 20 machines and 7 factories the total elapsed
CPU time will be 700 seconds and just of 2 seconds for the smallest
instances of 20� 5� 2.

The results of the ANOVA are summarized as follows (the
ANOVA table is not reproduced here due to space constraints
but it is available upon request from the authors). All three fac-
tors b; l and a are statistically significant with high F-Ratios and
p-values very close to zero. Therefore, there are statistically sig-
nificant differences in the response variable between the levels
of the studied factors. In more detail, the most significant factor
is the size b of set H. The second most significant factor is the size
l of set H and the third the number of iterations after which
restart is applied (a). The means plots of these factors, along with
95% Tukey’s Honest Significant Difference (HSD) confidence inter-
vals are shown in Fig. 3. It has to be noted that overlapping con-
fidence intervals signify that observed differences in the response
variable (RPD) of the overlapped means are statistically not
significant.

The 2 level interactions between the factors are not significant.
From the plots we see that the levels 10 and 15 are statistically
equivalent for factor b. The same applies to levels 5 and 10 for fac-
tor l. We choose the values 10 and 10, respectively as together they
make 20, an ideal size for RefSet according to Martí et al. (2006). For
the number of iterations before restart, the level of 40 is equivalent
to 20 and 30 but it results in a lower average. Although not shown
here, values larger than 10 for l and larger than 40 for a resulted in
worse performance in confirmation experiments. As a result we fix
b and l to 10 and a to 40.
4.2. Methods compared and experimental setting

We now detail the experimental setting for the computational
campaign. The following methods are included in the comparison:
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Fig. 3. Means plot for the size b of set H, size l of set S and number of iterations
before restart a for the SS ANOVA calibration experiment. All means have Tukey’s
Honest Significant Difference (HSD) intervals at the 95% confidence level.
� The discrete electromagnetism metaheuristic of Liu and Gao
(2010), referred to as EM. This algorithm includes four neigh-
borhoods in a VNS local search phase. Random initialization
as per the authors’ design.
� Hybrid Genetic Algorithm with local search (GA_LS) of Gao and

Chen (2011a), referred to as HGA. This algorithm employs NEH2
and VND(a) as initialization.
� The improved NEH of Gao and Chen (2011b), referred to as

NEHdf. Note that in the original paper, the details of the
employed branch and bound procedure used inside NEHdf are
not given. We contacted the authors for help and source codes.
Source codes were not given to us. Instead, the original authors
provided us with a slightly extended paper version (Gao & Chen,
2011c). However, this paper did not contain sufficient explana-
tions either. In the end, since the branch and bound enumerates
all possible factory assignments and the maximum value of F is
7 in the benchmark, we found out that it was actually faster,
using all possible accelerations, to try all 7! possible solutions
at each step of the NEHdf. With this we got comparable, if not
faster, CPU times that those reported in Gao and Chen (2011b).
� The improved VND of Gao et al. (2012a), referred to as

VNS(B&B). Note that this algorithm is basically a mixture of
VND(a) and the previous NEHdf and we faced the same reimple-
mentation issues.
� The tabu search method of Gao et al. (2013), referred to as TS.
� The best iterated greedy algorithm of Lin et al. (2013) which the

authors called IGVST and is simply referred to as IG here.
� The comparison also includes the original methods presented in

Naderi and Ruiz (2010), namely NEH1, NEH2, VND(a) and
VND(b). Note that VND(a) and VND(b) have been slightly mod-
ified so to stop at a given specified CPU time and not after local
optimality is reached. It has to be stressed though that neither
method has any diversification mechanism so they eventually
get stuck at a local optima from which they cannot escape. In
any case, this change in the stopping criterion has been intro-
duced in order to ease the comparisons among methods.
� We finally include in the comparison the proposed scatter

search method SS.

In total we are comparing 11 methods. As we can see from the
previous list and from the literature review of Section 2, only two
algorithms have not been included in the computational compari-
son. We did not reimplement and test the GA_KB of Gao et al.
(2012b) as according to the authors the performance is very similar
to that of the HGA of Gao and Chen (2011a). Also, the paper is scant
in details and an independent reimplementation of GA_KB is unli-
kely to succeed without access to the source codes. As commented
in Section 2, the paper Wang et al. (2013) was published after all
experimentation in this paper was finished. In any case, and as it
was mentioned, the EDA method proposed in that paper is not
competitive, being somewhat better than VND(a) but needing
much more CPU time. It is clear that this method is much worse
than other recent methods like the IG or TS above and therefore
we have chosen not to reimplement it. We will provide, however,
indirect comparisons against EDA later in this section.

Note that all methods have been carefully coded in C++ follow-
ing the original author’s explanations in their respective papers.
The stopping criterion of all methods has been modified so that
all algorithms will be using the same CPU time in all experiments.
This CPU time follows the same expression as in the calibration of
the proposed scatter search method (n�m� F � C). However, in
this case, C has been tested at several values, namely 20, 40, 60,
80 and 100. This means that the CPU time employed by all meth-
ods ranges from 4 seconds for the smallest instances of
n ¼ 20; m ¼ 5; F ¼ 2 and the shortest tested time of C = 20–
7000 seconds for the largest instances of 500� 20� 7 and
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Fig. 4. Means plot for the heuristic algorithms. All means have Tukey’s Honest
Significant Difference (HSD) intervals at the 95% confidence level.
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C ¼ 100. Note that we do not test each method for C ¼ 100 and
record the times at 20, 40, 60 and 80. In each test, each algorithm
is restarted from the beginning. This helps in avoiding self correla-
tion in the results which would be problematic for later statistical
testing. Testing all methods with 720 instances and with so many
stopping times that range from a few seconds to almost 2 hours
guarantees a full range of results and a sound statistical analysis.
Furthermore, since all algorithms have been coded in the same lan-
guage and are run on the same computers with the same CPU time
stopping criterion we have a completely comparable computa-
tional campaign. Note that the makespan evaluation, most local
search operators and initialization procedures are shared among
the methods. If a given method works better than another it can
only be attributed to the method itself and not to a faster com-
puter, better coding or different stopping times.

In total we have tested 11 methods. NEH1, NEH2 and NEHdf are
heuristics and do not have a stopping criterion and therefore are
only tested once with each instance. All other 8 methods are tested
with the 720 instances and with the 5 aforementioned different
stopping times which means that we have 3� 720 ¼ 2160 results
for the heuristics and 8� 5� 720 ¼ 28;800 results for the meta-
heuristics. Given the large number of results we have not used rep-
licates. The total CPU time needed for the metaheuristic results
(not considering the calibration of the scatter search or the heuris-
tics) is almost 165 days. The same cluster of computers used for the
SS calibration is employed for the comparisons.
4.3. Heuristic results for large instances

Table 1 shows the average relative percentage deviation for the
three tested heuristic methods, grouped by the number of facto-
ries. Each cell contains the average of the 120 instances per value
of F. The CPU times (in seconds) are also provided.

NEH1 is inferior to NEH2 which confirms the previous results of
Naderi and Ruiz (2010). At the same time, it has to be considered
that, on average, NEH1 is almost 4 times faster. NEHdf is only
slightly better than NEH2 and also about 50% slower. All three heu-
ristics are in any case incredibly fast, needing in the worst case less
than 0.3 seconds (NEHdf for instances of size 500� 20� 7). Recall
that Gao and Chen (2011b) showed NEHdf not to be statistically
better than NEH2. Let us check if this is the case. We carry out a
multifactor ANOVA where n; m; F and the heuristics are con-
trolled factors and the average relative percentage deviation is
the response variable. We are only interested in the means plot
of the factor algorithm, which is given in Fig. 4.

Note that the means plotted are actually the average relative
percentage deviations for all 720 large instances. As we can see,
we confirm the previous results of Gao and Chen (2011b) and con-
clude that while NEHdf obtains slightly better results than NEH2,
these differences are not large and/or consistent enough so to be
statistically significant. As a conclusion, NEH2 is a preferred
Table 1
Average Relative Percentage Deviation (AVRPD) and CPU time needed (in seconds) for
the three tested heuristics grouped by number of factories F.

AVRPD CPU time (seconds)

F NEH1 NEH2 NEHdf NEH1 NEH2 NEHdf

2 6.35 4.58 4.29 0.007 0.015 0.029
3 7.17 4.82 4.45 0.006 0.018 0.030
4 8.21 5.00 4.51 0.005 0.022 0.032
5 8.51 5.03 5.01 0.005 0.026 0.035
6 9.32 5.40 5.27 0.005 0.028 0.038
7 10.28 6.04 5.91 0.004 0.032 0.049

Average 8.31 5.15 4.91 0.006 0.023 0.035
method given also that NEHdf is difficult to reimplement and
slower than NEH2.
4.4. Metaheuristic results for large instances

Table 2 summarizes the results of the 8 tested metaheuristics.
The results are grouped by each CPU time stopping criterion level
(C) as well as per number of factories F. Again, each cell contains
the average of 120 results. Even though the stopping time is a fixed
equation for each instance and method (n�m� F � C), the last
column gives the average CPU time (in seconds) as a guidance.

The results of the computational evaluation contain some
important findings. First of all, we confirm the better performance
of VND(a) versus VND(b) as was explained in Naderi and Ruiz
(2010). However, being just local search methods that stop at a
local optima and without any diversification method, VND(a) and
VND(b) do not improve their performance with additional CPU
time. Both methods get stuck way before the shortest CPU times
of C ¼ 20 are reached. Actually, and as shown in Naderi and Ruiz
(2010), both methods find their solutions in 0.147 and 0.096 sec-
onds, on average, respectively. Other methods also get stuck as
their solutions do not improve with additional times. An example
is the VNS(B&B) of Gao et al. (2012a). In any case, the average devi-
ation at 2.68% is clearly below VND(a) and VND(b), which confirms
the results reached by the original authors.

An important finding resulting from the evaluation is that the
EM method of Liu and Gao (2010), apart from being stuck as no
better solutions are found with additional CPU time, is that its per-
formance is below all other tested metaheuristics at 5.21% relative
percentage deviation. As a matter of fact, this deviation is larger
than that of NEHdf and NEH2 from Table 2. If we take the average
CPU times in the shortest experiment of C ¼ 20, EM needs
164.63 seconds on average, while NEHdf and NEH2 need just
0.035 and 0.023 seconds, respectively. This means that EM obtains
a similar performance but at the same time needs an exorbitant
amount of CPU time that is between 4704 and 7157 times longer.
Note that in their paper, Liu and Gao (2010) claimed to have
improved 151 best known solutions out of the 720 of Naderi and
Ruiz (2010). We would like to stress, that these comparisons are
often misleading. We do not claim that their results did not
improve the best known solutions. As a matter of fact, our reimple-
mentation of EM improves not 151 but 161 best known solutions
when compared to the original best solutions given in Naderi
and Ruiz (2010) (so it seems that our implementation of EM is
actually slightly more efficient). The fact is that there are another
559 instances in which EM does not improve the best known
solutions. Herein lies the problem, as the solutions given by EM
in these 559 cases are not good. The result is that even though



Table 2
Average Relative Percentage Deviation (AVRPD) and CPU time used (in seconds) for the tested metaheuristics grouped by CPU time limit C and number of factories F. Bold values
represent best results.

C F EM HGA IG SS TS VND(a) VND(b) VNS(B&B) CPU time

20 2 4.33 2.72 2.51 0.98 1.66 2.77 3.02 2.56 73.17
3 4.92 3.09 2.69 1.02 2.08 3.02 3.43 2.44 109.75
4 4.90 3.34 2.74 1.18 2.82 3.27 3.27 2.44 146.33
5 5.15 3.62 2.66 1.50 3.48 3.72 3.72 2.47 182.92
6 5.42 3.95 2.50 1.87 4.05 4.08 4.08 2.77 219.50
7 6.18 4.76 2.49 2.44 4.98 4.92 4.77 3.41 256.08

Average 5.15 3.58 2.60 1.50 3.18 3.63 3.78 2.68 164.63
40 2 4.68 2.63 2.37 0.88 1.54 2.77 3.02 2.57 146.33

3 4.86 3.00 2.57 0.96 1.99 3.02 3.43 2.56 219.50
4 5.00 3.32 2.45 1.06 2.76 3.27 3.56 2.45 292.67
5 5.19 3.56 2.40 1.29 3.46 3.72 3.79 2.40 365.83
6 5.46 3.87 2.30 1.75 3.96 4.08 4.08 2.73 439.00
7 6.16 4.74 2.25 2.25 4.97 4.92 4.77 3.32 512.17

Average 5.23 3.52 2.39 1.36 3.11 3.63 3.78 2.67 329.25
60 2 4.73 2.56 2.27 0.80 1.46 2.77 3.02 2.62 219.50

3 4.87 2.99 2.41 0.81 1.93 3.02 3.43 2.49 329.25
4 5.00 3.26 2.46 0.95 2.70 3.27 3.56 2.50 439.00
5 5.40 3.53 2.34 1.25 3.42 3.72 3.79 2.43 548.75
6 5.54 3.85 2.25 1.66 3.84 4.08 4.08 2.66 658.50
7 6.03 4.72 2.07 2.16 4.88 4.92 4.77 3.38 768.25

Average 5.26 3.49 2.30 1.27 3.04 3.63 3.78 2.68 493.88
80 2 4.52 2.56 2.21 0.76 1.43 2.77 3.02 2.63 292.67

3 4.98 2.99 2.42 0.75 1.92 3.02 3.43 2.52 439.00
4 4.93 3.22 2.43 0.93 2.66 3.27 3.56 2.41 585.33
5 5.18 3.52 2.32 1.16 3.44 3.72 3.79 2.45 731.67
6 5.58 3.83 2.11 1.64 3.94 4.08 4.08 2.78 878.00
7 5.81 4.67 1.96 2.20 4.93 4.92 4.77 3.30 1024.33

Average 5.17 3.47 2.24 1.24 3.05 3.63 3.78 2.68 658.50
100 2 4.65 2.49 2.10 0.70 1.42 2.77 3.02 2.65 365.83

3 4.84 2.90 2.34 0.69 1.96 3.02 3.43 2.50 548.75
4 5.11 3.18 2.34 0.90 2.62 3.27 3.56 2.46 731.67
5 5.32 3.52 2.22 1.14 3.28 3.72 3.79 2.41 914.58
6 5.48 3.80 1.94 1.57 3.89 4.08 4.08 2.69 1097.50
7 6.09 4.67 1.99 2.14 4.92 4.92 4.77 3.31 1280.42

Average 5.25 3.43 2.16 1.19 3.02 3.63 3.78 2.67 823.13
Tot. average 5.21 3.50 2.34 1.31 3.08 3.63 3.78 2.68 493.88
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Liu and Gao (2010) improved 151 of the original best known solu-
tions of Naderi and Ruiz (2010), their average performance, when
compared in an apples to apples scenario, is poor. Summing up,
improving a fraction of the best known solutions is not indicative
of good performance. Had Liu and Gao (2010) compared their EM
against VND(a) of Naderi and Ruiz (2010) they would have found
out that VND(a) is about 43% better in performance and about
1120 times faster according to the results in this paper and in
Naderi and Ruiz (2010).

The HGA method of Gao and Chen (2011a), as commented in
Section 2 was shown to outperform VND(a) but at an unfair CPU
time advantage. In the experiments in this paper the same CPU
times are employed and we confirm that indeed HGA results in a
slightly better average relative percentage deviation than VND(a)
(3.50% versus 3.63%). It remains to be seen, however, if this small
difference in performance is indeed statistically significant. At
the end of this section we will carry out additional statistical anal-
yses that will confirm this question. The TS of Gao et al. (2013) is
confirmed to outperform VND(a) and HGA, which ratifies the
results of the original paper. It is, however, quite interesting that
our implementation of the VNS(B&B) of Gao et al. (2012a) seems
to be much better than both HGA and TS albeit VNS(B&B) is not
mentioned or used in the comparisons of this last paper of Gao
et al. (2013).

We can also comment on the recent IG method of Lin et al.
(2013). We can see that the IG beats all other existing metaheuris-
tics clearly, bringing down the relative percentage deviation to just
2.34%. IG are simple methods and therefore we can safely
recommend IG over EM, HGA, TS and VNS(B&B). VND(a) and
VND(b) are actually much faster and therefore should be consid-
ered separately. Additionally, and similarly to HGA and TS, the
results of IG steadily improve as more CPU time is given. For exam-
ple, IG with C ¼ 20 has an average deviation of 2.60% compared to
a deviation of 2.16% for C ¼ 100.

We finally comment on the results of the proposed scatter
search method SS. We can see that the overall relative percentage
deviation is just 1.31% which is almost 79% better than the closest
competitor IG. Except in some isolated cases with F ¼ 7 and large
CPU times where IG manages slightly better solutions, SS obtains,
by far, the lowest deviations in all cases. From the reported results,
all indications are that the proposed SS is a much better performer
after being tested in a wide range of CPU times and instances. Fur-
thermore, it has to be noted that the solutions given by the pro-
posed SS method when tested with the shortest CPU time of
C ¼ 20 already improve 719 out of the 720 best known solutions
reported in Naderi and Ruiz (2010). For the single instance where
the solution is not improved, the reported makespan is just one
unit larger. For C ¼ 40 all 720 best known solutions are already
improved. Comparatively, the recently proposed IG algorithm of
Lin et al. (2013) was reported in that paper to have improved
‘‘almost half’’ of the instances of Naderi and Ruiz (2010). A similar
indirect test can be carried out with the untested EDA algorithm of
Wang et al. (2013). Recall that this algorithm was not reimple-
mented because it was just recently proposed. However, the
authors report their best found solutions, so an indirect compari-
son is possible. In their paper the authors Claim 589 best new
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solutions. In an appendix, they report just 585 best solutions. Com-
paring all these values against our new best known solutions
obtained in this paper we conclude that their EDA method pro-
duces an average relative percentage deviation of 2.28% in these
585 instances that they improved. It has to be mentioned that this
is a best case scenario, since we are only considering the 585
instances the authors improved in respect to the original best
known values of Naderi and Ruiz (2010). Comparatively, the SS
proposed in this paper, for the shortest tested CPU time of
C ¼ 20 results in a deviation of just 1.62% for the same 585
instances. Actually, for these 585 instances, the proposed SS
(C ¼ 20) is better than or equal to the EDA in 508 cases. Although
the tests have been carried out on different computers (the com-
puter used by Wang et al. (2013) being faster at 3.2 Gigahertz than
ours which runs at 2.5 Gigahertz), our proposed SS with C ¼ 20 has
comparable CPU time demands to the EDA of Wang et al. (2013). As
a result, it is safe to state that even indirectly compared, the pro-
posed SS obtains much better solutions than the EDA of Wang
et al. (2013). The new improved solutions obtained in this paper
are available at http://soa.iti.es.

While the differences between the proposed SS and the existing
metaheuristics reported in Table 2 are clearly large enough as to be
statistically significant, we still carry out an ANOVA to check if the
observed differences are indeed statistically significant. In a first
summarized ANOVA we check the EM method against NEH2 and
NEHdf. Due to reasons of space we do not report the means plots
but we confirm our suspicions that the overall average relative per-
centage deviation of EM is not statistically better than that of NEH2
or NEHdf.

In order to have a clearer picture, NEH1, NEH2, NEHdf and EM
are removed for subsequent statistical analyses. Another ANOVA
is carried out where F and C, together with the type of algorithm,
are controlled factors. By far, the most significant effect comes
from the algorithm factor with an F-Ratio of almost 423 and a
p-value very close to zero. The factor F (as well as n and m if we
augmented the experiment) are very significant. Conversely, the
factor C is not very significant. This is a result of many algorithms
showing the same performance regardless of the CPU time
employed. Fig. 5 shows the means plot of the factor algorithm
averaged across all 720 instances and all C values (3600 data points
averaged at the center of each interval).
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Fig. 5. Means plot for the metaheuristic algorithms (excluding EM). All means have
Tukey’s Honest Significant Difference (HSD) intervals at the 95% confidence level.
As we can see, the differences depicted in Table 2 are, for most
methods, statistically significant. SS is statistically better than IG
which in turn is better than VNS(B&B) which improves on TS which
again is better than HGA. However, HGA is statistically equivalent
to VND(a). This confirms the experiments of Gao and Chen (2011a),
which showed that with similar CPU time, HGA was actually worse
than VND(a). Our implementation of HGA shows slightly better
results than VND(a) when run at the same CPU time but the differ-
ence is not statistically significant. Furthermore, recall that even
though throughout this paper VND(a) and VND(b) are run for the
same CPU time as all other methods, in reality they take a fraction
of the time. As a result, HGA cannot be recommended over VND(a).
Finally, VND(a) is not statistically better than VND(b), which again
concurs with the experiments carried out in Naderi and Ruiz
(2010).

It is also interesting to study the interaction between the CPU
time limit C and algorithm, shown in Fig. 6.

We confirm that for many algorithms better solutions are not
obtained with additional CPU time. SS is statistically better than
IG for all time periods and it is seen that among all methods, the
only ones that progressively improve as more CPU time is allowed
are IG and SS although most of the time the differences are not
large enough to be statistically significant. Note however that the
width of the Tukey’s Honest Significant Difference intervals short-
ens as the number of results increase. Had we run each algorithm
more times (replicates) for each instance and C value, the differ-
ences for IG and SS would have resulted as significant as C
increases.

As a final note, small focused experiments between IG and SS
for C = 60, 80 and 100 and F ¼ 7 (the cases in which, according to
the reported averages in Table 2, IG is better than SS) show that
the small differences are not enough to be statistically significant.
As a rule of thumb, a difference between two averages has to be
consistent over a large number of cases and/or large enough so
as to be statistically significant. This fact, far from being undesir-
able in statistical testing, is the real backbone of the generalization
capabilities of the ANOVA. A method A has to be substantially bet-
ter than another method B and over a large number of test cases in
order to generalize results to other cases and populations. Other-
wise, a 0.1% better performance over a small number of lab cases
in a method A over another method B would not guarantee that
outside the lab these differences would hold true.

http://soa.iti.es
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5. Conclusions and future research

The Distributed Permutation Flowshop Problem (DPFSP) is an
interesting multi-factory extension of the regular flowshop
recently proposed by Naderi and Ruiz (2010). The authors initially
proposed six alternative Mixed Integer Linear Programming mod-
els as well as two simple heuristics (NEH1 and NEH2) based on
the well known high performing flowshop heuristic of Nawaz
et al. (1983) augmented with efficient job to factory assignment
rules. The authors also presented two simple Variable Neighbor-
hood Descent algorithms VND(a) and VND(b). After this initial
work, a number of authors have proposed a number of methods
and have compared mainly against the best performing method
at the time – VND(a). In this follow up research we have studied
again the DPFSP and have proposed an effective Scatter Search
(SS) procedure. The main characteristic of the presented SS is a
hybrid RefSet made up of full solutions as well as job to factory
assignment vectors. The solution combination method combines
all full solutions with all job to factory assignment vectors. This
results in an effective strategy as the solution improvement
procedure works in the job permutations at each factory and the
combination method explores different effective job to factory
assignments. Together with a stringent reference set update
procedure and a restart mechanism, the proposed SS results in
state-of-the-art performance.

We have carried out a thorough computational analysis where
most existing methods from the literature have been carefully
reimplemented and tested in a comprehensive set of 720 instances.
Almost 165 days of CPU time have been employed in the tests
where all algorithms have been tested at 5 different stopping
times. The computational results are accompanied by sound statis-
tical analysis using design of experiments and analysis of variance
techniques. Results indicate that the proposed SS outperforms all
existing methods by a wide statistical margin, including methods
that have been proposed very recently. Another contribution of
this paper is the comparison among the other existing methods.
Many algorithms, when tested in a completely comparable sce-
nario frequently show a performance that was not observed in
the original experiments. For example, we have shown that the
performance of the EM algorithm, despite claims from the original
authors, is not competitive. On the other hand, our reimplementa-
tion of the VNS(B&B) method shows a promising performance even
though the original authors have not compared this method in
their latest published study.

The DPFSP is a recently proposed scheduling problem and many
avenues for future research lay open before us. There is no reported
research on the DPFSP with other objectives apart from makespan.
Furthermore, the problem should be generalized, as not all facto-
ries are often completely identical. Other aspects could include
leveling the load among the factories or considering important
real-life constraints such as assembly operations and setup times.
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