
Migration from Relational Databases
to HBase: A Feasibility Assessment

Zakaria Bousalem1(&), Ilias Cherti1, and Gansen Zhao2

1 Faculty of Science and Technologies, Hassan 1st University, Settat, Morocco
zakaria.bousalem@gmail.com, iliascherti10@gmail.com

2 School of Computer Science, South China Normal University,
Guangzhou, China

gzhao@m.scnu.edu.cn

Abstract. Relational Databases are currently at the heart of information system
of the companies. In recent years, the relational model has become de facto
standard thanks to its maturity and efficiency. However, the fact that the data of
some companies or institutions have become too large, new systems has
appeared namely NoSQL which belongs to the Big Data era. Big Data comes
due to the emergence of new online services on which customers have become
increasingly connected, which creates a large digital data unbearable by the
traditional management technical tools, which raise new challenges for com-
panies especially to access, store and analyse data. In this paper we will propose
a feasibility study of migration from relational databases to NoSQL databases
specifically HBase database, by applying the operations of the relational algebra
in HBase data model and explore the implementation of these operations on
HBase by using the native functions of this DBMS and also by using the
MapReduce Framework.

Keywords: Migration � Relational database � Relational algebra � HBase �
Column-oriented � NoSQL � Big data � MapReduce � Feasibility assessment

1 Introduction

Relational database management systems (RDBMS) are the most common solution in
many applications for storing and retrieving data due to its maturity and reliability.
Relational databases are based on the Codd model (relational) [1] which has privileged
a system of relations based solely on the values of the data, and a manipulation of these
data using a high level language called SQL [3], implementing a new mathematical
theory similar to the set theory proposed by Codd called “relational algebra” [1].
Relational algebra defines operations that can be applied on relations. Relational
operations allow to create a new relation (table) from elementary operations on other
tables namely union, intersection, selection, projection, and join.

However, these systems cannot support the explosion of digital data that modern
Web applications have introduced. This explosion of digital data forces new ways of
seeing and analyzing the world. These applications must support a large number of
simultaneous users (tens of thousands or even millions), ensure the scalability

© Springer International Publishing AG 2018
M. Ezziyyani et al. (eds.), Advanced Information Technology, Services and Systems,
Lecture Notes in Networks and Systems 25, https://doi.org/10.1007/978-3-319-69137-4_34



generated by storage of large data capacities, be always available, manage
semi-structured data and non-structured data and adapt quickly to changing needs with
frequent updates and new features.

To address this problem, many solutions have turned to non-relational databases,
commonly known as NoSQL databases, to enable massively parallel and geographi-
cally distributed database systems to support the internet applications such as facebook,
ebay, twitter, Sears and Amazon [6].

The “NoSQL” databases are not usually a replacement, but rather a complementary
addition to RDBMS and SQL. Consequently, developing a mapping tool between
relational and NoSQL will be very much requested.

In our paper we will work on the HBase database [4, 8] thanks to its popularity.
Indeed HBase is a Hadoop subproject, it is a distributed non-relational database man-
agement system, Written in Java, with structured storage for large tables. Zhao et al. [11]
has carried out a comparison between MongoDB and relational algebra to investigating
the feasibility of migrating relational databases to MongoDB, but there is no one for
HBase. Migration requires feasibility assessment of the potential performance for new
systems. For this purpose we will study the feasibility of applying the operations of the
relational algebra in HBase data model and then explore the implementation of these
operations on HBase by using the native functions of this DBMS and also byusing the
MapReduce Framework [5]. The rest of the paper is structured as follows: In Sect. 2 we
will introduce the basic definitions which we will begin with an introduction to the
NoSQL databases, after we will present the HBase database, so we will see what
MapReduce is. In Sect. 3 we will investigate the application of the relational algebra
operations in HBase data model. In Sect. 4 we will explore the most common operations
in relation implementation in HBase. Finally, Sect. 5 concludes our paper.

2 Basic Definitions

2.1 NoSQL Databases

A NoSQL database does not mean that no more queries are made, NoSQL simply
means Not Only SQL. It is not a new query language for dialoging with the DBMS; it’s
a new approach for data storage. The term NoSQL refers to a category of massively
parallel and geographically distributed databases management systems (DBMSs), most
of them are designed to process large datasets within acceptable response time of user
queries. They thus enrich the panel of traditional storage engines.

There are different categories of NoSQL DBMS [2]:

• Key/Value: The simplest NoSQL DBMS. It is in fact a huge hashmap with millions
of entries. E.g. Redis, Riak, Voldemort (LinkedIn).

• Document Oriented: DBMS of key/value type with a document in value. The
principle is to associate with a key a document regrouping different values. These
documents are often represented by JSON or XML files. E.g. CouchDB, MongoDB

• Column-oriented: DBMS most resembling to the relational DBMSs, however
Column-oriented DBMS allow missing values (unlike the relational model). These
DBMSs are based on a notion of pair {key, value}. The column name can be seen

384 Z. Bousalem et al.



as the key. The column-oriented model, it’s the model used in Hadoop. E.g.
Cassandra, HBase, BigTable (Google)

• Graph: The goal is to represent the information in the form of nodes connected by
edge (oriented or not). A node or edge can have attributes. This kind of DBMS
stores effectively the relationships between data points, it’s very useful for fraud
detection, Real-Time recommendation engines and network and IT operations [19].
E.g. Neo4j, FlockDB

2.2 HBase

HBase is a distributed, column-oriented DBMS based on Hadoop. HBase provides
random access and consistency for large amounts of unstructured and semi-structured
data in a schema-less database organized by column families [9]. HBase uses HDFS as
the file system for data storage and supports both queries and MapReduce. It was
designed from the Google DBMS “BigTable” [10]. It’s capable to storing a very large
data (billions of rows/columns).

As show in Fig. 1, the HBase data model is based on six concepts [12], which are:

• Table: In HBase the data is organized in tables. Tables’ names are strings.
• Row: In each table, the data is organized in rows. A row is identified by a unique

key (RowKey).

Fig. 1. HBase model [20]

Migration from Relational Databases to HBase 385



• Column Family: Data within a row is grouped by “Column Families “. Each row
of the table has the same “Column Families”, which can be populated or not. The
“Column Family” is set when the table is created in HBase. The names of “Column
Family” are strings.

• Column Qualifier: Access to data within a “Column Family” is done via the
“column qualifier” or column. It is not specified at the creation of the table but
earlier at the insertion of the data.

• Cell: Stores the values of this cell. The combination of the “RowKey”, the “Column
Family” and the “Column Qualifier” uniquely identifies a cell.

• Version: The values within a cell are versioned. The versions are identified by their
timestamp.

2.3 MapReduce

MapReduce [5, 7] is a framework for parallel distributed computing over large amounts
of data. Distributed computing is done via a cluster of machines. MapReduce fully
manages the cluster and load balancing. This allows handling distributed computing
without any knowledge of the underlying infrastructure. MapReduce is based on the
notion of job. A job is split in a set of tasks. There are two types of tasks:Map task and
Reduce Task.

3 Relational Algebra in Hbase

3.1 Union Set

Union it’s a basic operation in relational algebra which requires two union-compatible
operands.

Given two HBase tables T1 and T2, the definition of the union set is:
T1[T2 ¼ x xj 2 T1 or x 2 T2f g where T1 and T2 are union-compatible.

3.2 Cartesian Product

A Cartesian product is a binary operation that combines two relations R1 and R2 and
builds a third relationship exclusively containing all the possible combinations of
occurrences of R1 and R2 relations, we note R1 � R2.

The number of occurrences of the resulting relationship of the Cartesian product is
the number of occurrences of R1 multiplied by the number of occurrences of R2. In
HBase we can define the Cartesian product as follows:

T1� T2 ¼ r; sð Þ : r 2 T1 and s 2 T2f g

Where T1 and T2 are two tables in HBase, r and s are rows in these tables.

386 Z. Bousalem et al.



3.3 Intersection

The intersection is an operation that holds in two relations R1 and R2 with the same
pattern and building a third relation that contains all rows of R1 also belong to R2, but
no other rows. In HBase we can define the intersection as follows:

T1\ T2 ¼ r : r 2 T1 and r 2 T2f g

Where T1 and T2 are two tables in HBase and r is a row in these tables.

3.4 Selection

A selection is a unary operation that extracts certain row (or rows) from an HBase table
where the selection condition P is satisfied.

• Notation: rp Tð Þ
• Parameter: Table T and P is a propositional formula formed of a combination of

comparisons and logical operators.
• Result: rp Tð Þ = {r 2 T:r satisfies the conditions given by P}

3.5 Projection

The projection of an HBase table T1 is the HBase table T2 obtained by selecting the
rows with columns in the C set and eliminating duplicate rows.

• Notation: pc1;......cn . . .. . .T1
• Parameter: T1 is an HBase Table and C is a set of columns of selecting rows
• Result: T2 is an HBase Table with only the columns specified in C.

3.6 h-Join and Equijoin

h-join (theta join) is a binary operation that consists of all combinations of rows in two
HBase tables T1 and T2 that satisfy a condition.

• Notation:

T1 r1 ffl
h

v T2OR T1 r1 ffl r2 T2

• Parameter: T1 and T2 are two HBase Tables. r1 and r2 are two columns qualifier, h
is binary relational operator that can be : > , � , = , < or � , v is a constant
value.

• Result: a subset of Cartesian product where the condition is satisfied.

We call this operation equijoin where the h operator contains equality.

Migration from Relational Databases to HBase 387



3.7 Natural Join

The natural join is a binary operation; it’s the result of the Cartesian product of two
HBase tables with the condition that must be at least one common attribute with the
same name and the same value. If this condition is omitted, and the two HBase tables
have no common attributes, the natural join becomes simply the Cartesian product. It’s
defined as follows:

T1 ffl T2 ¼ pC[D r T1:a1¼T2:a1ð Þ^ T1:a2¼T2:a2ð Þ^���^ T1:an¼T2:anð Þð Þ T1 � T2ð Þ

Where C is the set of the column names of the HBase Table T1 and D is the set of
the column names of the HBase Table T2.

3.8 Division

The division is a binary operation; it’s a very powerful and useful operation, it’s written
as follows:

T1 kð Þ�T2 cð Þ

Where T1and T2 are two HBase tables, k and c are the sets of column names of
these HBase tables:

K = k1; . . .. . .; km; c1; . . .. . .; cnf g; c ¼ c1; . . .. . .. . .; cnf g Where c � k
The result of this operation consists of all rows r(x) in T1 that appear in T1 in

combination with every tuple from T2, where x = k – c
The division it can be defined as follows:

T1 kð Þ�T2 cð Þ ¼ t tj 2 pk	c T1ð Þ and 8 u 2 T2 t�u 2 T1ð Þf g

4 Operations of Hbase

In this section we will model the HBase query capability by using the relational
algebra.

4.1 Get

The “get” command is used to read data from an HBase table. This command returns a
single line according to the row ID parameter. It’s the equivalent of the SELECT
command in SQL. Its syntax is as follows:

get ‘<table name>’, ‘<row Id>’ 

388 Z. Bousalem et al.



by using this command we can read the data from an HBase table, but only one
record, where the row Id of the row equals the second parameter of the command ‘<row
Id>’. We can also specify the column showing in the result by using the following
syntax:

This command can be modeled with relational algebra as follows:

T is an HBase table,

4.2 Group by

Group by is often used in aggregate functions, it allows grouping tuples by the value of
an attribute and applies an aggregate function for each group.

By default HBase does not support group by and aggregate functions, but it’s
possible to perform these tasks on data by using the MapReduce framework.

In the “Shuffle and Sort” phase [7], MapReduce performs sorting and grouping by
key to ensure that the input parameter of a reducer is a set of tuples t = (k, [v]) where
[v] is the collection of all the values associated with the key k. A reducer can call the
aggregate functions on this list of grouped values.

Group by is an additional relational algebra operation [13]. We can present the
MapReduce function that performs the Group by operation by this algebra calculation:

Migration from Relational Databases to HBase 389



Where T is an HBase table, c is a set of selected column, cA is the column on which
will be applied an aggregate function, cG is the column on which the grouping will be
performed and v[] is a set of values of cA column grouped by cG.

4.3 Aggregate Function

Aggregate functions: are functions that will group the values of multiples rows. They
have applied on a numeric column and return a single result for all selected rows or for
each group of rows. Also for aggregate functions, HBase does not support these
functions, but by using the MapReduce framework or HBase Coprocessors EndPoints
we can implement them. Common aggregate functions include: count, sum, avg, max,
and min. We can present these functions in relational algebra as follows:

G1; . . .. . .;GkgF1 C1ð Þ;......;Fn Cnð Þ Tð Þ

Where G is a set of grouping column, each C is one of the columns qualifiers of the
HBase table T. each aggregate function F will be applied for each group according to
G1,…..,Gk.

In HBase these functions can be handled by using the MapReduce framework or
HBase Coprocessors EndPoints. We will treat three functions: count, sum, and avg. In
this paper we will use MapReduce.

Count
The goal is to enumerate all the distinct value of a column in an HBase table, with the
number of times that they are present within the table for each of them

390 Z. Bousalem et al.



The driver class, which runs on a client machine, is responsible for scanning the
HBase table, selecting the grouping column, configuring the job and submitting it for
execution.

The Mapper class will produce a list of pairs (key, value) [(k1; v1)]. Before being
sent to the reducer class, the file is automatically sorted by key by Hadoop in the
“shuffle & sort” phase.

The Reducer class; it will receive a group of pairs (key, values) (k1; [v1,v1,….]) as
input. Its role will be kept the unique key, calculates the sum of the values of all the
pairs (key, values) received as input, and to generate a single pair (key, value) [(k2; v2)]
as output, composed of the unique key and the obtained total.

The Count function can be handled also by using the HBase commands “count” or
“get_counter” but without the “group by” feature.

Sum
It calculates the sum of a column in an HBase table containing numeric values.

Migration from Relational Databases to HBase 391



The function “sum” has the same principle of the function “count” the only dif-
ference is in the Map phase; that performs for each row associates for the grouping
column the value of the summing column instead of the value of 1.

Avg
It allows calculating an average value of a column in an HBase table containing
numeric values. Avg function has the same driver class of the sum function. In the
mapper class, the map function sends a series of pairs (key, value) composed by the
grouping column as a key and the value of the column on which the average will be
calculated as value. Then, in “shuffle & sort” phase, Hadoop performs the sorting by
key. Therefore, the Reducer can sum the values then calculate the average by dividing
the sum by the number of items in the set of the values.

392 Z. Bousalem et al.



4.4 Join

Join in relational database allows associating several tables in the same query. It allows
exploiting the power of relational databases to get results that combine efficiently data
from multiple tables. HBase doesn’t support the join operation, but it can be handled by
using the declarative query languages that built on top of Hadoop like Pig [17] or Apache
Hive [16] that launches implicitly MapReduce jobs for joining two HBase tables.

There are various join processing algorithms for MapReduce [21] environment like
Repartition Join [15], Broadcast Join [15], and Trojan Join [18]. Following is the
pseudo code of the Repartition Join, the most commonly used join algorithm.

In our case, to joining two HBase tables T1 and T2; the input parameter is a row of
either T1 or T2 as a value. The first step in Map phase is to extract the join column from
the row then adding a tag for each row to identify its originating table in Reduce phase
using the secondary sorting [14], and finally emitting the pairs (k,v) where k is the join
key and v is the tagged row.

Then the MapReduce framework is the responsible for the partitioning, sorting and
merging tasks. In these tasks the framework sorts by key and sends all the rows with
same join key to the same reducer.

For the Reduce phase, the input parameter is a pair of (k1; [r1, r2,….]) where k1 is
the join key and [r1, r2,….] is a list of tagged rows associated to the k1 key. The joining

Migration from Relational Databases to HBase 393



operation is performed by splitting and buffering the tagged rows in two sets according
to the table tag and handles the cross-product of the two sets.

5 Conclusion and Future Work

In this paper we proposed a feasibility study of migrating relational databases to HBase
databases by applying the operations of the relational algebra in HBase data model and
explore the implementation of these operations on HBase by using the native functions
of this DBMS and also byusing the MapReduce Framework. Based on the above
sections we can deduce that is theoretically the migration between relational databases
and HBase databases can be handled efficiently. In perspective, we envisage to com-
pare the performance of execution of the commons relational operations (bulk load,
select, update, delete, join, group by, and aggregate functions) over a large database in
relational and in HBase.

References

1. Codd, E.F.: A relational model of data for large shared data banks. Commun. ACM 13(6),
377–387 (1970)

2. Moniruzzaman, A.B.M., Hossain, S.A.: Nosql database: new era of databases for big data
analytics-classification, characteristics and comparison. arXiv preprint arXiv:1307.0191
(2013)

3. Codd, E.F.: The significance of the SQL/data system announcement. Computerworld 15(7),
27–30 (1981)

4. George, L.: HBase: the Definitive Guide. O’Reilly Media Inc., Sebastopol (2011)
5. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun.

ACM 51(1), 107–113 (2008)
6. Abadi, D.J.: Data management in the cloud: limitations and opportunities. IEEE Data Eng.

Bull. 32(1), 3–12 (2009)
7. Yang, H.C., Dasdan, A., Hsiao, R.L., Parker, D.S.: Map-reduce-merge: simplified relational

data processing on large clusters. In: Proceedings of the 2007 ACM SIGMOD International
Conference on Management of Data, pp. 1029–1040. ACM (2007)

8. Apache HBase Databases. http://hbase.apache.org/
9. Dimiduk, N., Khurana, A.: HBase in Action. Manning, Shelter Island (2013)
10. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T.,

Fikes, A., Gruber, R.E.: Bigtable: a distributed storage system for structured data. ACM
Trans. Comput. Syst. (TOCS) 26(2), 4 (2008)

11. Zhao, G., Huang, W., Liang, S., Tang, Y.: Modeling MongoDB with relational model. In:
2013 Fourth International Conference on Emerging Intelligent Data and Web Technologies
(EIDWT), pp. 115–121. IEEE (2013)

12. Khurana, A.: Introduction to HBase schema design. White Paper, Cloudera (2012)
13. Ceri, S., Gottlob, G.: Translating SQL into relational algebra: optimization, semantics, and

equivalence of SQL queries. IEEE Trans. Softw. Eng. 4, 324–345 (1985)
14. Lin, J., Dyer, C.: Data-intensive text processing with MapReduce. Synth. Lect. Hum. Lang.

Technol. 3(1), 1–177 (2010)

394 Z. Bousalem et al.

http://arxiv.org/abs/1307.0191
http://hbase.apache.org/


15. Blanas, S., Patel, J.M., Ercegovac, V., Rao, J., Shekita, E.J., Tian, Y.: A comparison of join
algorithms for log processing in mapreduce. In: Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data, pp. 975–986. ACM (2010)

16. Apache Hive TM. http://hive.apache.org/
17. Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig latin: a not-so-foreign

language for data processing. In: Proceedings of the 2008 ACM SIGMOD International
Conference on Management of Data, pp. 1099–1110. ACM (2008)

18. Dittrich, J., Quiané-Ruiz, J.A., Jindal, A., Kargin, Y., Setty, V., Schad, J.: Hadoop++:
making a yellow elephant run like a cheetah (without it even noticing). Proc. VLDB Endow.
3(1–2), 515–529 (2010)

19. Webber, J., Robinson, I.: The Top 5 Use Cases of Graph Databases, Neo Technology (2015)
20. LarbretB.: Hadoop HBase – Introduction (2015). https://www.slideshare.net/larbret/

hadoop-hbase
21. Shaikh, A., Jindal, R.: Join query processing in mapreduce environment. In: Advances in

Communication, Network, and Computing: Third International Conference, CNC 2012,
Chennai, India, February 24–25, 2012, Revised Selected Papers, vol. 108, p. 275. Springer
(2012)

Migration from Relational Databases to HBase 395

http://hive.apache.org/
https://www.slideshare.net/larbret/hadoop-hbase
https://www.slideshare.net/larbret/hadoop-hbase

	Migration from Relational Databases to HBase: A Feasibility Assessment
	Abstract
	1 Introduction
	2 Basic Definitions
	2.1 NoSQL Databases
	2.2 HBase
	2.3 MapReduce

	3 Relational Algebra in Hbase
	3.1 Union Set
	3.2 Cartesian Product
	3.3 Intersection
	3.4 Selection
	3.5 Projection
	3.6 θ-Join and Equijoin
	3.7 Natural Join
	3.8 Division

	4 Operations of Hbase
	4.1 Get
	4.2 Group by
	4.3 Aggregate Function
	4.4 Join

	5 Conclusion and Future Work
	References


