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A Detailed Analysis of Six-Pulse 
Converter Harmonic Currents 

David E. Rice, Member, IEEE 

Abstract-Classical methods for the determination of six-pulse 
converter harmonic currents often do not adequately describe 
the harmonic current magnitudes actually found in practice. To 
accurately determine the magnitude of characteristic converter 
harmonics, a calculation procedure which takes into account the 
ripple of the dc current reflected back into the ac line current 
must be performed. Various methods from the literature for 
the determination of six-pulse converter harmonic currents are 
compared and a method which takes the Fast Fourier Transform 
of the time domain equations is described. Evaluation of these 
ripple effects tends to increase the magnitude of the 5th harmonic 
while decreasing the magnitudes of higher order harmonics. Non- 
characteristic harmonic orders or frequencies will sometimes also 
be encountered. These orders typically will be less than the 5th 
and can be of concern because of possible coincidence with 5th 
harmonic filter anti-resonance points. 

I. INTRODUCTION 

NDUSTRIAL power systems in recent years have experi- I enced a tremendous growth in the application of solid-state 
power converters. Most of these converters utilize SCR’s or 
diodes in a six-pulse bridge configuration. There has also been 
a proliferation of technical papers and seminars dealing with 
the ac current and voltage waveform distortion issues .asso- 
ciated with the application of power converters. These issues 
have commonly been classified as the subject of harmonics 
due to the method of analysis of these distorted waveforms. 
Any distorted, periodic waveform can be segregated into a 
fundamental sinusoidal waveform plus a series of sinusoidal 
waveforms that have frequencies that are integral multiples 
of the fundamental. These integral multiple waveforms are 
harmortics of the fundamental quantity which can be a voltage 
or current. 

In harmonic analysis, converters are modeled as harmonic 
current sources which inject harmonic currents into the ac 
power system. The resultant harmonic distortion of the voltage 
waveform can be determined according to Ohm’s law. The 
magnitude of each harmonic voltage will be equal to the 
magnitude of the injected harmonic current multiplied by the 
harmonic impedance of the power system. 

The writer has had the opportunity to conduct harmonic 
voltage and current measurements at a number of different 
industrial facilities and analytically model these same systems. 
In general it has been found that the harmonic calculations can 
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be correlated quite well with field measurements. Modeling the 
harmonic impedances of power system components is the most 
difficult aspect of the analysis. However, industrial systems 
are physically compact and normally the impedance networks 
are dominated by transformers which are relatively easy to 
accurately model. The only significant amounts of capacitance 
usually present are power factor correction capacitors which 
are straightforward to identify and model. 

Unlike the harmonic impedances of power system compo- 
nents, harmonic currents can easily be directly measured. In 
doing so it has often been found that the measured magnitudes 
of converter harmonic currents differ, sometimes substantially, 
from what have been the classic assumptions in the literature. 
These differences are primarily in the magnitudes of harmonic 
currents but sometimes in the harmonic orders as well. This 
paper reviews some of the classical assumptions with regard 
to the nature of six-pulse bridge converter harmonic currents. 
Some of the more recently developed methods which more 
closely conform to actual converter performance are reviewed. 
These approximate methods are compared to a more precise 
algorithm easily implemented with computer software. The 
algorithm solves the simple differential equation associated 
with the current waveform, and calculates the Fast Fourier 
Transform (FFT) of the waveform to derive the constituent 
harmonics. 

In order to not interrupt the flow of the paper, the equations 
associated with the various calculation methods are contained 
in an appendix to this paper. 

11. HAFNONIC SOURCE 1/H CURRENT MODEL 
The abundant literature on harmonics almost without ex- 

ception cite equations (1) and (2) as the means to determine 
the order and magnitude of the harmonic currents drawn by 
a six-pulse converter. 

h = 6 k f 1 ,  k = 1 , 2 , 3  ,... (1) 
I h  - = l / h  
I1 

The use of (1) results in harmonic orders or multiples of the 
fundamental frequency of the Sth, 7th, llth, 13th etc., and 
assuming a 60 hertz fundamental, correspond to 300,420,660 
and 780 Hz respectively. The magnitude of the harmonics in 
per unit of the fundamental is simply the reciprocal of the 
harmonic order or 0.20 or 20.0% for the 5th, .143 or 14.3% 
for the 7th, etc. The characteristic harmonics in ( 1 )  and (2) 
are obtained if one performs a Fourier series calculation on 
the square wave or stepped square wave current illustrated 
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Fig. 1. 
(b) Idealized converter current waveform for delta-wye transformer. 

(a) Idealized converter current waveform for delta-delta transformer. 
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in Fig. 1. The stepped square wave results when a delta-wye 
transformer is connected between the converter terminals and 
the point at which the current is observed. The Fourier analysis 
for either wave is identical in derived harmonic magnitudes, 
though shifted in phase angle. 

Equation (1) is a fairly good description of the harmonic 
orders generally encountered, although exceptions to this are 
discussed later in this paper. The magnitude of actual harmonic 
source currents have been found to often differ from the 
relationship described in (2). The l / h  values have often been 
described as theoretical maximums and that in practice all 
harmonic magnitudes are somewhat lower. The method by 
which these somewhat lower values are arrived at has been 
identified in this paper as “Classical” analysis. 

111. CLASSICAL HARMONIC CURRENT SOURCE MODEL 

Classical analysis can be described as the harmonics derived 
from a half-wave symmetrical waveform which is a perfect 
square wave over 120 degrees of a 180 degree half-cycle 
except where sloped to account for commutation effects. 

Perfect square waves are clearly never encountered in 
actual power systems. The first step in classical analysis 
for modifying the values that are obtained from (2) is the 
recognition that a current wave cannot instantaneously change 
from zero to some finite magnitude as depicted in Fig. 1 .  In 
a three-phase bridge circuit there will be a period of time in 
which the current must commutate or switch from one SCR 
to another. The current will decrease in one SCR while it 
increases in the other. The electrical angle which corresponds 
to this commutation time is known as the commutation angle 
or angle of overlap as is denoted by p. The length of this 
commutation period is a function of the magnitude of the ac 
system inductance and the angle of SCR phase retard or firing 
angle. The ac system inductance is normally expressed as a 
pu or percent reactance on the converter rated kVA and is 
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Fig. 2. 
converter output inductance. 

Alterations in current waveform with differences in magnitude of 

known as the commutating reactance. This value is directly 
proportional to the inverse of the three phase short-circuit 
current available. (This ignores the effect of any capacitors 
which may be present which are normally not assumed to 
contribute to fault currents, but do provide a low impedance 
commutating reactance path.) A “stiff’ system relative to the 
size of a converter results in a low value of commutating 
reactance while a large converter on a “weak” system will 
result in a high commutating reactance. The commutation 
angle also varies conversely with the firing angle. Higher SCR 
firing angles result in lower commutation angles. 

The effect of the commutation angle is to slope off the 
vertical portions of the square wave as illustrated in Fig. 2, 
lowering the percentage harmonic currents from those derived 
from a l / h  calculation. Sloping of the vertical portion of 
the square wave attenuates the higher order harmonics in 
particular. The data in Table I illustrates this effect. Harmonic 
current percentage values are compared for two different firing 
angles and therefore angles of overlap. There is not a dramatic 
difference between the two cases for the lower order harmonics 
dominated by the 5th and 7th. However, the firing angle 
difference has a large effect on the magnitude of the higher 
order harmonics. The 19th is only 1.53% of the fundamental 
for a 10 degree firing angle, while it increases to a much 
more significant 4.64% value at a 60 degree firing angle. With 
the classical model, the per unit value of any harmonic for a 
given combination of high firing angle and low commutation 
reactance may approach but will never exceed the l / h  value. 
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TABLE I 
HAIU~ONIC CURRENT COMPARISON 
Commutating Reactance = 8.0% 

I/h in percent of the fundamental current 

I /h  cr=lOo, /r=15.20 c y = 6 0 0 ,  p d . 2 0  

h I h  (%) i h  (%) % O f  l/h I h  (%) % O f  l/h 
5 20.00 18.65 93.3 19.83 99.2 
7 14.29 12.44 87.1 14.05 98.3 

11 9.09 6.37 70.1 8.72 95.9 
13 7.69 4.62 60.0 7.26 94.4 
17 5.88 2.29 38.9 5.32 90.5 
19 5.26 1.53 29.1 4.64 88.2 
23 4.35 0.63 14.5 3.61 83.0 
25 4.00 0.5 1 12.8 3.21 80.3 

The real concem is the actual amps of harmonic current 
injected into the power system. Since the harmonic current 
values in Table I are in percent of the fundamental cur- 
rent, it is imperative that in addition to the determination 
of converter percentage harmonics, the converter fundamental 
operating current be obtained for potential worst case operating 
conditions. 

For a constant torque drive or a constant current SCR 
rectifier, the converter ac current and kVA demand will remain 
constant as the dc voltage is lowered. The worst case for 
harmonics will be at whatever firing angle corresponds to 
minimum voltage for the application. For a variable torque 
application the fundamental load will tend to drop off faster 
than the per unit harmonics will increase with advanced firing 
angle. Consequently, the highest magnitude actual injected 
harmonic amps for at least the lower order harmonics will 
tend to be at the minimum firing angle corresponding to full 
load, full voltage conditions. 

IV. HARMONIC CURRENT SOURCE 
MODELS INCORPORATING RIPPLE 

While the current harmonics produced by some converter 
systems conform to the Classical model, many do not. A 
critical assumption of the classical model is that there is 
infinite inductance on the dc output of the converter. With this 
assumption, once commutation has been achieved, the current 
wave will be perfectly flat-topped. This is an assumption that 
often does not conform to the reality of how converter systems 
are designed and built. 
A six-pulse bridge rectifier does not inherently produce a 

smooth, ripple-free dc voltage. The dc output voltage will 
have a pronounced ripple as illustrated at the top of Fig. 2, 
especially as the firing angle increases. The characteristic 
shape of the ac load current is dependent on the converter 
output circuit characteristic. Fig. 2 illustrates the response of 
the ac current to the impressed dc voltage for various values 
of inductance on the converter output. The ripple current in an 
inductive circuit will equal 1/L times the integral of the ripple 
voltage. With infinite inductance the ripple current is zero and 
the flat-top wave of Fig. 1 and or the bottom of Fig. 2 results. 
However, with some finite inductance, a ripple current of some 
magnitude will be impressed on the dc current. This rippled or 
double-humped current will be reflected in the converter input 

ZERO RIPPLE LOW RIPPLE 

MODERATE RIPPLE HEAVY RIPPLE 

Fig. 3. Typical ripple classification. 

ac current and can result in a significantly different distribution 
of harmonics magnitudes than those determined by classical 
analysis. The general effect of this double-hump is that the 
magnitude of the 5th harmonic current can go considerably 
higher than the 20% maximum predicted by classical analysis, 
while the higher order harmonics tend to be of much lower 
magnitude. 

Some converter systems are equipped with a dc inductor 
sufficiently large that the converter responds fairly close to the 
classical model. This is the case with 460 volt and medium 
voltage current commutated induction motor drive systems, 
and often is true for large electrochemical rectifier units and 
large synchronous motor load commutated inverters. However, 
in some cases for the latter two systems and for dc drives, the 
converter output inductance is much less than infinite, to the 
point that the flat topped current wave assumption is no longer 
valid and considerable ripple exists in the current reflected to 
the ac line. Fig. 3 illustrates typical ac waveforms which can 
be encountered. It is even possible for the ripple to get so bad 
that the double-humps separate into two separate bumps for 
each half-cycle. (Note: Some ac drive systems utilize a dc link 
filter consisting of a link capacitor in addition to an inductor. 
The ac harmonics resulting from this link filter arrangement is 
outside the scope of this paper, as are PWM drives.) 

Two methods have been proposed in the literature for the 
harmonic analysis of these complex double-humped wave- 
forms. Methods by Dobinson and Graham-Schonholzer are 
summarized in an appendix to this paper. The latter method 
is included in the latest IEEE 519 Standard [3]. Both methods 
require that the ripple ratio T or the ripple coefficient T,  be 
known. In order to calculate either of these terms, the integral 
of the ripple voltage must be determined. A method given by 
Schaefer [4] to obtain this critical factor has been summarized 
in the appendix. Although somewhat complex, the equations 
for all these methods can be fairly easily incorporated into a 
spreadsheet for rapid calculations given the powerful personal 
computers now available. Both time domain waveforms as 
well as harmonic spectrums can be calculated and graphed. 

The Dobinson and Graham-Schonholzer methods are both 
approximations since it is assumed that the double-humps 
represent portions of sinusoidal waveforms. Furthermore, the 
Dobinson method does not take into account waveform sloping 
due to commutation. Refer to Table I1 for an summary of 
the features of each algorithm discussed in this paper. An 
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TABLE I1 
HARMONIC CWNT CALCULATION METHOD COMPARISON 

( I )  G-S uses straight line approximation for current 
waveform sloping due to commutation. (2) Dobinson and 
G-S use sine wave top approximations to represent ripple. 

Method Commutation Angle Ripple 

lill NO NO 
Classical YES NO 
Dobinson NO YES (Approx.) 
Graham-Schonholzer YES (Approx.) YES (Approx.) 
FFr YES YES , 

additional more exact method was derived for this paper and 
is described in the appendix as the “FFT Method.” The term 
“FFT Method” is a convenient label but it does not adequately 
describe the process by which the current harmonics of an SCR 
converter are determined. A software implemented numerical 
analysis procedure is utilized to describe the current wave 
in the time domain. Rather than using a single (1/L) x 
Integral of voltage quantity applicable twice each half cycle 
and assuming sine wave shaped humps as in the other methods, 
an incremental step-by-step integration procedure constructs 
the actual current wave. Once the time domain current function 
is established, a FFT (Fast Fourier Transform) can easily be 
performed via computer software to arrive at the constituent 
harmonics. 

While a rigorous comparison with actual field measure- 
ments was not conducted, the FFT method seemed to offer 
much more realistic harmonic current magnitudes that those 
derived by other methods across a complete range of converter 
characteristics. 

V. A COMPARISON OF HARMONIC SOURCE MODELS 

The performance of the l / h ,  Classical, Dobinson and 
Graham-Schonholzer calculation methods relative to the FIT 
method is summarized in Table III. All calculations were based 
on a converter with an Edo of 2850 volts, corresponding to 
a 2100 volt input ac line-to-line voltage, and a dc current 
loading of 1000 amps. Cases were run with variations in three 
different parameters. The commutation reactance was set at 
either 12.0%, 8.0% or 1.0%. Firing angles of 10 degrees, 
(typical minimum SCR firing angle), 25 degrees and 60 
degrees were examined. Cases were run for a relatively large 
link inductor of 6.5 mH, a moderate size of 1.5 mH and a 
low value of 0.5 mH. All combinations of these parameters 
yielded the twenty-seven cases summarized in Table 111. The 
actual harmonic current listings for nine of the twenty-seven 
cases are shown in Table IV, (all cases with X c  = KO%.) 

The weighted average standard deviation numbers in Table 
I11 are an indication on the accuracy of the harmonic currents 
obtained from the other methods to those obtained from the 
FFT method. This number was calculated by first taking the 
standard deviation of every characteristic harmonic from the 
5th to the 49th between the FFT method and the other method 
being evaluated. The average of these standard deviations 
for all the harmonics was then calculated after applying a 
weighting factor of l / h .  The weighting factor was to allow 
for the fact that the lower order, higher magnitude harmonics 

Case  
1 
2 
3 
4 
5 
6 
7 
8 
9 

TABLE 111 
SUMMARY OF WEIGHTED STANDARD DEVIATIONS FROM THE 

METHOD OF THE OTHER CALCULATION TECHNIQUES 
Weighted Standard D e v i a t i o n s  

-- C o n d i t i o n s  -- ( R e l a t i v e  to FFT Method) 
L i n k  F i r i n g  

mH 
6.5 
6.5 
6.5 
6.5 
6.5 
6.5 
6.5 
6.5 
6.5 

pu X c  Ang le  
0.12 10 
0.08 10 
0.01 10 
0.12 25 
0.08 25 
0.01 25 
0.12 60 
0.08 60 
0.01 60 

Average  C a s e s  1-9 

10 1.5 0.12 10 
11 1.5 0.08 10 
12 1.5 0.01 10 
13 1.5 0.12 25 
14 1.5 0.08 25 
15 1.5 0.01 25 
16 1.5 0.12 60 
17 1.5 0.08 60 
18 1.5 0.01 60 

Average  C a s e s  10-18 

19 0.5 0.12 10 
20 0.5 0.08 10 
21 0.5 0.01 10 
22 0.5 0.12 25 
23 0.5 0.08 25 
24 0.5 0.01 25 
25 0.5 0.12 60 
26 0.5 0.08 60 
27 0.5 0.01 60 

Average  C a s e s  19-27 

l l h  C l a s s i c  Dobinson 
1.591 
1.196 
0.225 
1.121 
0.889 
0.339 
1.044 
0.857 
0.652 

0.879 

1.737 
1.605 
0.712 
2.065 
1.915 
1.401 
2.972 
2.895 
2.766 

2 . 0 0 8  

2.704 
2.746 
1.858 
3.469 
3.489 
3.209 
4.962 
5.016 
4.369 

3.536 

0.151 
0.164 
0.147 
0.294 
0.314 
0.322 
0.593 
0.624 
0.648 

0.362 

0.630 
0.699 
0.634 
1.250 
1.344 
1.384 
2.526 
2.662 
2.762 

1.543 

1.666 
1.872 
1.780 
2.697 
2.933 
3.192 
4.627 
4.820 
4.365 

3.106 

1.569 
1.174 
0.089 
1.034 
0.673 
0.020 
0.516 
0.289 
0.014 

0.598 

1.453 
1.076 
0.135 
0.935 
0.594 
0.036 
0.681 
0.435 
0.029 

0.597 

1.384 
1.109 
0.412 
0.864 
0.763 
0.253 

G-S 
0.797 
0.825 
0.973 
0.760 
0.806 
0.886 
0.713 
0.717 
0.680 

0.795 

0.630 
0.618 
0.673 
0.379 
0.316 
0.148 
0.500 
0,749 
1.339 

0.595 

1.118 
1.086 
0.960 
2.806 
3.436 
4.972 

1.096 41.573 
0.818 248.425 
0.879 30.647 

0.842 37.225 

such as the 5th and the 7th are generally of more importance 
in harmonic evaluation. For example, the 5th has seven times 
the influence as the 35th in the results summarized in Table 
I11 with this evaluation procedure. 

For the cases with the relatively large 6.5 mH link inductor, 
the classical method actual performs fairly well on an overall 
basis. Even with this size inductor there is some current ripple 
so the classical method tends to undershoot the 5th somewhat, 
especially as the firing angle increases. However, it does a 
very good job on the higher order harmonics since it represents 
the commutation sloping effects which tend to attenuate the 
higher orders. Dobinson essentially assumes a zero degree 
commutation angle so this method appreciably overshoots on 
the higher order harmonics which actually are quite attenuated 
at retarded firing orders. It tends to also overshoot on the 5th 
but not to as great a degree. Graham-Schonholzer on the other 
hands tends to undershoot harmonic magnitudes, especially 
for the 5th at lower firing angles. 

With the moderate 1.5 mH inductor, Dobinson and Graham- 
Schonholzer come into their own with their modeling of 
the current humps. Dobinson models the 5th quite well but 
overshoots on the higher orders, especially at minimum firing 
angle. Graham-Schonholzer does quite well at retarded firing 
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TABLE IV 
hRMONIC CURRENTS CALCULATED FOR VARIOUS METHODS (ONLY CASES WITH XC = 0.08 pU.) 

L 

CASE 2 

= 6.50 mH 
XC = 0.08 pu 
Alpha = 10.00 deg 
Overlap = 15.20 de9 

h 
5 
7 

11 
13 
17 
19 
23 
25 
29 
31 
35 
37 
41 
43 
47 
49 

l/h C 
20.000 
14.286 
9.091 
7.692 
5.882 
5.263 
1.348 
4.000 
3.448 
3.226 
2.857 
2.703 
2.439 
2.326 
2.128 
2.041 

lasaical 
18.653 
12.440 
6.373 
4.618 
2.292 
1.526 
0.627 
0.513 
0.617 
0.654 
0.612 
0.545 
0.366 
0.274 
0.145 
0.141 

Oobinsor 
20.849 
13.338 
9.081 
7.302 
5.812 
5.029 
4.274 
3.835 
3.380 
3.100 
2.796 
2.601 
2.383 
2.240 
2.077 
1.968 

I GS 
15.118 
8.810 
4.767 
3.321 
1.464 
0.977 
0.035 
0.111 
0.471 
0.470 
0.467 
0.411 
0.241 
0.182 
0.002 
0.039 

FFT 
19.436 
11.664 
6.241 
4.485 
2.180 
1.540 
0.609 
0.501 
0.623 
0.619 
0.595 
0.532 
0.348 
0.278 
0.143 
0.135 

t HOF 30.015 23.971 29.915 19.038 24.130 
Wtg SO 1.196 0.164 1.174 0.825 0.000 

L 

CASE 5 

= 6.50 mH 
XC = 0.08 pu 
Alpha = 25.00 deg 
overlap = 9.28 dag 

h l/h Classical Dobinson OS FFT 
5 20.000 19.462 21.270 17.061 20.842 
7 14.286 13.539 
11 9.091 7.945 
13 7.692 6.359 
17 5.882 4.206 
19 5.263 3.434 
23 4.340 2.254 
25 4.000 1.795 
29 3.448 1.069 
31 3.226 0.784 
35 2.857 0.343 
37 2.703 0.188 
41 2.439 0.161 
43 2.326 0.236 
47 2.128 0.347 
49 2.041 0.379 

8 HDF 30.015 26.564 
W t g  SO 0.889 0.314 

12.868 9.531 12.028 
9.016 6.327 7.826 
7.108 4.678 5.874 
5.777 3.235 4.026 
4.912 2.582 3.245 
4.238 1.682 2.111 
3.753 1.373 1.734 
3.346 0.762 0.975 
3.037 0.609 0.785 
2.765 0.199 0.295 
2.550 0.129 0.210 
2.356 0.125 0.180 
2.198 0.148 . 0.201 
2.052 0.278 0.346 
1.931 0.275 0.345 

29.888 21.607 26.665 
0.673 0.806 0.000 

CASE 11 

L 
XC 
Alpha = 10.00 de9 
overlap = 15.20 de9 

h 
5 
7 
11 
13 
17 
19 
23 
25 
29 
31 
35 
37 
41 
43 
47 
49 

l/h C 
20.000 
14.286 
9.091 
7.692 
5.882 
5.263 
4.348 
4.000 
3.448 
3.226 
2.857 
2.703 
2.439 
2.326 
2.128 
2.041 

:lassical 
18.653 

6.373 
4.618 
2.292 
1.526 
0.627 
0.513 
0.617 
0.654 
0.612 
0.545 
0.366 
0.274 
0.145 
0.141 

12.340 

Oobinso 
23.677 
10.179 
9.048 
5.999 
5.578 
4.246 
4.029 
3.285 
3.154 
2.679 
2.590 
2.261 
2.198 
1.956 
1.908 
1.724 

Nn GS 
20.302 
5.875 
4.546 
2.896 
1.055 
1.087 
0.206 
0.083 
0.537 
0.340 
0.426 
0.373 
0.167 
0.211 
0.057 
0.013 

FFT 
21.996 
9.162 
5,765 
4.018 
1.817 
1.577 
0.593 
0.498 
0.640 
0.507 
0.539 
0.487 
0.289 
0.291 
0.147 
0.127 

% HDF 30.015 23.971 30.041 21.883 24.998 
Wtg SO 1.605 0.699 1.076 0.618 0.000 

mse 20 

L 
xc 
Alpha = 10.00 deg 
Overlap = 15.20 deg 

h 
5 
11 7 

13 
17 
19 
23 
25 
29 
31 35 

37 
41 
43 
47 
49 

l/h Classical Dobinson GS FFT 
20.000 18.653 31.031 36.709 29.030 
14.286 12.440 1.967 4.629 5.723 
9.091 6.373 8.964 3.756 4.713 
7.692 4.618 2.613 1.374 2.950 
5.882 2.292 4.968 0.412 1.223 
5.263 1.526 2.213 1.481 1.699 
4.348 0.627 3.393 1.067 0.836 
4.000 0.513 1.856 0.777 0.724 
3.448 0.617 2.564 0.772 0.696 
3.226 0.654 1.584 0.126 0.319 
2.857 0.612 2.057 0.279 0.415 
2.703 0.545 1.378 0.240 0.382 
2.439 0.366 1.715 0.097 0.209 
2.326 0.274 1.217 0.314 0.331 
2.128 0.145 1.470 0,255 0.208 
2.041 0.141 1.089 0.200 0.179 

8 HDF 30.015 23.971 33.488 37.283 30.218 
Wtg SD 2.746 1.872 1.109 1.086 0.000 

CASE 14 

L - 1.50 mH 

Alpha - 25.00 deg 
overlap = 9.28 deg 

h 1Jh Classical 
5 20.000 19.462 
7 14.286 13.539 

11 9.091 7.945 
13 7.692 6.359 
17 5.882 4.206 
19 5.263 3.434 
23 4.348 2.254 
25 4.000 1.795 
29 3.448 1.069 
31 3.226 0.784 
35 2.857 0.343 
37 2.703 0.188 
41 2.439 0.161 
43 2.326 0.236 
47 2.128 0.347 
49 2.041 0.379 

% HDF 30.015 26.564 
Wtg SD 1.915 1.344 

xc = 0.08 p" 

Dobinson GS FPT 
25.503 24.589 25.413 
8.140 5.465 7.183 
9.027 6.882 1.401 
5.158 3.593 4.263 
5.426 3.091 3.417 
3.741 2.249 2.609 
3.871 1.440 1.635 
2.930 1.325 1.526 
3.007 0.545 0.667 
2.407 0.617 0.784 
2.458 0.043 0.171 
2.042 0.234 0.290 
2.078 0.216 0.242 
1.773 0.047 0.103 
1.800 0.314 0.342 
1.566 0.198 0.233 

30.495 26.725 28.201 
0.594 0.316 0.000 

CASE 23 

XL - 0.50 mH 

Alpha = 25.00 deg 
overlap = 9.28 deg 1 
xc = 0.08 pu 

h 
5 
7 

11 
13 
17 
19 
23 
25 
29 
31 
35 
37 
41 
43 
47 
49 

l/h C 
20.000 
14.286 
9.091 
7.692 
5.882 
5.263 
4.348 
4.000 
3.448 
3.226 
2.857 
2.703 
2.439 
2.326 
2.128 
2.041 

:lasaical 
19.462 
13.539 
7.945 
6.359 
4.206 
3.434 
2.254 
1.795 
1.069 
0.784 
0.343 
0.188 
0.161 
0.236 
0.347 
0.379 

Doblnsor 
36.508 
4.151 
8.900 
0.090 
4.514 
0.698 
2.919 
0.791 
2.125 
0.769 
1.659 
0.720 
1.356 
0.666 
1.143 
0.616 

1 OS 
61.568 
14.508 
9.607 
1.137 
2.419 
0.612 
0.247 
1.091 
0.520 
1.014 
0.723 
0.753 
0.665 
0.453 
0.492 
0.184 

e HDF 30.011 26.564 38.362 64.087 
Wtg SO 3.489 2.933 0.763 3.436 

FFT 
37.275 
7.681 
6.363 
0.921 
1.903 
1.029 
0.524 
1.003 

0.783 
0.423 
0.517 
0.415 
0.271 
0.331 
0.082 

0.318 

3e.696 
0.000 

L 

CASE 8 

- 6.50 mH 
xc - 0.08 pu 
Alpha - 60.00 deg 
Overlap = 5.17 deg 

h 
5 
7 

11 
13 
17 
19 
23 
25 
29 
31 
35 
37 
41 
43 
41 
49 

l/h C 
20.000 
14.286 
9.091 
7.692 
5.882 
5.263 
4.348 
4.000 
3.448 
3.226 
2.857 
2.703 
2.439 
2.326 
2.128 
2.041 

:lassical 
19.831 
14.050 

7.260 
5.324 
4.643 
3.610 
3.206 
2.547 
2.214 
1.811 
1.613 
1.270 
1.120 
0.858 
0.743 

8.723 

Dobinsol  
22.331 
11.683 
9.064 
6.619 
5.689 
4.619 
4,146 
3.547 
3.261 
2.819 

2.423 
2.286 
2.091 
1.989 
1.840 

2. 688 

1 OS 
18.995 
9.319 
7.279 
5.149 
4.265 
3.389 
2.830 
2.381 
1.966 
1.712 
1.380 
1.229 
0.955 
0.864 
0.635 
0.581 

PFT 
22.445 
11.112 
8.621 
6.133 
5.054 
4.036 
3.355 

2.332 
2.041 
1.638 
1.467 
1.135 
1.032 
0.157 
0.696 

2.837 

I HDF 30.015 28.537 29.892 24.147 28.604 
Wtg SD 0.857 0.624 0.289 0.717 0.000 

CASE 11 

L 
xc 
Alpha = 60.00 deg 
Overlap = 5.17 deg 

h 
5 
7 

11 
13 
17 
19 
23 
25 
29 
31 
35 
37 
41 
43 
47 
49 

l/h C1 
20.000 
14.286 
9.091 
7.692 
5.882 
5.263 
4.348 
4.000 
3.448 
3.226 
2.857 
2.703 
2.439 
2.326 
2.128 
2.041 

Lassical 
19.831 
14.050 
8.723 
7.260 
5.324 
4.643 
3.610 
3.206 
2.547 
2.214 
1.811 
1.613 
1.270 
1.120 
0.858 
0.743 

Dobinsor 
30.100 
3.006 
8.974 
3.041 
5.045 
2.470 
3.473 
2.037 
2.639 
1.723 
2.124 
1.489 
1.776 
1.310 
1.526 
1.169 

I 0s 
36.422 
I. 247 
9.637 
2.629 
4.829 
2.246 
2.905 
1.797 
1,870 
1.410 
1.223 
1.087 
0.783 
0,818 
0.472 
0.595 

PIT 
31.067 
1.676 
8.280 
2.411 
4.165 
2.026 
2.513 
1.616 
1.623 
1.269 
1.067 
0.982 
0.689 
0.743 
0.421 
0.543 

t HDF 30 .015  28.537 32.831 38.445 32.812 
W t g  SO 2.895 2.662 0.435 0.749 0.000 

CASE 26 

- 0.50 W 
xc = 0.08 pl 

Alpha = 60.00 deg 
Overlap - 5.11 dag 

h 
5 
1 

11 
13 
11 
19 
23 
25 
29 
31 
35 
31 
41 
43 
47 
49 

l/h Classical 
20.000 19.831 
14.286 14.050 
9.091 8.723 
1.692 7.260 
5.882 5.324 
5.263 4.643 
4.348 3.610 
4.000 3.206 
3.448 2.541 
3.226 2.214 
2.857 1.811 
2.703 1.613 
2.439 1.270 
2.326 1.120 
2.128 0.858 
2.041 0.743 

Dobinmon O s  
50.300 1590.71 
19.553 718.594 
8.141 219.955 
6.261 222.119 
3.371 55.103 
3.116 99.640 
1.124 9.597 
1.890 50.311 
1.020 6.739 
1.283 25.524 
0.658 12.821 
0.937 11.553 
0.451 14.511 
0.120 3.234 
0.321 14.102 
0.574 1.767 

FFT 
52.880 
23.314 
1.417 
7.031 
1.917 
3.060 
0.388 
1.412 
0.173 
0.682 
0.380 
0.244 
0.441 
0.014 
0.432 
0.158 

8 HDF 30 .015  28.537 55.325 1178.06 58.836 
Wtg SD 5.016 4.820 0.818 248.425 0.000 
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angles but tends to overshoot to some degree on all orders 
at advanced firing angles. As expected, the classical method 
which assumes a flat-top wave begins to miss badly on the 5th 
and the 7th harmonic magnitudes. 

Use of the small 0.5 mH inductor only further shows the 
inadequacy of the classical method as it severely undershoots 
the correct magnitude for the 5th. Dobinson does quite well, 
especially in modeling of the 5th which totally dominates the 
other harmonics, especially at advanced firing angles. At a 60 
degree firing angle the total current wave HDF is 58.8%, of 
which 52.9% is the 5th. (Dobinson comes in close at 50.3%.) 
With the 0.5 mH inductor and the 60 degree firing angle 
the ripple is so severe that the humped wave separates into 
two bumps. It becomes clear that the Graham-Schonholzer 
algorithm breaks down for this condition as all harmonics 
severely overshoot. 

In conclusion, it appears that only the FFT Method is 
adequate to accurately predict converter harmonics across the 
converter operating range and with a variety of converter out- 
put inductances. If another method is used, it appears Dobinson 
is conservative4n that it performs well for moderate to heavy 
ripples and moderately overshoots for low ripple, (high link 
inductance) waveforms. If a mix of non-FFT methods can be 
used the following is suggested: 

Ripple Method to Use , 

Low Classical 
Moderate 

Heavy Dobinson 

Dobinson for 5th and 7th, 
Graham-Schonholzer for higher orders. 

The FFT method does a precise job of calculating con- 
stituent waveform harmonics given the limitations of the 
single inductance converter output network it assumes as 
depicted in Fig. 4. However, additional complexities could be 
introduced into the evaluation. A network more extensive than 
a single inductance could produce more accurate results where 
converters are utilized to drive dc motors. [5] [6] The FFT 
model in this paper assumes a perfectly sinusoidal ac voltage 
waveform at the terminals of the converter. This waveform 
will be distorted in proportion to the commutating reactance 
in the absence of any capacitance resonance effects or other 
converters present on the system. An iterative process could be 
used to further modify the current waveform based on voltage 
distortion of the ac system. 

However, it is the writer's experience that the converter 
current harmonics obtained without these complexities are 
sufficient for most engineering evaluations and also appear 
to correspond quite well with actual field measurements con- 
ducted on a number of sizes and types of converter systems. 

VI. SYSTEM CONSEQUENCES OF 
NON-CLASSICAL HARMONIC MAGNITUDES 

Modeling of the harmonics resulting from the complex 
double-humped current wave may be complex but the net 

AC 

INPUT 

I 

I 
CONVERTER 

I LINK 
I INDUCTANCE 

: CONVERTER 
' LOAD 

RESISTANCE 

Fig. 4. Six pulse bridge rectifier model. 

effect is relatively simple. A converter with high ripple will 
tend to have higher 5th harmonic magnitudes along with lower 
magnitudes for the characteristic higher order harmonics. From 
a power system standpoint this is not necessarily better or 
worse, it is just different. If there is 5th harmonic filtering 
present, the resulting bus harmonic distortion factor will be 
lower with high ripple converter systems which are putting 
out predominately 5th harmonic. However, the 5th harmonic 
duties on the filtering equipment will be greater than what they 
would be with a more classical harmonic current distribution 
and this must be allowed for in the filter design. 

If 5th harmonic filtering is not present, the high magnitude 
and dominant 5th harmonic current injected to the utility 
might make it more likely that the injected harmonic current 
restrictions of IEEE 519 will be violated. The crucial point 
is that converter source harmonic currents must be evaluated 
in a manner which closely predicts actual experience, so that 
the appropriate decisions can be made for the handling of 
harmonic distortion on the system. 

VII. NON-CHARACTERISTIC HARMONIC ORDERS 

Thus far in this paper the variance of harmonic current 
magnitudes from classical models has been discussed while 
assumed the validity of the harmonic orders expressed in (2). 
This equation normally does describe well the harmonic orders 
for which six-pulse bridge converters normally produce signif- 
icant harmonic current magnitudes. However, there are other 
harmonics orders which can be present in some circumstances 
that can conceivably become a problem to the power system. 

VIII. EVEN ORDER HARMONICS 

Refer to Fig. 5 which depicts the measured waveform and 
harmonic spectrum for a large 3000 hp mixer dc drive. As 
expected with this high ripple wave, the 5th harmonic is the 
highest at 26.5%. However, note the three harmonics following 
in order of magnitude are the 4th, 2nd and 6th at 16.3%, 15.8% 
and 8.6% respectively. The presence of these even harmonics 
is not normal. It is evident that the drive regulator is most 
likely improperly tuned with excessive gain which produces 
the asymmetry between the first and second humps in each 
half-cycle. This alone would not produce even harmonics. 
They result because the asymmetry in SCR firing results in 
the higher hump leading on the positive half-cycle, while it is 
trailing in the negative half-cycle. 
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h Percent 

1 100.0000 
2 15.8216 
3 6.3716 
4 16.2836 
5 26.5003 
6 8.6447 
7 6.6451 
8 2.0417 
9 3.0078 

10 5.2420 
11 6.1412 
12 4.2806 
13 2.1515 

I 1 

Fig. 5. 
ing in significant even harmonics. 

DC drive current with non-half-wave symmetrical waveform result- 

Even harmonics will be present if a waveform is not 
half-wave symmetrical. A wave has half-wave symmetry if 
f (wt )  = - f ( w t  + T). In graphical terms, if you take the 
positive half-cycle waveform, flip it about the z-axis and slide 
it to the right 180 degrees and are able to line it up perfectly 
with the negative half-cycle wave, the waveform has half-wave 
symmetry and no even harmonics exist. If this procedure is 
followed for the measured waveform in Fig. 5, it is evident 
that significant half-wave asymmetry exists which confirms 
the existence of even harmonics. In this case the drive was 
operating successfully with no resulting problems to the power 
system; however, that would not necessarily always be the case 
as will be discussed later in this paper. 

345 Hz 

CONVERTER 
SOURCE 
CURRENT 

4500 kVAR 
CAPACITOR 

CURRENT 

BUS 
VOLTAGE 

I 
345 Hz 

Fig. 6. 
harmonic. 

Spectrum traces depicting amplification on 345 Hz non- integer 

IX. NON-INTEGER HARMONICS 

The term “Non-Integer Harmonic” really is a contradiction 
of terms. By definition a harmonic is, “An integer multiple 
of some fundamental quantity”. However, the terms seems to 

Where: f s ~  = Frequency of sideband harmonic 
fl = Inverter running frequency 
f = AC system base frequency 

accurately describe an interesting effect which can occur in 
the application of ac converters on ac adjustable speed dnves. 
Measurements were taken in a polyethylene plant that due to 
some unusual circumstances resulted in some very evident, 
though non-injurious, “Non-Integer Harmonics”. 

The drive in question was actually running in excess of the 
base speed of 360 rpm at 405 rpm which corresponds to an 
inverter frequency of 67.5 hz. Equation 3 correctly computes 
the observed reflected inverter harmonics at 345 and 465 hertz. 

Fig. 6 depicts spectrum analyzer plots of current and voltage 

plot shows that in addition to the classic harmonic orders, (5th, 
waveforms measured at the plant. The converter source current x. SYSTEM CONSEQUENCES OF 

NON-CHARACTERISTIC HARMONIC ORDERS 
7th, 1 lth, 13th, etc.), there are two low magnitude “harmonics” 
at 345 Hz and to a lesser extent at 465 Hz. On a 60 hertz base 
these represent harmonic orders of 5.75 and 7.75. These are 
actually integer multiples of the fundamental inverter running 
frequency of this load commutated synchronous motor drive 
reflected back across the dc link and converter into the ac 
system. These reflected inverter harmonics typically are low 
magnitude, on the order of 1% to 6%, and are generated in 
sidebands pairs according to (3). 

(3) f S S  = 6 f I  f f 

The non-characteristic harmonics previously discussed are 
mostly orders less than the 5th. For the dc drive generating 
even harmonics, the 2nd and the 4th were the significant 
offenders. In the case of the ac drive, the non-integer harmonic 
orders generated were 5.75 and 7.75. However, the drive was 
running in excess of base speed with the inverter frequency 
greater than 60 hertz. For the more typical situation with the 
drive operating at some speed below base speed, the lower 
order (and higher magnitude) harmonic of the sideband pair 
would be at a frequency less than the fifth harmonic. 
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Another harmonic almost always present in power systems 
is the 3rd. Drives normally produce very little third, (the 6.37% 
magnitude of 3rd in Fig. 5 is an exception!) The presence of 
the third on most systems is due to transformer saturation. The 
magnitude of the third can go up significantly when the system 
is operated above rated transformer voltage as the transformer 
cores saturate and draw an exciting current greatly increased 
in both magnitude and distortion level. 

The possible presence of harmonics less than the 5th order 
leads to special concern for the application of 5th harmonic 
filters. This filtering is often applied when a significant amount 
of load consists of six-pulse converter equipment. It is com- 
monly understood that the presence of unfiltered or “naked” 
capacitors can lead to problems on a power system with har- 
monic generating loads. This is due to the possibility of parallel 
resonance of the capacitors with the inductive reactance of the 
power system at a frequency which corresponds to a harmonic 
present on the system. The result is the amplification of voltage 
and current distortion of the harmonic to which the parallel 
combination is tuned. Equation 4 is the familiar formula which 
expresses the parallel resonance tuning point given a system 
fault SCMVA available and capacitor MVARC size. 

(4) 

One justification for filtering is to remove this threat of 
parallel resonance. However, it must be understood that the use 
of a series tuning reactor on a bank of power factor correction 
capacitors does not eliminate the parallel tuning point of the 
capacitors. It merely shifts the parallel tuning point below the 
series tuning point of the filter. 

The capacitor and tuning reactor combination will be ca- 
pacitive below the tuning point of the filter and will have a 
parallel tuning point, sometimes referred to as the filter anti- 
resonance point, below the series tuning point. The tuning 
frequency of the anti-resonance point is a function of the filter 
size, series tuning and short-circuit MVA of the system and 
can be calculated using (5). 

I 1 
h A R =  MVARC l]srlam++ 

harmonic. The net result was that due to parallel resonance, 
3 amps of the 5.75th produced in the drive was amplified 
to 12.6 amps in the capacitor, and the 5.75th was the third 
largest source of harmonic distortion after the 11th and 13th. 
(The six-pulse drives had transformer winding configurations 
to allow 12 pulse cancellation largely eliminating the 5th and 
the 7th.) The spectrum analysis plots in Fig. 6 clearly show 
this amplification effect., 

Despite the amplification of this uncharacteristic harmonic, 
there were no problems on this particular system since the 
overall distortion level was kept very low by the 12-pulse 
arrangement and the filtering. Nevertheless, this situation 
illustrated the need for caution in the application of filtering 
where the presence of non-characteristic and even non-integer 
harmonics is a possibility. 

XI. CONCLUSION 

The assumption of l / h  per unit harmonics, even when 
modified to allow for the attenuating effects of commutation, 
will not adequately describe the actual magnitude of six-pulse 
converter harmonic currents in many cases. To accurately 
determine the magnitude of characteristic converter harmonics, 
a calculation procedure which takes into account the ripple of 
the dc current reflected back into the ac line current must 
be performed. Evaluation of these ripple effects will tend to 
increase the magnitude of the 5th harmonic while decreasing 
the magnitude of the higher order characteristic harmonics. 
The FFT method described in this paper and implemented in 
computer software will accurately predict converter harmonic 
currents across a range of firing angles, commutating reactance 
and dc link inductance values. The classical, Dobinson or 
Graham-Schonholzer methods can be implemented by hand 
calculation but the limitations of each must be considered or 
large errors in the results may occur. 

Non-characteristic harmonic orders or frequencies will 
sometimes also be encountered. These orders typically will be 
lesdthan the 5th and can be of concern because of possible 
concidence with 5th harmonic filter anti-resonance points. 

A 5th filter anti-resonance point somewhere below 300 hz 
is usually considered to be a “safe” location. However, if the 
anti-resonance tuning point corresponds to a non-characteristic 
harmonic order present on the system, amplification of that 
harmonic’ will occur. 

Filter anti-resonance tuning was a factor for the previously 
discussed situation with the spectrum measurements in Fig. 6. 
The plant was equipped with two 6.3 MVAR 5th harmonic 
filters on the same 13.8 kV bus feeding the ac adjustable 
speed drives. Due to the loss of some of the outdoor stack 
rack capacitor cans due to bird and/or rodent activity, one of 
the filter sizes was reduced to 4.5 MVAR with a resultant 
shift upwards of both the series tuning point and the anti- 
resonance point. The series tuning point was shifted up to 
h = 6.33 and the resultant filter anti-resonance point ended 
up at 353 hertz, very close to the 345 hertz reflected inverter 

APPENDIX 

A. Calculation Procedures 

All the calculations in this appendix apply for a six-pulse 
double way (bridge) SCR rectifier. The same information 
applies to multi-pulse converters except that allowance must 
be made for cancellation of the appropriate harmonics. 

B. Variable Dejinitions 

a Firing angle 
A J E, 

Ai Ripple current 
Awt  
Ed Average dc voltage 
Ed0 Maximum average dc voltage 
ELL AC line-to-line RMS voltage 

Incremental ripple voltage integral for FFT 
method 

Angular increment for FFT method 
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f 
fI 

h 
~ A R  

fSB 

Maximum crest dc voltage 
DC ripple voltage 
Value of dc voltage ripple at end of integration 
interval 
Value of dc voltage ripple at start of integration 
interval 
AC system frequency 
Inverter running frequency 
Reflected inverter sideband frequencies 
Order of harmonic 
Filter anti-resonance tuning point 

be proportional to the required drive speed. AC drive control 
strategies may be utilized at the high end of the speed range, 
(80%-100%), which hold voltage constant and allow the 
voltskertz ratio to rise. This can be done as long as the 
higher flux density is acceptable to the motor design. Constant 
converter voltage maintains a minimum converter firing angle 
thereby maintaining both a higher power factor and lower ac 
harmonic currents.) 

(7) 

The commutating angle is a function of the firing angle and 
the commutating reactance X,.  The commutating reactance 
can be calculated using (8) which is the ratio of the converter 
rated ac line current divided by the available three phase fault 
current at the converter terminals. 

h f 
h, Parallel resonance tuning point 
i ( w t )  
I1 Fundamental current 
Ilrated Converter rated fundamental current 
I C  Commutation current 

Filter series tuning point 

AC current waveform as a function of w t  

I S ,  s edt 
P 
mH 
MVARC 
r 
TC 
SCMVA 
XC 

Average dc current 
Converter rated average dc current 
Harmonic current 
Pu harmonic current 
Value of dc current ripple at end of integration 
interval 
Value of dc current ripple at start of integration 
interval 
Three-phase fault current at converter terminals 
Time integral of ripple voltage (Schaefer) 
Commutation angle 
Converter output inductance in millihenries 
Three phase capacitor MVAR 
Ripple ratio = Ai/& 
Ripple coefficient = &/I, 
Three phase short-circuit MVA 
Commutation reactance in pu 

C. Classical Analysis 

Classical analysis allows for harmonic attenuation due to 
commutation but no ripple effects are accounted for since 
infinite inductance on the converter output is assumed. 

Harmonic magnitudes in per unit of the fundamental ac 
input current may be computed in accordance with (6). [2] [7] 

(6) 
I h  - Ja2 + b2 - 2abcos(2a + p )  -- 

h(cos cy - cos((~ + p ) )  I1 

Where: 
sin((h - l)p/2) 

h - 1  ' 
sin((h + 1)p/2) 

h + l  ' 

U =  

b =  

In order to utilize this equation the firing angle must be 
set and the angle of overlap computed. The SCR firing 
angle is determined by the dc voltage required by the load 
at the converter output and is expressed in (7). (In a dc 
drive the output voltage is proportional to speed. In an ac 
adjustable speed drive the drive speed is governed by the 
frequency of the inverter output. The voltskertz ratio is 
usually kept constant so that the converter voltage will also 

X - I lrated 
c - -  

I S C  

The commutating angle can be calculated using (9). 

p = arccos(e2 - ce 

+J(ce - e2)2 - e2 - c2 + d2'+ 2ce) (9) 

Where: 

I d  c = xc-, 
Idrated 

d = s ina ,  
e =  COS^. 

Based on the previously discussed material and equations 
(6 )  through (9), the following procedure can be followed to 
compute the spectrum of harmonic currents. 

1) Calculate the commutating reactance. 
2)  Determine the required firing angle by using (7) based on 

the Ed required by the load assuming the commutation 
angle is equal to 0. 

3) Utilize equation (9) to calculate the commutation angle 
given the X ,  and firing angle already determined. 

4) Calculate the resultant Ed using (7). For larger commu- 
tation angles this may lower Ed sufficiently from the 
desired magnitude that an iterative process may have to 
be used between steps b and d to arrive at a firing angle 
which provides the desired Ed. 
Note: The iterative process is normally not required for 
harmonic analysis. A check at the maximum dc voltage 
would set the converter bridge at a minimum SCR firing 
angle which is about 10 degrees. The Ed resulting from 
this firing angle and associated commutation angle is the 
maximum and cannot be raised. When the harmonics are 
checked at maximum firing angles, (minimum operating 
dc voltage), the commutation angles get very small and 
the pu Ed varies little from cos(cy).  

5) Once the setpoint firing angle and resulting angle of 
overlap have been determined the spectrum of harmonic 
currents can be calculated using (6). 
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D. Calculation of DC Current Ripple 

The dc current ripple is an input variable vital to the com- 
putation of harmonics according to the Dobinson or Graham- 
Schonholzer methods. The following equations derived from 
Schaefer [4] utilize the time integral of the ripple voltage 
method for obtaining ripple current. 

The angle ,D must be first be calculated using (10). 

p = arcsin [g] = arcsin [-I E d  (10) 1.047Ed0 

The time integral of the ripple voltage can then be calculated 
using (11). If: 

Then: 

1047.2Ed0 [cos ( a  + p + - + cosp J W 7 3 edt = 

- ($ - p - a - p )  sin/?], 

< I f a + , U = , D - $  
Then: 

1047.2Ed0 
[2cosp - (T - 2,D)sinpI. 

. J e d t  = W 

To obtain the current ripple the time integral of voltage is 
divided through by the converter output load inductance in 
mH per (12). 

E. Dobinson Method 

the per unit harmonic source currents. [ l ]  [8] 
Dobinson arrives at the following expressions to calculate 

(-l)k for h = 6k - 1 1 1 6 . 4 6 ~  7.'13r 

(-l)k for h = 6k + 1 1 1 6 . 4 6 ~  7.137- 

Where: 
Ai r = -  
I d  

F. Graham-Schonholzer Method 

to (14) and then the ripple coefficient according to (15). [2] 
The commutation current IC must be calculated according 

ai 
r, = - 

I, 

Ed 

E, 

r h  Do I 30' 60' 90" 120' 150' 180' I 

120'-l 

'SHOWN IN DEGREES - RADIANS USED IN CALCULATIONS 
IN THIS NUMERICAL MODEL SCALING, WAVE RISES FROM AXIS AT 0 FOR ALL FIRING ANGLE 

Fig. 7. 
FIT analysis. 

Illustration of calculation method to setup current waveform for 

The per unit harmonic magnitudes of order h = 6k + or - 1 
can then be calculated using (16). 

Where: 

sin((h + l ) ( r / 6  - p/2)) + sin((h - 1)(7r/6 - p/2)) 
h + l  h + l  9 h =  [ 

2sin(h(r/6 - p/2)) sin(7r/3 + p/2) 
h 

- 

G. FFT Method 

This method is a software implemented numerical analysis 
procedure which constructs the actual ac current waveform in 
the time domain and then calculates the Fast Fourier Transform 
(FFT) to arrive at the constituent harmonics. Rather than 
using a single Voltage integral divided by inductance quantity 
applicable twice each half cycle and assuming sine wave 
shaped humps as in the other methods, an incremental step-by- 
step integration procedure constructs the actual current wave. 
Fig. 7 illustrates this procedure for a positive half cycle of the 
current wave which is divided into seven different segments. 

The equations for each segment are defined below. These 
equations describe the current i ( w t )  for w t  from 0 to 180 
degrees. 

Segment 1 

i ( w t )  = 0 (17) 
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Segment 2 Segment 7 

cos Q - COS(Q + w t )  
cos (Y - cos((Y + p )  

i ( w t )  = 0 i ( w t )  = I, 

Segment 3 The equations for Segments 1 and 2 produce the 
magnitude of i ( w t )  for any discrete value of w t .  To calculate 
the first of the double humps, the segment must be divided into 
a number of intervals and a sequential integration procedure 
performed across the width of the segment as illustrated for 
one of the intervals in the expanded portions of Fig. 7. For 
each integration interval the following set of equations can be 
used to determine a set of i ( w t )  across the width of the hump. 

The instantaneous dc ripple voltage is first calculated using: 

e,(wt) = &ELL sin(r/3 + (Y + ut) - E d  (19) 

The incremental change in current which is the integral of 
voltage divided by the converter output inductance can then 
be calculated using (20). 

In order to determine the commutating current IC, the 
average dc value of the ripple current calculated with the 
above equations must be subtracted from the total Id. Boundary 
values between the segments must be calculated and factored 
as well into the numerical procedure. To obtain a full cycle of 
values, the negative values should be used for the negative half 
cycle function. The even harmonics generated by asymmetrical 
SCR firing can easily be determined by generating a different 
wavefrom for the negative half-cycle. 

Having constructed the current waveform in the time do- 
main, the final step is to use numerical procedures to take the 
FFT of the function in order to obtain the constituent harmonic 
values of the waveform. 

- .  
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Equations (20), (21) and (22) are then used. 
Segment 5 The calculation procedure for the second hump 

is the same as that for Segment 3 except that (24) should be 
utilized to calculate the ripple voltage. 

e,(wt) =  EL^ sin(cr + w t )  - E d  

Equations (20), (21) and (22) are then used. 
Segment 6 

1 - cos(wt - 2 ~ / 3 )  
1 - cosp 
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