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We here propose an efficient tabu search (TS) for solving the uncapacitated single allocation hub location
problem. To decrease the computational time, in the proposed tabu search, some new tabu rules are con-
sidered. Also, to compute the changes in the objective function’s value in each move, some new results
are given. The performance of the proposed tabu search is compared with a recently proposed tabu
search (Silva & Cunha, 2009) on all standard ORLIB instances (CAB and AP data sets), modified AP data
set and finally on four large instances with 300 and 400 nodes proposed by Silva and Cunha. The numer-
ical experiments show that the proposed tabu search can find all optimal solutions of CAB data and the
best known solution of other standard test problems in less computational time than Silva and Cunha’s
tabu search. Also, the proposed tabu search can improve the best known solutions for some standard test
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1. Introduction

Hub location problems are widely applied in postal networks
(Ebery, Krishnamoorthy, Ernst, & Boland, 2000; Kuby & Gray,
1993), airlines (Aykin, 1995; Bania, Bauer, & Zlatoper, 1998;
Karimi & Bashiri, 2011; Yang, 2009), telecommunication networks
(Carello, Croce, Ghirardi, & Tadel, 2004; Helme & Magnanti, 1989;
Kim & OKelly, 2009), transportation systems (Aversa, Botter,
Haralambides, & Yoshizaki, 2005; Cunha & Silva, 2007; Don,
Harit, English, & Whisker, 1995), emergency services (Campbell,
1994; Hakimi, 1964), etc. Generally, hub location problems are
used in systems which have many origins and destinations, and
direct link between each o-d' is impossible or expensive. In these
location-allocation problems, flows consolidate at hub nodes. Thus,
all transportation become possible through hubs and also, costs
are reduced because of the economical advantages of the scale.

In hub location problems, usually, hubs are fully intercon-
nected, transferring between hubs includes a discount factor, and
direct links between non-hub nodes are not allowed. In addition,
in most of hub location problems, hubs are a subset of discrete
nodes, however there are some researches on continuous hub loca-
tion problems (see Aykin & Brown, 1992; Campbell, 1990; OKelly,
1992).
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Allocating non-hub nodes to hubs is done in two ways: single in
which each non-hub node is allocated to a single hub (see
Contreras, Fernandez, & Marin, 2009; Labbé & Yaman, 2004;
Labbé, Yaman, & Gourdin, 2005) and multiple in which each non-
hub node can use more than one hub (see Contreras, Cordeau, &
Laporte, 2012; Hamacher, Labbé, Nickel, & Sonneborn, 2004;
Marin, 2005; Mayer & Wagner, 2002). Nevertheless, some
researches contain both types of the allocation (see Campbell,
1994; OKelly, Bryan, Skorin-Kapov, & Skorin-Kapov, 1996;
Skorin-Kapov, Skorin-Kapov, & OKelly, 1996).

Hub location problems can be classified based on allocation
type, number of hubs, or capacitated (or uncapacitated) hubs, etc.
Also, some other hub location problems are introduced in the past
few years, such as: hub arc location (see Campbell, Ernst, &
Krishnamoorthy, 2005a; Campbell, Ernst, & Krishnamoorthy,
2005b; Campbell, Stiehr, Ernst, & Krishnamoorthy, 2003), compet-
itive hub location (see Eiselt & Marianov, 2009; Gelareh, Nickel, &
Pisinger, 2010; Marianov, Serra, & ReVelle, 1999), dynamic hub
location (see Campbell, 2010; Contreras, Cordeau, & Laporte,
2011), and also, hub location problems with stochastic elements
and reliability considerations (see Contreras, Cordeau, & Laporte,
2011; Lium, Crainic, & Wallace, 2009; Sim, Lowe, & Thomas,
2009; Yang, 2009). Some overviews on hub location problems
can be found in Farahani, Hekmatfar, Arabani, and Nikbakhsh
(2013), Alumur and Kara (2008), Campbell, Ernst, and
Krishnamoorthy (2002), and Klencewicz (1998). Here, we give a
heuristic for solving the uncapacitated single allocation hub loca-
tion problem (USAHLP). In USAHLP, each non-hub node is allocated
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Fig. 1. A sample of CAB data set (n=10).

to exactly one hub, there is no capacity constraint and establishing
each hub contains a fixed cost. The aim of USAHLP is to determine
the number of hubs, the location of hubs and the allocation of non-
hub nodes to hubs, in order to minimize the sum of costs (trans-
portation and establishing costs). There are various formulations
for the USAHLP, such as the quadratic programming formulation
(Abdinnour-Helm & Venkataramanan, 1998; OKelly, 1992) and
the integer linear formulation (Campbell, 1994).

Since USAHLP is an NP-hard problem (Love, Morris, &
Wesolowsky, 1988; Naeem & Ombuki-Berman, 2010; OKelly,
1987), many metaheuristics were proposed for solving the
USAHLP. OKelly (1992) proposed a two-step procedure in which
a good upper bound on the solution value is estimated based on
three different heuristics, and then a thigh lower bound on the
solution is computed. Abdinnour-Helm and Venkataramanan
(1998) proposed an exact branch-and-bound algorithm and a
genetic algorithm (GA) for USAHLP. The branch-and-bound algo-
rithm can solve problems up to fifteen nodes, while the GA solves
larger problems over the CAB data set (OKelly, 1987) and the ran-
dom proposed data set, efficiently. Abdinnour-Helm (1998) pro-
posed a hybrid procedure based on genetic algorithm and tabu
search (GATS). In this algorithm, hubs were chosen by GA and then,
distance-based allocations, in which each node was allocated to
the nearest hub using procedure proposed by OKelly (1987), were
improved by the tabu search. GATS solved CAB instances,

efficiently. Topcuoglu, Corut, Ermis, and Yilmaz (2005) proposed
a GA for solving both location and allocation parts of the USAHLP.
This algorithm outperformed the GATS proposed by Abdinnour-
Helm (1998) on the CAB data set and AP data set (Ernst &
Krishnamoorthy, 1996) in both solution values and running times.
Also, Cunha and Silva (2007) proposed a hybrid heuristic procedure
for the USAHLP. In this procedure a GA is applied to determine the
location of the hubs, and a SA is used to reallocate the distance-
based allocation. The procedure is better than the GATS
(Abdinnour-Helm, 1998) over the CAB data set. Chen (2007) pro-
posed SATLUHLP for solving USAHLP. In SATLUHLP, two
approaches were proposed to find an upper bound for the number
of hubs, and hybrid heuristic based on SA, TS and an improvement
procedure were used to solve the location and the allocation parts
of the problem. Computational results showed that SATLUHLP out-
performed the GA proposed by Topcuoglu et al. (2005) over CAB
and AP data set. Filipovic, Kratica, Tosi¢, and Dugosija (2009) pro-
posed a GA-inspired heuristic method for USAHLP. They also pro-
posed an exact total enumeration method for solving the
allocation part of the problem. The GA-inspired heuristic outper-
formed the GA proposed by Topcuoglu et al. (2005) and SATLUHLP
proposed by Chen (2007) over the AP data sets. Silva and Cunha
(2009) proposed two efficient heuristics called MSTS and HubTS.
Multi start tabu search heuristics (MSTS1, 2 and 3), in which sev-
eral initial solutions were improved by a TS. How to construct

Table 1
Results of TSUSAHLP and HubTS - CAB (n =10, 15).
o Fy n=10 n=15
TSUSAHLP HubTS TSUSAHLP HubTS
ny Kopt topt t t ny Kopt Eopt ¢ t

0.2 100 3 1 0.008 0.136 0.423 5 1 0.010 0.262 2.197
150 2 2 0.024 0.129 0.197 4 2 0.032 0.259 1.763
200 2 1 0.011 0.109 0.246 2 2 0.028 0.232 0.400
250 2 2 0.020 0.114 0.251 2 1 0.018 0.236 0.357

04 100 3 2 0.018 0.130 0.434 4 1 0.014 0.272 1.213
150 2 0 0.003 0.122 0.180 3 2 0.034 0.250 0.727
200 2 0 0.003 0.121 0.217 2 2 0.035 0.258 0.392
250 2 0 0.003 0.179 0.260 1 0 0.007 0.241 0.147

0.6 100 2 0 0.003 0.117 0.160 3 1 0.013 0.238 0.664
150 2 0 0.004 0.152 0.201 2 1 0.015 0.219 0.406
200 1 2 0.017 0.144 0.065 1 0 0.007 0.220 0.190
250 1 7 0.104 0.155 0.069 1 0 0.007 0.201 0.183

0.8 100 2 0 0.003 0.133 0.187 2 5 0.094 0.251 0.432
150 1 1 0.007 0.122 0.086 1 0 0.007 0.228 0.264
200 1 4 0.033 0.114 0.087 1 0 0.007 0.213 0.300
250 1 4 0.033 0.114 0.109 1 0 0.007 0.232 0.427

1.0 100 1 1 0.006 0.121 0.100 1 1 0.010 0214 0.234
150 1 1 0.007 0.117 0.112 1 0 0.007 0.220 0.381
200 1 1 0.008 0.119 0.118 1 0 0.007 0.220 0.390
250 1 1 0.008 0.118 0.113 1 0 0.007 0.202 0.365

The running times more than one second are bold.
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Table 2
Results of TSUSAHLP and HubTS - CAB (n = 20, 25).
o Fy n=20 n=25
TSUSAHLP HubTS TSUSAHLP HubTS
ny Kopt Lopt t t ny Kopt topt t t

0.2 100 5 1 0.018 0.373 4.879 4 1 0.078 0.912 5.041
150 3 1 0.018 0.403 1.358 3 1 0.045 1.076 2.400
200 3 1 0.044 0.410 1.624 3 1 0.050 0.856 2.552
250 3 1 0.016 0.414 3.459 2 4 0.303 0.772 1.688

0.4 100 4 4 0.118 0.413 2.934 4 1 0.030 0.546 7.109
150 3 1 0.044 0.390 1.475 3 5 0.257 0.545 3.187
200 2 0 0.013 0.407 0.659 2 4 0.201 0.574 2.501
250 2 0 0.013 0.375 0.802 2 2 0.136 0.586 1.966

0.6 100 4 1 0.018 0.398 4.649 3 2 0.073 0.582 2.490
150 2 0 0.013 0.389 1.114 3 2 0.087 0.640 2.876
200 2 0 0.013 0.397 0.811 2 9 0.553 0.687 3.980
250 1 4 0.129 0.388 0.290 2 1 0.075 0.748 0.983

0.8 100 2 0 0.013 0.394 1.077 3 2 0.130 0.961 3.308
150 2 0 0.013 0.401 1.129 2 5 0.386 0.969 3.320
200 1 3 0.088 0.339 0.340 1 4 0.267 0.992 1.131
250 1 2 0.070 0.359 0.352 1 3 0.237 1.034 1371

1.0 100 2 1 0.040 0.414 1.221 3 3 0.204 0.968 4.825
150 1 0 0.017 0.535 0.302 1 2 0.114 0.483 0.544
200 1 0 0.018 0.505 0.353 1 2 0.102 0.487 0.543
250 1 0 0.018 0.532 0.411 1 1 0.057 0.460 0.562

The running times more than one second are bold.

the initial solution was the main difference between MSTS1, 2 and
3. In HubTS, tabu searches were applied for both location and allo-
cation parts of USAHLP. Their numerical experiments showed that
HubTS was better than three variants of MSTS in solution values.
MSTS3 and HubTS were more effective than SATLUHLP proposed
by Chen (2007) in both solution values and running times.
Naeem and Ombuki-Berman (2010) proposed two GAs for solving
USAHLP that are better than GATS proposed by Abdinnour-Helm
(1998) and the GA proposed by Topcuoglu et al. (2005) over the
CAB data set. Also, their proposed GAs were comparable with the
SATLUHLP proposed by Chen (2007), MSTS and HubTS proposed
by Silva and Cunha (2009) over the AP data set. Han-yi (2010) pro-
posed a GA by considering upper bound of the ratio of the number
of hubs to the number of nodes. When the discount factor was low,
this algorithm had better behaviour than the GA proposed by
Topcuoglu et al. (2005). Mari¢, Stanimirovi¢, and Stanojevic
(2013) proposed a memetic algorithm (MA) for solving USAHLP.
Two efficient local searches were used to improve both the location
and the allocation part of the problem. Computational results
showed that the MA outperforms the GA proposed by Filipovic
et al. (2009). Bailey, Ornbuki-Berrnan, and Asobiela (2013) used a
PSO framework for USAHLP. They compared their proposed dis-
crete PSO, DPSO, with GATS proposed by Abdinnour-Helm
(1998), the GA proposed by Topcuoglu et al. (2005), the SATLUHLP
proposed by Chen (2007), and MSTS and HubTS proposed by Silva
and Cunha (2009). The DPSO matches or beats performance of
these methods in terms of solution quality over the CAB and AP
data sets. Ting and Wang (2014) proposed a threshold accepting
(TA) algorithm for solving USAHLP. They compared their proposed
TA results with the GA proposed by Topcuoglu et al. (2005), the
SATLUHLP proposed by Chen (2007), GASA proposed by Cunha
and Silva (2007), and HubTS proposed by Silva and Cunha (2009).
The results show that their algorithm outperforms GASA, the GA,
SATLUHLP and HubTS in terms of solution quality and computa-
tional time.

Tabu search is one of the most effective and efficient techniques
for solving optimization problems. As Jaeggi et al. mentioned in
Jaeggi, Parks, Kipouros, and Clarkson (2008), a true performance
comparison between algorithms is difficult because of the lack of
suitable set of benchmark problems. However a wide range of

fields applied tabu search, because the obtained solutions often
significantly surpass the best solutions previously found by other
approaches. It has been justified by Pirim, Eksioglu, and
Bayraktar (2008) in which around 150 articles are investigated.
So, we here propose a tabu search, TSUSAHLP, for solving USAHLP.
TSUSAHLP is inspired by the effective tabu search proposed by Sun
(2006) for solving uncapacitated facility location problem (UFLP)
(Korte & Vygen, 2008) which is a successful algorithm for solving
uncapacitated facility location problem (UFLP) and it can easily
be generalized to get a suitable procedure for USAHLP. In TSU-
SAHLP, similar to Sun’s tabu search, the objective function’s value
(cost value) is updated from its previous value, all over the algo-
rithm. Despite TSUSAHLP is inspired by Sun’s algorithm, there
are some modifications and differences in TSUSAHLP. In TSUSAHLP,
we use an adoptive method for tabu tenure whereas Sun’s algo-
rithm did not. Also, we propose a new candidate list for moves in
TSUSAHLP. As far as we know, the proposed candidate list has
never been used before in heuristics for USAHLP. In addition, we
could not use the proposed formulas by Sun in TSUSAHLP, directly.
Therefore, we here give some new results for computing the
changes in the objective function’s value when a move is done.
Also, based on computational experiments, in TSUSAHLP, we do
not use the medium scale memory.

Here, it is provided a comprehensive comparison between our
proposed algorithm and HubTS proposed by Silva and Cunha
(2009). In addition, the solution quality is compared with the GA
proposed by Naeem and Ombuki-Berman (2010), the MA proposed
by Maric et al. (2013), the discrete PSO proposed by Bailey et al.
(2013), and the TA proposed by Ting and Wang (2014). Computa-
tional results on CAB data set, AP data set, modified AP data set
(Silva & Cunha, 2009), and four large instances based on AP data
set (Silva & Cunha, 2009) show that not only TSUSAHLP can find
the optimal or the best known solutions for these instances in less
CPU times but also, it improves the best known solutions for large
instances.

The rest of paper is organized as follows. In Section 2, we give a
combinatorial formulation of USAHLP. TSUSAHLP is described in
Section 3. Some new results on the computation of the objective
function’s value are given in Section 4. Section 5 contains the com-
putational experiments. We conclude in Section 6.
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Comparison with other algorithms - AP data set.
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n TSUSAHLP solution Kopt topt t HubTS solution t GA-2 List, MA, DPSO, TA
10L opt 1 0.017 0.151 opt 0.335 opt

20L opt 0 0.012 0.412 opt 0.761 opt

25L opt 2 0.073 0.627 opt 1.582 opt

40L opt 1 0.082 1.527 opt 6.863 opt

50L opt 3 0.658 2.286 opt 11.070 opt

100L opt 1 0.496 11.991 opt 58.831 opt

200L 233802.98 1 3.435 65.193 233803.02 379.379 233802.98
10T opt 3 0.028 0.160 opt 0.366 opt

20T opt 1 0.018 0.633 opt 1.485 opt

25T opt 3 0.185 0.833 opt 0.752 opt

40T opt 0 0.069 2.316 opt 2.704 opt

50T opt 6 1.701 3.325 opt 3.197 opt

100T opt 0 0.425 19.210 opt 24.060 opt

200T 272188.11 7 53.171 79.513 272237.78 463.994 272188.11

The best known solution or the maximum running time are appeared in Bold.

2. Combinatorial formulation

Let N = {1,2,...,n} be the set of nodes, C; be the transportation
cost per unit of flow between nodes i and j, and Wj; be the amount
of flow between nodes i and j. The flow Wj; is transferred from node
i to node j via nodes (i) (the hub allocated to node i) and [(j) (the
hub allocated to node j). So, the cost per unit of flow from node i
to node j is xCig) + aCigy) + 6Cyj, where factors y, o« and ¢ are
the collection, transfer and distribution cost coefficients, respec-
tively (see Ernst & Krishnamoorthy, 1996; OKelly, 1987). The fixed
cost for establishing a hub at the node k is Fy. The aim of the
USAHLP is to determine the set S, a subset of N as hubs, and an allo-
cating function /: N — S which minimizes the objective function.
Let S = N — S, so the objective function value assigned to (S, 1) is

FS:0) =" Wii(xCuugy + 0Cuagy + 6Cigy) + D > Wi(oCgy

ieS' jeS ieS jeS'
+6Ciy) + Y > Wii(xCup + 9Cay)
icS' jes
+3 ) W(aCy) + > Fi (1)
ieS jeS keS
In other words, (S°,I") is an optimal solution when

(§°,I") = arg mingc nf (S, 1).

A sample of CAB data set (n=10, y=1, « =02, 6=1 and
given matrixes F, W and C) is illustrated in Fig. 1 as a simple exam-
ple for USAHLP. This sample contains 10 cities of U.S. airline
passenger. In this example, (S",I"), the optimal solution is S =
{4,6,7}, I'(4) = 4, I'({1,2,3,5,6,9}) = 6, and I'({7,8,10}) = 7. In

Fig. 1, hubs are shown with square, allocations with black line,
and hub connectivity with red lines. As transportation in hub loca-
tion problems is possible only via hubs, passengers just can travel
through determined hubs. For instance, if airline passengers want
to travel from Boston to Denver, firstly they must go to Cleveland.
After that, they must have a stopped in Dallas-Fort-Worth, and
then they could fly to Denver.

3. Tabu search for USAHLP (TSUSAHLP)

Tabu search (TS) is based on the neighbourhood search in which
the most recent moves are set in the tabu list to avoid local opti-
mal. In TS, not only cycling is avoided, but also a diversified search
in the solution space is prepared. TS is very efficient because it usu-
ally searches only a small subset of feasible solutions that contains
the optimal solution. The modern form of tabu search was origi-
nally developed by Glover (1986), and a comprehensive account
of tabu search and its recent developments was given by Glover
and Laguna (1997).

Usually, TS has three memory structures: short term memory,
medium term memory and long term memory. We here propose
a tabu search for solving USAHLP which contains only short term
memory and long term memory. Our experimental results showed
that using medium term memory increases the computational
time without any improvement.

Short term memory and long term memory make a cycle. Short
term memory is run at the beginning of each cycle. Then, long term
memory is called, and the solution constructed by the long term

Table 4
Comparison with other algorithms - modified AP data set (6 = 0.8).
n TSUSAHLP solution Kopt topt t HubTS solution t MA solution TA solution
10L opt 4 0.049 0.168 opt 0.581 opt opt
20L opt 5 0.171 0.430 opt 2.566 opt opt
25L opt 2 0.071 0.671 opt 1424 opt opt
40L opt 0 0.052 1.549 opt 12.685 opt opt
50L opt 4 0.888 2.472 opt 9.181 opt opt
100L opt 3 2.228 10.747 opt 51.552 opt opt
200L 223704.42 1 2.567 64.670 233704.44 369.544 223704.44 223704.44
10T opt 1 0.004 0.123 opt 0.443 opt opt
20T opt 1 0.018 0.402 opt 0.998 opt opt
25T opt 1 0.028 0.626 opt 2.246 opt opt
40T opt 0 0.052 1.875 opt 2.503 opt opt
50T opt 1 0.164 2.775 opt 10.683 opt opt
100T opt 1 0.556 17.261 opt 63.500 opt opt
200T 258797.48 6 35.906 72.681 260312.67 939.416 260312.67 258797.48

The best known solution or the maximum running time are appeared in Bold.
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Table 5
Comparison with other algorithms - modified AP data set (6 = 0.9).
n TSUSAHLP solution Kope topt t HubTS solution t MA solution TA solution
10L opt 1 0.012 0.149 opt 0.308 opt opt
20L opt 0 0.012 0.425 opt 0.994 opt opt
25L opt 2 0.072 0.617 opt 1.639 opt opt
40L opt 0 0.053 1.540 opt 14.373 opt opt
50L opt 11 2.493 2.520 opt 10.470 opt opt
100L opt 3 2.211 12.207 opt 57.393 opt opt
200 L 228753.70 1 2.367 66.085 228753.70 374.954 228753.70 228753.70
10T opt 1 0.009 0.153 opt 0.287 opt opt
20T opt 1 0.018 0.465 opt 0.973 opt opt
25T opt 1 0.030 0.664 opt 1.581 opt opt
40T opt 0 0.062 2.043 opt 1.818 opt opt
50T opt 1 0.285 5.219 opt 9.383 opt opt
100T opt 0 0.408 15.200 opt 26.281 opt opt
200T 266116.32 2 10.392 75.255 266275.22 461.035 266275.22 266116.32
The best known solution or the maximum running time are appeared in Bold.
Table 6
Comparison with other algorithms - large instances based on AP data set with n =300 and 400.
n TSUSAHLP solution Kopt topt t HubTS solution t MA solution TA solution
300L 263913.15 1 5.554 41.157 264837.88 4583.210 263964.00 264706.50
400L 267873.65 3 78.110 106.336 268164.13 8887.322 267921.70 267873.65
300T 276023.35 2 21.759 48.658 276047.75 3641.829 276023.35 276023.35
400T 284037.25 2 48.498 115.863 284212.47 4664.384 284037.24 284037.25

The best known solution or the maximum running time are appeared in Bold.

memory is sent to the next cycle. The components of TSUSAHLP are
introduced as follows.

3.1. Solution space

Let N = {1,2,...,n} be the set of nodes, then the solution space
is:
A={S,DII:N—S,SCN; I(i) =1i,Vie S}, (2)

where I(-) is an allocating function with respect to S.
3.2. Initial solution

To determine the set of hubs (S) for the initial solution, we
here adopt DROP method (Sun, 2006) for solving USAHLP. In
adopted DROP method, all of the nodes are open (hub) at first
(i.e. S=N), then the node j is removed from the set of hubs
which the associated decreasing in the objective function f{(-,-)
defined in (1) is more than others. Thus, S is updated by
S~ S—{j}. This procedure is repeated until there is not an
improvement in the objective function’s value. The distance-
based rule is used to determine the allocating function (I) for
each set of hubs. The details of constructing the initial solution
is given in Algorithm 1. In this algorithm, Az, which is calcu-
lated based on Proposition 4.2, shows the change in the objec-
tive function’s value when the node j is removed from the set
of hubs.

Remark 3.1. In many situations in the algorithm, we need to
determine the nearest hub to each node in the algorithm.
Thus, we define the auxiliary matrix R in which column j
contains the nodes’ index which their distance from j are
sorted increasingly. It is obvious that Ry;=j for all jeN.
Using R, computing and updating of f(.,-) defined in (1)
would be much faster.

Algorithm 1. Adopted DROP

Step 1: Let: z — o3~y >ienCiWiys + X icnFis S — N and
p—1Sl

Step 2: If p=1 or Az > 0 Vk € N, then go to Step 4.

Step 3: Let: Az — min{Azlj € S,Az; <0}, S—S—{j'},
Z — z+ Az, and go to Step 2.

Step 4: Let S = N — S, and for each j € §' let I(j) = R;;; where
i* = min{i|R; € S}. (see Remark 3.1)

Step 5: Return S, S’ and L

3.3. Possible moves

Here, we introduce the location moves that change the set of
hubs (S), and the allocation move that modifies the allocating func-
tion (1).

3.3.1. Location moves

Two location moves are here used: The basic move that con-
tains adding or removing a hub, and the swap move that exchanges
a hub in S and a non-hub node in S'. In other words, the basic move
and the swap move are moves from S to a S in N;(S) and N,(S),
respectively, where N;(S) and N,(S) are defined as follows:

Nl(S):{§|§:SU{i},ieS’, orE:S—{i}JeS}, 3)
Na(S) = {SIS =S Ui} - {jhieS je s}, 4)

3.3.2. Allocation move
In this type of move, the allocation of a non-hub node
changes from one hub to another hub. Note that the allocation
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Table 7
Running times of the MA over AP data set, modified AP data set and new large AP data
set with n =300 and 400.

Table 8
Running times of TA over the AP data set, modified AP data set and new large AP data
set with n =300 and 400.

0=0.8 0=09 0=1 0=0.8 0=09 0=1

n tva tva tva n tra tra (57}

10L 0.015 0.011 0.011 0L 0.00 0.00 0.00
20L 0.031 0.031 0.030 20L 0.03 0.02 0.02
25L 0.045 0.044 0.040 25L 0.04 0.04 0.04
40L 0.081 0.082 0.082 40L 0.34 0.28 0.20
50L 0.119 0.125 0.122 50L 0.60 0.45 0.47
100L 0.404 0.393 0.394 100L 3.18 2.28 2.22
200L 3.095 2.792 2.889 200L 76.12 69.02 84.05
10T 0.012 0.012 0.011 10T 0.00 0.00 0.00
20T 0.031 0.031 0.030 20T 0.02 0.02 0.01
25T 0.039 0.041 0.031 25T 0.04 0.04 0.02
40T 0.060 0.060 0.060 40T 0.11 0.11 0.12
50T 0.151 0.142 0.106 50T 0.50 0.49 0.32
100T 0.593 0.543 0.478 100T 1.98 0.39 0.45
200T 3.498" 3.111° 3.232 200T 122.92 135.10 65.41
300L - - 29.887" 300L - - 729.10°
400 L - - 131.245" 400 L - - 1340.98
300T - - 31.825 300T - - 286.50
400 T - - 94.525 400 T - - 749.88

* The best known solution is not obtained by the MA.

move is just defined for non-hub nodes. When the allocation
move is done, the objective function’s value is updated (see
Proposition 4.1).

3.4. Constructing a feasible allocation for a location move

For choosing a location move for a set of hubs, S, the allocation
of the neighbourhoods of S must be determined. Since finding the
proper allocation for each set of hubs is time consuming, we use a
good feasible allocation based on the previous allocation and using
the auxiliary matrix R. If the hub i is removed from the current set
of hubs (i.e. S =S — {i}), the nodes allocated to the hub i will be
allocated to the nearest hub in S. Otherwise, if the node i is added
to the current set of hubs (i.e. S = SU {i}), the nodes which are clo-
ser to this node than to their own hubs will be allocated to the new
hub i. Updating the objective function’s value is done using Propo-
sitions 4.2 and 4.3, respectively. Finally, for a swap move, a hub is
removed from the set of hubs and then, a non-hub is added to the
set of the hubs. So, the both above procedures will be done,
respectively.

It is notable that when a location move is done, each non-hub
node will be allocated to the hubs. Let (S, ) be the current solution.
The allocating function, I", for the set of hubs, S, is determined as

I'(j) = argmin{f (S, )|I() =i,ie S} VjeS. ()

3.5. Short term memory

The aim of short term memory is to find new solutions that
were not seen in the most recent moves of the search. So, when
the status of a node is changed then that node is placed in the tabu
list for a tabu tenure.

3.5.1. Candidate list

To avoid inappropriate movement throughout our algorithm, a
candidate list is used. If the distance from the non-hub node j to its
nearest hub is less than d defined in (6), j is flagged.

d=2%3">C;, 6)

i=1 j=1

* The best known solution is not obtained by the TA.

where y is a predefined parameter. So, all unflagged nodes are in the
candidate list. As far as we know, this candidate list has never been
used before in other tabu searches for location problems.

3.5.2. Tabu list

When the status of a node is changed, the node is added to the
tabu list for a tabu tenure. The computational study showed that
the constant or random tabu tenure used in Sun’s algorithm
decreases the computational time, but the quality of the solution
is usually decreased. Therefore, we use an adaptive method for
tabu tenure. We tend to keep nodes with higher (or lower) cost
and flow transmission as hub (or non-hub) for a longer period. Let

T (WG + WiG)
ko1 gt (WigCig + WiC)
then, the vectors I. and [, represent the tabu tenure for non-hubs

and hubs nodes, respectively. I.(i) and (i) for i € N are computed
as follows

A(i) VieN,

I.(i) = min{(1 — A(i))(nx;) + 1,nx,} VieN, (7)
lo(i) = min {A(i) (nvnxs) + 1,nxs} VieN, (8)

where X;, X, X3 and x4 are predefined parameters. We use an array
t € Z to measure the recency of a solution. The element ¢; € t repre-
sents the iteration in which the status of node j is changed (for

j=1,...,n), and the initial value of t is determined based on values
of I, and I. as follows
. =LG) I(G)=j
- {00 0 ©)
() 1G) #j

where [, and [, are defined in (7) and (8), respectively. When the
status of node j is changed, t; is updated. Node j is in the tabu list
at iteration k, if

{w%m<um1m=j
k—tG) <LG) 1G)#j

In other words, when the status of the node j changes to the hub,
the node j must remain the hub for ,(j) iterations. Similarly, when
the status of the node j is changed to the non-hub, the node j must
remain the non-hub for I.(j) iterations.
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3.5.3. Aspiration criterion

Sometimes, good solutions without risk for cycling are banned
by strong tabu rules. To eliminate these tabus, the aspiration crite-
rion is used. Consider z to be the current value of the objective
function. Az; shows the change in the objective function’s value
when the status of node j is changed in the basic move, and Az;;
shows the change in the objective function’s value when the hub
i and the non-hub j are exchanged in the swap move. Here, aspira-
tion criterion in the basic move is satisfied for the node j, if
Z + Azj < zg0, and aspiration criterion in the swap move is satisfied
for the hub i and the non-hub j, if z+ Az;; < zgo, where zy is the
best obtained objective function value.

3.5.4. Implementation of a location move
To do a basic move, the candidate list (unflagged nodes) is con-
structed (see Section 3.5.1). Let

j-=argmin {Azj] j € N,j is unflagged}.

where Az; is the associated change in the objective function’s value.
If the node j* is not in the tabu list or the aspiration criterion is sat-
isfied for this node, the basic move is done for it, otherwise that
node will be flagged in order to prevent the revaluation of the node
j" in the current iteration. This procedure continues until a move is
done. After doing a move, all nodes will be unflagged.

Also, to do a swap move, (i*,j*) are determined as

(i",j") = argmin Az;;.

where Az;; is the associated change in the objective function’s value.
If the hub i* and the non-hub j* are not in the tabu list or the aspi-
ration criterion is satisfied for them, i* and j* will be swapped.

3.5.5. Stopping rule in the short term memory
The basic move in the short term memory stops when

k —ko > ny, (10)

where n; is a predefined parameter, k is the current iteration, and ko
is the last iteration in which z, (see Algorithm 2) is updated. In
other words, if the best solution in the current cycle have not been
improved in the last n; iterations, the basic move stops. Next, a
swap move is done then the short term memory stops.

3.6. Long term memory

In the long term memory, the solutions are diversified by
changing the status of a node which its status were not changed
for a longer time among nodes. Let

Jj* = argmint(j). (11)
JEN

If the node j" is not the only hub, the status of the node j" is changed
and then the allocation of this solution is improved based on (5).
This procedure is repeated n, times, where

n, = max{1, [bn]}. (12)

In (12), n is the number of nodes, and b is a predefined parameter.

After the cycle is repeated Ktimes (where K is a predefined
parameter), the algorithm stops and the best found solution of
the algorithm is returned.

3.7. TSUSAHLP

In TSUSAHLP, at first, a feasible solution is constructed by the
greedy adopted DROP procedure (see Algorithm 1). In the first of
each cycle, the short term memory is called (see Section 3.5). Then,
the long term memory is performed (see Section 3.6). The next

cycle starts with the solution from the last long term memory. This
cycle is repeated for K times.

We now present TSUSAHLP in Algorithm 2. The cost of the best
solution in the current cycle and the whole algorithm are denoted
by zo and zg, respectively.

Algorithm 2. TSUSAHLP

Step 0: {Initialization}
- Input K € Z* to determine the number of cycles
(see Section), y € R used in (6) to construct the
candidate list, x; and x, € R* used in (7) to make
l., x3 and x4 used in (8) to make I,, n; € Z* (10)
to determine the number of iterations in short
term memory, and b used in (12) to determine
n, (the number of iterations in long term
memory).
- Construct the auxiliary matrix R (see Remark 3.1).
- Let: kk — 0 (the counter of the number of cycles),
kl — 0 (the counter of the number of iterations in
the long term memory),
UF — N {all nodes are unflagged}.
Construct S and [ by using Algorithm 1, and let
— f(S,1) where f(-,-) is defined in (1).
- 2z «— z (29 is the best solution found in the current
cycle), zoo < z (zoo is the best found solution),
k — 0 and ko < 0.
- Construct I, and [, based on (7) and (8),
respectively.
- Construct t defined in (9).
Step 2: {Short term memory}
2-1: Let: UF—N-{jljeCs, li-1(j) <d}, where d is
defined in (6).
2-2: Let: j* — argminjeurAz. If k—tp <I(G") (° is in the
tabu list), then go to 2-3, else let basic move =1, and
go to Step 3.
2-3: If z+ Az < zyo (aspiration criterion is satisfied), then
let basic move=1, and go to Step 3, else let
UF — UF — {j"} and go to 2-2.
Step 3: {Updating the current solution}
3-1: If jeS, then S—S-{j} and p—p-1, else
S—Su{j'tandp—p—+1.
3-2: Construct the allocating function based on the
distance-based rule OKelly (1987).
3-3: Letz«—z+ Az, k—k+1and t(j*) < k.
3-4: If z < zp, then zg «— z and ko < k.
3-5: If zy < zgo, then zgg «— zo.
3-6: If swap =1, then swap =0, j* — i’, and go to Step 3-1.
3-7: If k — ko < n; and basic move =1, go to Step 2, else
if k — ko = ny, let basic move =0 and {Swap move} let:
(i*,j°) =argminAz;. If k—t; >I1(") and k—t; > (")
(i" and j* are not in the tabu list), or z+ Az ; < zgo
(aspiration criterion is satisfied), let swap=1, and go
to Step 3, else if kl < ny, then go to Step 4.
else, let: kk — kk + 1.
If kk =K, then Stop. Perform TabuAlloc proposed by
Silva and Cunha (2009), and return zq as the best value
of the objective function, else ko — k, kl — 0, zy +— z
and go to Step 2.
Step 4: {Long term memory}
4-1: kl— kl+1, UF — N.
4-2: Let:j — arg minjet;.
4-3: If p> 1 orj is not hub, then go to Step 3 else go to
Step 3-7.

Step 1:

N
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4. Updating the objective function’s value

Computing the objective function’s value is a time consuming
part of the algorithm. In TSUSAHLP, the objective function is calcu-
lated just once at first. Then, the change in the objective function’s
value is computed by using following propositions. So, the compu-
tational time of the algorithm is decreased, efficiently.

In a allocation move, the allocation of a non-hub node r is chan-
ged from I(r) (I:N—S) to I(r) (I:N—5S), in which
I'(iy = I(i), Vi # r. We denote the change in the objective function’s

value, from z to Z, associated to [ and I respectively, by Az],. The

following proposition shows that Az, can be computed in O(n).

Proposition 4.1. For eachr €S (N -S), Az, is as follows
n n
Azjy = 1 WGty — Coin) + 00 _Wii(Criigy — Cunt)
i1 i1
n n
+ 5ZWiT(C1/(r)r = Cigryr) + azwir(cl(i)l’(r) - Ciiir)

i=1 i=1

= Wi (Crirpe + Curn))- (13)

Proof. We know that

Az, =7 -z
= <ZF i+ 2> Wi(xCirgy + %Crirg) + 5Ct/o‘>j)>
ieS i=1 j=1
- (ZF i+ > Wi(xCiy + oCigg + 500»‘)) (14)
ieS i=1 j=1

Since I'(i) = I(i) for i # r, thus (14) turns to

n

Azjy = D WyxCore) + %Cringy + 6Cigis)

Jj=1j#r
n n
= > Wy(xCon + oCriigy + 0Cigy) + > Wir(xCy
joTgAr i1 ir

n

+4Cirry + 0Ckee) = Y Wir(%Cipy + &Cuiiir) + 6Ciryr)

i=1,i#r
+Wr(2Crry + %Crira + Crry)
- Wrr(XCrl(r) + OCCl(r)l(r) + 5Cl(r)r)- (15)

In USAHLP, Vi, C; = 0. After simplification, from (15) we have:
n n

Az, = szri(crﬂ(r) = Cuy) + “ZWn‘(Cﬂ(r)l(i) = Ciniy)
i=1 i=1

n n
+0%_Wir(Crinr = Cinr) +0)_WirCiriry — Clticn)

i1 i1
= W (Criniry + Cinrr))-

Thus, the proof is complete. O

In a location move, when a hub node k is closed (k is changed to
a non-hub node), all of the nodes allocated to node k (including
node k, itself) are allocated to their nearest hub in S — {k}, where
S is the current set of hubs. Let

P={jlieS —{k},1(G) = k}. (16)

Now, consider P = {j,,j,,-..,jm} in which j; <j, <--- <j,. Let
y(j) = min{i|R; € S — {k}} and

() {eN—Porisi
Lt L= TENE PO 12 m,
Jo Ie Ry(i)i ieP, i <Jt
() ieN—P, i<k

Ry(i)i ow.

and [ (i) = {

Now, in the following proposition, we show that the computation of
Az in this location move takes O(mn) times, where m = |P|.

Proposition 4.2. [f the hub node k is removed from the set of hubs S,
using above notations, the change in the objective function’s value, Az,
is calculated by

m .
Az=—F(k)+> Azi , +Az
t=1

' ! (A
Je-1 e m "k

Proof. Consider that the associated allocating functions of S and
S — {k} areland I, respectively. We denote the transportation costs
corresponding to [ and I' by z and z,, respectively.

Now, note that the associated hub for non-hub nodes in
N — P — {k} does not changed. Therefore, we have
Zl’ - Z{ == Zl;( - Z[

=Zy —Zy Zy —Zy Zy
oA, A T a

Im-1

7)) 35 ) <17>

If P defined in (16) is ¢, then [, =land Y, (zx —z )=0.Now,
t -1

—~--—le{ +zy —2z
1 g

suppose that P # (. So, the functions [, : N —Sand [ :N — Sare
different just in the allocation of non-hub node j,, which changes
from [ (j,) to [, (j,). Also, the functions [, : N —S and [ :N—S
are different just in the allocation of non-hub node k changes from
[, (k) to (k). So, from (17) we have

' ' (A
Je-1 7t im7k

m
_ — jt k
ZIL Z = ;AZ:, I + Az,

Since no node is allocated to hub k, it can be omitted from the
set of hubs. So, establishing costs will change. Eventually, Az is:

m .
Az= 3" F(i)= Y F(i)+z —z=—F(k) + ;Az;f P+ Azgm Iz

ieS_{k} ies It

So, the proof is complete. [

Other possible case in a location move can occur when a non-
hub node becomes a hub. Suppose that node k is added to the
set of hubs. So, the node k must be allocated to itself, and the other
non-hub nodes which are closer to node k than their previous hubs
will take k as their hub. Let

Q={jli €S —{k},CG.1G)) > CG.k)}- (18)
Consider Q = {j;,J,---

' iy i=k
lk(l):{k(l) i#

i=k’ o T
and
[ i) = {l(i) ieN-Q-—{k}ori>j

P ke ieQuik), i<, ’

Now, Proposition 4.3 shows Az can be computed in O(mn) times,
where m = |Q|.

.Jm} in which j; <j, <--- <j,, and let

!’
L,

Proposition 4.3. Suppose that the non-hub node k is added to the set
of hubs. So, using above notations, the change in the objective
function’s value, Az, is
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Je—170t

m 2
Az =F(k)+Azfy +Y Azf .
t=0

Proof. The change in the objective function’s value is due to the
change of set of hubs from S to SuU {k} and allocating function from
[to [, . We have

Az=Y" F(k)-> Fi)+z -z
ieSo(ky ies o

:F(k)-f-ZlJ{ —Z[J/_ + 2y
m 1

m— Im-1

B A A A Ak

m

=F(k) + Z(z,}[ - z,jf_[q) + (2 —2).

t=1

If Q defined in (18) is &, then allocating functions I, and [ are the
same. So, >, (z,} -z ) = 0. Suppose that Q # . Allocating
't t-1

functions I, : N— Su{k} and [: N — Su{k} are different just in
the allocation of node k. Also, the allocating functions

[ :N—Su{kyand[ :N— Su{k} arejust different in the alloca-

tion of non-hub node j, which changes from [,  to [;. Thus,

m .
Az=F(k) +Azjy + A7y . O
t=1

Je-170t

Using above propositions, the required time for computation of
Az is reduced, considerably. Thus, the running time will be
decreased by applying above results in our implementations.

5. Computational experiments

All experiments were done on a notebook Intel core i5, 2.53 GHz
with 4 GB RAM memory under Windows 7 home premium system.
Our proposed algorithm (TSUSAHLP; Algorithm 2) and Silva and
Cunha’s algorithm (HubTS) are implemented in Matlab ver. 8.2.
Proposition 4.1 is applied in the implementation of HubTS which
obviously reduces its computational time.

Computational results over standard CAB and AP data sets from
ORLIB (Beasley, 2011), modified version of AP data set proposed by
Silva and Cunha (2009), and also, four larger instances based on AP
data set proposed by Silva and Cunha (2009) are reported in Sec-
tions 5.1-5.4, respectively.

The notations used in these tables is defined as follows. ny is
the number of hubs in the optimal solutions. Kope and top are the
number of iterations of the cycle and the time (in second) needed
to reach the optimal or the best solution, respectively. t is the total
running time (in second) for the associated algorithm, and
solution shows the rounded solution value obtained by the algo-
rithm. k,r =0 means that the optimal or the best solution is
obtained in the greedy adopted DROP method. The sign opt in
the solution means that the algorithm can find the optimal value.

Here, we describe the way that we determined parameters,
briefly. At first, an interval for each parameter is considered. Then,
some numbers of each interval are chosen and the corresponding
objective function’s value is calculated. Afterward, the intervals
are shortened based on the quality of associated solution. This pro-
cedure is iterated until desirable parameters are achieved.

We set K to 11 for the problems CAB, AP and modified AP
instances, and 3 for four larger instances based on AP data set.
Other values were considered as: y =0.33 defined in (6),
x; =0.25 and x; = 0.25 defined in (7), x3 =0.05 and x4 = 0.33
defined in (8), n; = 2 defined in (10) and b = 0.025 defined in (12).

5.1. CAB data set

CAB data set, which is used for evaluating many algorithms, is
introduced by OKelly (1987). This data set is based on airline pas-
senger flow between 25 cities of 100 US cities in 1970 estimated by
the Civil Aeronautics Board. The distances between cities satisfy
the triangle inequality, flow matrix is symmetric (i.e. Wy = Wj)
and it is achieved by dividing the flow matrix given in ORLIB by

total flow (i.eA D ieN Djen WU).

The size of problem in this data set, n, is 10, 15, 20 and 25. The
discount factor, ¢, equals to 0.2, 0.4, 0.6, 0.8, and 1.0. The collection
factor, y, and the distribution factor, §, equal to the constant value
1. The fixed cost for establishing a hub, F,, is chosen in {100, 150,
200, 250} that is identical for all nodes.

The optimal results for all 80 CAB instances are given in Silva
and Cunha (2009). But the optimal solution value for the problem
with n =10, « =1 and F; = 150 is reported 1181.05 by Silva and
Cunha (2009), while we obtained 1081.05 as the optimal value
for this problem. We believe that it is just a typos, since the set
of hubs that they reported was the same as we do. In addition, it
has just one hub which means the allocation is unique. Further-
more, we obtained the right optimal value by running HubTS in
Matlab. It is notable that this wrong report has not been corrected
in some of the next literature, for example in (Maric et al., 2013;
Naeem & Ombuki-Berman, 2010) the value 1181.05 is reported
for this problem, too. While in Ting and Wang (2014), this is
reported 1081.05. Since both TSUSAHLP and HubTS were able to
find the optimal solutions in all 80 CAB instances, we compare only
the corresponding running times in Tables 1 and 2. Moreover TSU-
SAHLP, the GA (Naeem & Ombuki-Berman, 2010), the MA (Maric
et al., 2013), the discrete PSO (Bailey et al.,, 2013), and the TA
(Ting & Wang, 2014) obtained the optimal solution over the CAB
data set. Therefore, the table comparing these algorithms is
omitted.

In many CAB instances, TSUSAHLP obtained the optimal solu-
tions in the early iterations, and the maximum k., occurred in
the 9th iteration of the cycle. In almost all cases, TSUSAHLP was
able to find the optimal solution much faster than HubTS, espe-
cially when the optimal solution contains more than one hub. It
seems that increasing the number of established hubs in optimal
solutions increases the running time of HubTS, while it does not
affect on TSUSAHLP. The maximum running time for TSUSAHLP
and HubTS are 1.076 and 7.109 s, respectively, while, the maxi-
mum running time for TSUSAHLP, to find the optimal solution,
equals to 0.553s. The running times more than one second are
bold in these tables.

5.2. AP data set

AP data set, which is used by Ernst and Krishnamoorthy (1996)
for the Australian Post primarily, contains the information of 200
nodes that is available at ORLIB (Beasley, 2011). The collecting fac-
tor, y, transferring factor between hubs, o, and distributing factor,
8, equal to 3, 0.75 and 2, respectively. The flow matrix is not sym-
metric (i.e. Wj; # Wj;) and the flow from each node to itself is not
necessarily zero (i.e. W;; # 0). AP data set consists of two types of
fixed costs: tight costs which is depended on the flows and loose
costs which is independent of the flows. Ernst and
Krishnamoorthy (1999) claimed that instances with tight costs
are more difficult in comparison with instances with loose costs.
The optimal solutions for AP data set up to 100 nodes are given
in Silva and Cunha (2009), but the Optimal value of AP instances
with 200 nodes still remains a challenge.

Table 3 presents the results of TSUSAHLP and HubTS, the GA
(Naeem & Ombuki-Berman, 2010), the MA (Maric et al., 2013),



108 R. Abyazi-Sani, R. Ghanbari/Computers & Industrial Engineering 93 (2016) 99-109

the discrete PSO (Bailey et al., 2013), and the TA (Ting & Wang,
2014) over AP data set. Types of instances, loose and tight, are
singed with L and T, respectively.

All of these algorithms obtained the known optimal solutions
over the AP data set. But for the AP instances with 200 nodes, all
the algorithms except HubTS obtained the best known solutions.
It is notable that the best known value for the AP instance with
200 nodes and loose type is 2338020.976. It is reported
233802.97 or 272802.98 in the other algorithms. The maximum
running time for TSUSAHLP and HubTS are 79.513 and 463.994 s,
respectively, and the maximum value of k,, in TSUSAHLP equals
to 7. The results show that TSUSAHLP is more efficient than HubTS
in both computational times and solution values. Furthermore,
TSUSAHLP obtained the optimal or the best known solution in all
AP instances.

5.3. Modified AP data set

Silva and Cunha (2009) proposed a modified version of AP data
set by applying a reduction factor () to the fixed costs of establish-
ing hubs in order to increase the number of hubs in the optimal
solutions when 0 is either 0.8 or 0.9. Optimal results on modified
AP data set with 0 =0.8 and 0.9 for instances up to 100 nodes
are presented in Silva and Cunha (2009). But the optimal solution
value for the problem n =50 and 0 = 0.9 with tight costs was
reported 295239.13 with the set of hubs {17, 48} by Silva and
Cunha (2009), while TSUSAHLP obtained the value 291435.49 for
this problem with the same set of hubs. Moreover, Maric et al.
(2013) and Ting and Wang (2014) reported the same value for this
problem, as we do. However, HubTS were able to find the optimal
solution while we ran it in Matlab. TSUSAHLP, HubTS (Silva &
Cunha, 2009), the MA (Maric et al., 2013), and the TA (Ting &
Wang, 2014) are compared in Tables 4 and 5 over modified AP data
set.

The performance of TSUSAHLP on the modified AP data set was
approximately similar to its performance on AP data set. Therefore,
the number of hubs in the optimal solution did not play a major
role in the performance of TSUSAHLP. All TSUSAHLP, HubTS, the
MA and the TA found the optimal solution over the modified AP
instances up to 100 nodes, but TSUSAHLP and the TA found better
solutions on the modified AP instances with 200 nodes. The run-
ning times of TSUSAHLP was less than HubTS in all of these
instances, considerably. The maximum running time for TSUSAHLP
and HubTS are 75.255 and 939.614 s, respectively.

5.4. Large instances based on AP data set

Four new large instances are generated based on the full AP
data set by Silva and Cunha (2009). Results of TSUSAHLP, HubTS
(Silva & Cunha, 2009), the MA (Maric et al., 2013), and the TA
(Ting & Wang, 2014) are presented in Table 6. TSUSAHLP found
the best known solutions, and modified the best known solution
for the instance with 300 nodes and loose type. The chosen hubs
in this problem are 26, 79, 170, 187, and 251. In all of these
instances, TSUSAHLP found better solution than HubTS (TSUSAHLP
is at least 40 times faster than HubTS). The maximum running time
of TSUSAHLP and HubTS are 115.863 and 8887.322, respectively. It
seems that when the size of problem increases, TSUSAHLP signifi-
cantly outperformed HubTS.

It should be mentioned that the obtained solution by TSUSAHLP
is not dependent on the runs. In other words, TSUSAHLP obtained
the optimal or best known solution is in each run, while the other
proposed procedures are dependent on the runs. For instance the
TA (Ting & Wang, 2014) found the optimal solutions on average
18.5 in 20 runs.

TSUSAHLP outperformed HubTS, the GA (Naeem & Ombuki-
Berman, 2010), the MA (Maric et al.,, 2013), the discrete PSO
(Bailey et al., 2013), and the TA (Ting & Wang, 2014) in terms of
solution quality. Also, the running time of TSUSAHLP was less than
HubTS'’s running time, on average. Since different algorithms have
been implemented over different computers, it is difficult to com-
pare their CPU times, generally. Here, the running times required
to obtain the results of the MA and the TA have directly taken from
Maric et al. (2013) and Ting and Wang (2014) respectively in order
to get an idea about their effects in the solution quality. Unfortu-
nately, the running times and the information of the implementa-
tions for the PSO and the GA haven’t been reported by their
authors. The MA was coded in C and its experiments were carried
out on an Intel Core i7-860 2.8 GHz with 8 GB RAM memory under
Windows 7 Professional. The TA was coded in C++ by Microsoft
Visual Studio 2008 software. All numerical tests on the TA were
carried out on a Pentium IV 3.0 GHz PC, with 768 MB RAM, running
under Windows XP Professional.

The running times of the proposed MA and TA over AP data set,
modified AP data set and new large AP data set with n = 300 and
400 are provided in Table 7 and 8, respectively. The result of MA
(TA), reported before, is the best found solution over 20 runs and
tua (t7a) in Table 7 (8) represents the average of running times in
second. While 0 = 1, the data set represents the original AP data
set. A dash (-) indicates that the instance was not tested by the
algorithms.

6. Conclusions

We here proposed an efficient tabu search (TS) for solving the
uncapacitated single allocation hub location problem (USAHLP).
To decrease the computational time, in the proposed tabu search,
some new tabu rules were considered. Also, to compute the
changes in the objective function’s value in each move, some
new results were given. The performance of the proposed tabu
search was compared with recently proposed approaches on all
standard ORLIB instances (CAB and AP data sets), modified AP data
set and finally on four large instances with 300 and 400 nodes pro-
posed by Silva and Cunha. The numerical experiments showed that
the proposed algorithm obtained the optimal solution for instances
which optimal solutions are proven. Furthermore, our proposed
tabu search obtained the best known solution found in the litera-
ture or surpass them in a very short computational time. It is nota-
ble that our proposed tabu search obtained the same solution in
each run against other methods proposed for USAHLP. Our pro-
posed TS outperforms the recently proposed TS (Silva & Cunha,
2009) in both solution values and computational times.
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