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a b s t r a c t

In this study, the traditional Markov chain method for wind speed modeling is analyzed and two im-
provements are introduced. New states categorization step and wind speeds simulation step are pre-
sented. They both take advantage of the empirical cumulative distribution function of the wind speed
time series. Performances of the newmethod are tested in terms of modeling and short-term forecasting.
The results suggest that this method overperforms the traditional one for modeling.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Wind characteristics are important for the evaluation of wind
resources, performance of wind turbines and their power produc-
tion. Due to the fact that the Weibull distribution has been unable
to represent all the wind regimes encountered in nature, re-
searchers have continued to propose new wind speed probability
models (see Ref. [1] for a review).

The Markov chain method is used in numerous studies for
modeling various types of wind speed time series [2e7] (see also
Refs. [8,9] in the multivariate setting). The procedure for solving
such problems using the Markov chain modeling method is rela-
tively clear. Firstly, all of the values of a time series are distributed
into several states. Secondly, supposing the series of states is ruled
by a homogeneous Markov chain, a transition probability matrix of
these states is estimated. Thirdly, this matrix is used to generate a
new series of states. Fourth, each state in this new series is con-
verted into a wind speed value with a certain random generator.
The final product is a synthetic time series generated from the
observed series, with faithfully reproduced statistical parameters.

It is worth emphasizing that certain types of wind speed time
series need sometimes more sophisticated methods. Mycielski al-
gorithm [10], neural networks methods [11], semi-Markov models
[12,13] can be cited.

This paper studies two improvements of the traditional Markov
chain modeling method on the first (states categorization) and
fourth (wind speed simulation) steps. They both take advantage of
the empirical cumulative distribution function of the wind speed
time series. After a brief recall of the traditional method (Section 2),
the improvements are presented in Section 3. Then, we evaluate its
application on wind speed modeling. Performances of this new
method are tested in terms of modeling and short-term forecasting
on a real dataset in Section 4. The results suggest that this method
overperforms the traditional one for modeling.
2. Traditional first-order Markov chain modeling

In this section, the traditional Markov chain modeling method is
introduced. It can be divided into four steps: states categorization,
Markov chain transition matrix estimation, Markov chain states
simulation and wind speeds simulation.
2.1. Step 1 (states categorization)

The range [vmin,vmax] of the wind speed training dataset is dis-
cretized into several intervals. Considering the operability, a finite
number k2ℕ* of disjoint intervals is considered, namelynh
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Generally, the lower limit V1
[ is taken to be zero. We also denote

E ¼ {1,…k} the set of the different state indexes.
The categorization is rather arbitrary depending on the purpose.

But the methods in the literature can be divided into two families:
in the former the intervals are constructed first and the number of
intervals follows, in the latter the number of intervals is determined
first so as to construct the intervals.

In the first family, we can cite [3] where the intervals boundaries
are equal to vN±jsN , j ¼ 0,1,2,…, until the extremes in the wind
speed training dataset are covered. Similarly, the authors of [9]
divides the range by finer grid, namely with boundaries
vN±j$ð0:4sNÞ, j ¼ 0,1,2,…. These methods generally lead to a me-
dium number of states (from 10 to 20). In Refs. [6,5], the authors
consider integer values (in m/s) as boundaries and, consequently,
intervals of the form [i�1,i], i ¼ 1,…,k, k > vmax. Finer grid for
categorizationwith 0.1 m/s intervals in Ref. [11] and with 0.5 m/s in
Ref. [14] are considered. These methods leads to a bigger number of
states (from 20 to 30 states in the mentioned studies).

In the second family, the work [8] can be cited where the wind
speed time series is split into three states corresponding to 0e3m/s
(weak wind), 3e8 m/s (mean wind) and 8 m/s to the upper limit of
wind speeds (strong wind). The improvement presented in Section
3.1 belongs to this family.

Each wind speed values is converted to the index of its
belonging interval. The wind speed training dataset (v1, v2,…,vN) is
consequently converted into a time series of states (i1,i2,…,iN)2EN.
2.2. Step 2 (Markov chain transition matrix estimation)

The state time series (i1,i2,…,iN)2EN is supposed to be a part of
the realization of a homogeneousMarkov chain. Then the transition
matrix of the underlying Markov chain has to be estimated. First,
we give a brief recall on Markov chain theory.

Let k2ℕ� be a positive integer. Let (Sn)n�0 be a sequence of
randomvariables valued in the finite set E¼ {1,2,…,k}. If Sn ¼ j, then
the chain is said to be in state j at time n. In an homogeneousMarkov
chain, the transition probabilities satisfy the Markov property

PðSnþ1¼ jjSn¼ i; Sn�1¼ in�1;…;S0¼ i0Þ¼PðSnþ1¼ jjSn¼ iÞ¼pi;j

for all n�0, for all (i,j)2E2 and for all (in�1,…,i0)2En. We can remark
that for an homogeneous Markov chain, these transition probabil-
ities does not depend on the time n. Transition probabilities are
determining entirely the Markov chain.

The transition matrix

p ¼

0BB@
p1;1 p1;2 … p1;k
p2;1 p2;2 … p2;k
« « 1 «

pk;1 pk;2 … pk;k

1CCA
has to be estimated on the training dataset.

According to [6], the empirical frequencies are the maximum
likelihood estimates of the transition probabilities. Therefore, we
define the estimators

bpðNÞ
i;j ¼ mi;jPk

j¼1 mi;j

wheremi,j is the number of transitions from the state i to the state j
on successive time in the training data set (of length N).
2.3. Step 3 (Markov chain states simulation)

Generating a synthetic states time series with transition matrixbp ¼ ðbpi;jÞi¼1…k;j¼1…k is presented in this step.
Starting from initial states s02E (defined by the user), the suc-

cessive state is simulated randomly following the discrete proba-
bility distribution�bps0;1; bps0;2;…; bps0 ;k

�
:

Let us note s12E as this generated state. Repeating the same
procedure, the (iþ1)-th state is simulated following the discrete
probability distribution�bpsi;1; bpsi;2;…; bpsi;k

�
:

Therefore a time series of states with any length can be
generated.
2.4. Step 4 (wind speeds simulation)

The fourth step of the traditional Markov chain method is con-
verting the series of simulated states (s1,s2,…sN) into a time series of
wind speeds. It is assumed that thewind speeds in each state follow
a certain distribution. Then, wind speed states are converted into
wind speeds by

~vn ¼ Vsn
[ þ un

�
Vsn
u � Vsn

[

�
; n ¼ 1…N (1)

where Vi
u and Vi

[ are the wind speed upper and lower boundaries of
the i-th state interval (see Step 1). Here un is a random value
generated from 0 to 1 by a certain distribution generator. In this
manner, a time series of wind speeds is generated from the series of
wind speed states, with the same length.

In practice, there is no fixed method for choosing the distribu-
tion of un. Many studies (see Refs. [6,9,14]) considered un to be a
uniform random variable valued in (0, 1). In Refs. [3,5], the gener-
ated wind speeds were assumed to be uniformly distributed only in
intermediate intervals whereas they were assumed to follow a
shifted exponential distribution in the extreme states.
3. Improved Markov chain modeling

We present in this section two improvements of the traditional
Markov chain modeling method. Precisely, we will consider the
first and the fourth steps.
3.1. Improvement of the first step

As previously mentioned, the state categorization in the tradi-
tional Markov chain modeling method is rather arbitrary and de-
pends on the purpose. The traditional Markov chain method lacks a
standardized categorization step. Namely, two problems can spring
up in the application:

1. A structure with a huge number of states could be constructed
resulting in a large transition matrix that might present addi-
tional difficulties in estimation.

2. The number of individuals in certain states could be made much
lower than others, generating a great number of small proba-
bilities near 0 in the transition probability matrix.



1 Cup anemometers, the instruments for extensive use to measure wind force
and velocity, typically have relatively high thresholds.
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In order to address this problem, it seems reasonable to deter-
mine a relatively small number of states first. Moreover, we
emphasize the importance of keeping states distribution nearly
uniform.

In the improved method, the number of state k2ℕ� is fixed by
the user (or some criterion). We consequently construct the in-
tervals using the empirical quantiles, precisely the boundaries
(except the first lower bound equal to 0) are taken to be bF�1

N ðj=kÞ,
j ¼ 1…k where bFNð:Þ is the empirical cumulative distribution
function

bFNðvÞ ¼
PN

i¼1 1ðvi � vÞ
N

where 1ð:Þ is the indicator function.
As we fix k, we can choose a small number. Moreover, with this

method, a structure with nearly uniformly distributed states can be
constructed without wrong state categorization, which means that
this method can solve the aforementioned problems.

The underlying idea of this improvement is the following:
suppose that the wind speeds time series is stationary and ergodic.
Then, the ergodic theorem shows that the empirical cumulative
distribution function bFN is a consistent estimator of the cumulative
distribution function F of the invariant measure of this time series.

3.2. Improvement of the fourth step

Regarding the fourth step of the traditional method, either
uniform or exponential distribution approximates the real distri-
bution of speeds in each state. But, each real distribution of speeds
in every state might have so many alternative approximations that
it is very difficult to find the best one, depending merely on
observation and experience.

For a large number of states, the uniform distribution is gener-
ally valid. But with a small number of states, it could be easy to
choose an inappropriate distribution that would induce a big de-
viation between the generated and original time series.

The idea behind the second improvement is simple. As the
number of states is small and there is a relatively large number of
individuals in each states, the empirical distribution of the wind
speeds in each state is a good approximation of the conditional
probability distribution given its state.

4. Applications and tests

4.1. Tests on the Lamma Island dataset

The dataset is a time series that includes 52416 wind speeds
measured every 10 min over 364 days since 24 February 2006 on
Lamma Island ranging from 0 m/s to 30 m/s approximatively. For
comparison purposes, the dataset is divided into two subsets: the
first 182 days as the training dataset and the remainder as the
testing dataset.

In the following, the training dataset is denoted by (v1,v2,…,vN),
N ¼ 26208 and the testing dataset is denoted by w ¼ (wn)n¼1…N,
N¼26208. The former is used to compare themethods for modeling
and the latter for forecasting.

4.1.1. Modeling
In this section, wewill compare the traditional method with the

improved method in terms of modeling.

Step 1 On the training set (v1,v2,…,vN), the number of states
generated depends on themethod to construct the intervals. For
instance
1. using intervals of fixed length equal to 1m/s (the lower bound of
the first is 0), the number of states generated is 30. We will
denote this method S1eT1 (Step 1 Traditional Method 1).

2. using intervals with boundaries vn±jsn, the number of states
generated is 11. We will denote this method S1eT2 (Step 1
Traditional Method 2). Wind speeds states' boundaries are
equals to 0, 1.3, 4.4, 7.5, 10.5, 13.5, 16.6, 19.6, 22.7, 25.7, 28.8, 29.6.

3. using the improved method proposed in Section 3, the number
of states generated is 8. This method is denoted S1eI (Step 1
Improved Method). Wind speeds states' boundaries are equals
to 0, 1.3, 2.3, 3.1, 4.0, 5.0, 6.0, 7.4 and 29.6 m/s, respectively.

It is worth mentioning that the number of states of the
improved S1eI method is similar to that in the classical S1eT2
method (which is much smaller than the number of states obtained
with the classical S1eT1 method). Consequently, a particular
attention has to be paid to their comparison in Tables 3 and 4.

Steps 2 and 3 The second step is to construct the estimated
transition probability matrices. S1eT1 is a 30 � 30 matrix in
which there are a huge number of 0s, and nearly all of the non-
zero transition probabilities are located at the three nearest
states from the diagonal. S1eT2 is 11 � 11 matrix presented in
Table 1

For the improved method, the estimated 8�8 transition prob-
ability matrix is shown in Table 2.

According to the above table, nearly all of the non-zero transi-
tion probabilities are located at the three nearest states from the
diagonal.

Step 4. In this numerical study, we consider the uniform distri-
bution generator as the only method used in step 4 as it is done
in the traditional method. Therefore, the states are converted
using Equation (1). This method is denoted by S4eT (Step 4
Traditional Method) in the following. It can be compared to the
improved procedure proposed in Section 3.2 denoted S4eI
4.1.1.1. Comparisons of the methods. Kernel density estimation is
adopted with the Gaussian kernel as the kernel function and 0.1 as
the bandwidth to obtain the empirical probability density function
(epdf) of the training set and the simulated set. Results are pre-
sented in Figs. 1 and 2.

It can be seen on Fig. 1 that the observed distribution is a
bimodal distribution.1 The assumption of uniform distribution in
traditional Step 4 ignores the high probability of calm or very low
wind speeds.

It can also be seen that the categorizationmethod T2 divides the
speeds into states with wide intervals, which made the generation
with the uniform assumption worse than S1eT1/S4eT1.

With the improved method, on Fig. 2, the observed bimodal
distribution is now fitted better by the simulated time series
empirical distribution.

In order to compare all this methods with a fixed criterion, we
consider the root mean square error (RMSE) defined by

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK

i¼0 ðgi � oiÞ2
K þ 1

s
(2)



Table 1
Estimated transition matrix for S1eT2 method.

bpS1�T2 ¼

0BBBBBBBBBBBBBBBB@

0:75 0:25 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00
0:08 0:78 0:14 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00
0:00 0:18 0:72 0:10 0:00 0:00 0:00 0:00 0:00 0:00 0:00
0:00 0:01 0:37 0:55 0:07 0:00 0:00 0:00 0:00 0:00 0:00
0:00 0:01 0:06 0:33 0:46 0:11 0:02 0:01 0:00 0:00 0:00
0:00 0:00 0:01 0:07 0:30 0:38 0:16 0:07 0:01 0:01 0:00
0:00 0:00 0:00 0:00 0:10 0:36 0:26 0:17 0:08 0:02 0:02
0:00 0:00 0:00 0:02 0:06 0:10 0:38 0:25 0:13 0:06 0:00
0:00 0:00 0:00 0:00 0:00 0:10 0:24 0:34 0:24 0:03 0:03
0:00 0:00 0:00 0:00 0:00 0:12 0:12 0:62 0:12 0:00 0:00
0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 1:00 0:00 0:00

1CCCCCCCCCCCCCCCCA

Table 2
Estimated transition matrix for S1eI.

bpS1�I ¼

0BBBBBBBBBB@

0:74 0:21 0:03 0:01 0:00 0:00 0:00 0:00
0:21 0:48 0:22 0:07 0:02 0:00 0:00 0:00
0:04 0:24 0:39 0:24 0:07 0:02 0:01 0:00
0:01 0:07 0:21 0:37 0:23 0:08 0:02 0:00
0:00 0:02 0:06 0:21 0:37 0:24 0:08 0:01
0:00 0:00 0:02 0:07 0:26 0:36 0:24 0:06
0:00 0:00 0:01 0:02 0:09 0:24 0:43 0:21
0:00 0:00 0:00 0:00 0:01 0:05 0:21 0:72

1CCCCCCCCCCA
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Fig. 1. S1eT1/S4eT method (on the left) and S1eT2/S4eT method (on the right) compared to observed training data.
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where gi and oi are the epdf of the training sample and the simu-
lated sample respectively, evaluated at the point i$vmax/K, i ¼ 0,…K,
of the regular grid of [0,vmax] of length Kþ1. RMSE are computed for
the different traditional and improved method and summarized in
Table 3. This criterion claims that the improved method overper-
forms the traditional ones in terms of modeling.
0 5 10 15 20 25 30

0.
00

0.
05

0.
10

0.
15

Wind speed

PD
F

Speed generated
Speed observed

Fig. 2. S1eI/S4eI method compared to the observed training data.
Moreover, it is easy to understand that the computation of a
8 � 8 matrix is obviously faster than that of a 30 � 30 matrix.
4.1.1.2. Limitations. In the case where the training set is inhomo-
geneous with the testing sample, this Step 4 acts as a mis-
specification of the model and could give negative results. In this
case, the uniform distribution is more neutral.
4.1.2. Forecasting
Despite our objective is to model the wind speed, we also

compare the traditional methods with the improved method in
terms of forecasting.

We consider a one step ahead forecasting procedure. First, the
transition matrix bp is constructed on the training set as in the
previous Section 4.1.1.

Let us fix the horizon time to t (for instance t ¼ 18 (3h), 36 (6h),
72 (12h) and 144 (1d)). Then we simulate a one step ahead (of
horizon time t) forecast series with the help of the testing sample
(w1,…,wN). Namely, starting from wj, j ¼ 1…N�t, we construct the
wind speed (theoretical mean value) forecast bvjþt of wjþt using the
estimated transition matrix bp with

vejþt ¼ ð0;…;0;1;0;…;0Þbpt$ m1;…;mkð Þ0



Table 3
Modeling comparison (RMSE) between traditional methods and improved method
(for k ¼ 8 in the improved method).

S1eT1/S4eT S1eT2/S4eT S1eI/S4eI

RMSE 0.007 0.010 0.002

Table 4
RMSE between the testing set and forecasted series (for k ¼ 8 in the improved
method).

Horizon/Method S1eT1/S4eT S1eT2/S4eT S1eI/S4eI

18 2.36 2.55 2.42
36 2.61 2.65 2.63
72 2.66 2.66 2.66
144 2.66 2.67 2.66

Table 5
RMSE for modeling and forecasting (for k ¼ 8 and t ¼ 18) for the improved method.

RMSE/Turbine 20,500 21,500 22,500 23,500 24,500

RMSE modeling 0.005 0.002 0.003 0.005 0.004
RMSE forecasting 2.32 3.36 3.35 2.81 2.44
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where the one is at the place ij which is the state of the value wj,mi

is the center of classification interval ½Vi
[;V

i
u� for i¼1,…,k, bp is the

transposition, and $ is the scalar product in ℝk.
Finally we compute the RSME

RSMEðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN�t
j¼1

�
wjþt � v

�
jþt

�2
N

vuut
:

We summarized the RSME in Table 4 for different time horizons
t ¼ 18,36,72 and 144.

It can be seen from Table 4 S1eI/S4eI (improved method)
overperforms S1eT2/S4eT (traditional 2 method) with similar
number of states. Moreover, S1eI/S4eI is comparable to the first
traditional method for t � 36.

For big t, it is comparable to choose the mean value of the
training sample as the forecast value.

For k ¼ 8 states in the improved method, the forecast for t ¼ 18
is slightly worse than the traditional method. But, for a bigger
number of states, forecasting with this time horizon is comparable.
For instance for k ¼ 16, RMSE are equal again.
4.2. Performances of the improved version on NREL datasets

The datasets are several time series that includes 52,560 wind
speeds measured at the turbine rotor height every 10 min over 365
days in 2005 in US. For instance, the ID 24500 turbine is located
43.48N and 107.29W in Wyoming and wind speeds ranging from
0.09 m/s to 27.75 m/s.

This datasets present no null wind. They are taken from http://
wind.nrel.gov.
Every dataset is divided into two subsets: the first 26,280 data as
the training dataset and the remainder as the testing dataset. Re-
sults presented in Table 5 for modeling (see Section 4.1.1) and
forecasting (see Section 4.1.2) show that the improved method
works for a large collection of wind.

5. Conclusion

In this study, the application of the traditional Markov chain
method for wind speed modeling is analyzed. The first step which
is the state categorization might generate a huge and inefficient
transition probability matrix.

Moreover, the wind speeds generation from the states simula-
tion in the fourth stepmight not reproduce some statistical features
and stylized facts observed in the data (bimodal distribution,
Weibull tails, etc.).

To address these problems, two improvements are introduced.
The first one is a new state categorization procedure that takes
advantage of the empirical probability distribution function of the
wind speeds time series. The second improvement relies directly
on the empirical distribution of the wind speeds in each state. A
new simulation method to generate synthetic wind speeds from
the state simulations is given. Application and comparison con-
ducted reveals that the improved method overperforms its tradi-
tional counterpart in modeling (with simultaneously comparable
results for forecasting).
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