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a b s t r a c t

This paper suggests a fuzzy inference system (iFIS) modeling approach for interval-valued time series
forecasting. Interval-valued data arise quite naturally in many situations in which such data represent
uncertainty/variability or when comprehensive ways to summarize large data sets are required. The
method comprises a fuzzy rule-based framework with affine consequents which provides a (non)linear
framework that processes interval-valued symbolic data. The iFIS antecedents identification uses a fuzzy
c-means clustering algorithm for interval-valued data with adaptive distances, whereas parameters of
the linear consequents are estimated with a center-range methodology to fit a linear regression model
to symbolic interval data. iFIS forecasting power, measured by accuracy metrics and statistical tests,
was evaluated through Monte Carlo experiments using both synthetic interval-valued time series with
linear and chaotic dynamics, and real financial interval-valued time series. The results indicate a superior
performance of iFIS compared to traditional alternative single-valued and interval-valued forecasting
models by reducing 19% on average the predicting errors, indicating that the suggested approach can
be considered as a promising tool for interval time series forecasting.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The increasing development of automated systems, small-scale
computing devices, sensor networks, and data capture technolo-
gies has contributed to the production of large volumes of data.
The significant growth in the use of databases resulted in the
need to discover regularities and summarize information stored
in large data sets [1–3]. In this scenario, extracting valuable in-
formation from a variety of sources plays a crucial role in data
management and its related decision-making processes. Besides
the highly advanced computing power observed recently, it is
sometimes not practical to analyze very large data sets. To alleviate
this issue, huge data sets can be aggregated by lists, intervals, his-
tograms, frequency distributions, among others, in which, despite
their summarization properties, are also able to take into account
variability and/or uncertainty inherent to the data. These kinds of
data have beenmainly studied in the field of Symbolic Data Analysis
(SDA) [4,5], a new domain related to multivariate analysis, pat-
tern recognition and artificial intelligence for extending classical
exploratory data analysis and statistical methods to symbolic data.
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The aim of SDA is to provide suitable methods (such as clus-
tering, factorial techniques and decision trees) to manage aggre-
gated data described by multi-valued variables, thus providing a
comprehensive way to summarize data sets by means of symbolic
data. This results in a smaller andmoremanageable data set which
preserves the essential information, and is subsequently analyzed
by means of generalizing the exploratory data analysis and data
mining techniques to symbolic data [6,4,7].

The literature on SDA have discussed the management of large
databases by focusing units described by variables that are often
categorical to construct categories whose extents are units of the
database. The reification of categories in concepts yields symbolic
data tables, where the units are the concepts and the variables’
values are symbolic. From cognitive sciences, SDA can enhance
knowledge discovery and data mining in computer sciences [8].
[9] give an overview of the works on the development in SDA
by presenting tools and methods designed to deal with symbolic
data. A recent discussion regarding SDA is also provided by [10],
explaining how it extends the classical data models to take into
account more complete and complex information, and discussing
some methods for the (multivariate) analysis of symbolic data.

In the context of massive data sets availability, recommender
systems and information filtering also play an important role as
the SDA do. The task of recommender systems is to turn data
on users and their preferences into predictions of users’ possible
future likes and interests. The study of recommender systems
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is at crossroads of science and socio-economic life and its huge
potential was first noticed by web entrepreneurs in the forefront
of the information revolution. [11] review recent developments in
recommender systems and compare and evaluate available algo-
rithms. Regarding economic big data, [12] recently discussed how
big data reveal the status of economic development and suggested
applications of different types of big data on quantifying macro-
economic structures and micro-social status.

According to SDA, in real-life situations imprecise data occur
when a collection associated with each unit under analysis repre-
sents the uncertain value of the record, or when data presenting
variability emerge e.g. due to the aggregation of single observa-
tions.1 Therefore, symbolic variables are better suited than single-
valued variables to describe these complex situations. Interval-
valued data are a particular kind of symbolic data which arise
in practical situations such as recording meteorological data sta-
tions [13], daily low and high asset prices [14–16], blood pres-
sure [5], income level in survey data [17], influence of height on
salary expectations [18], image processing [19], financial assets
volatility forecasting [20], power load and generation, traffic flows,
etc. Interval data are also relevant in the case of confidential data
applications in companies and government specific areas in which
only ranges of values are permitted to be shown.2 Therefore, tools
for interval-valued symbolic data analysis are demanding.

Different approaches have been introduced in the literature to
analyze interval-valued data. For instance, [7] suggested central
tendency and dispersion measures that are suitable for interval-
valued data. Principal component analysis methods designed for
interval-valued data were proposed by [21,22] and [23]. Concern-
ing supervised classification, [24] introduced a symbolic classifier
as a region-oriented approach for interval-valued data.

Researchers have also considered regression approaches for
interval-valued data. [5] first introduced a regression approach,
which fits a linear regression model on the center of the intervals
and applies the fitted model to the lower and the upper bounds
of the predictor variables to obtain a prediction. Extending this
approach to the range of intervals, [25] suggested a regression
method that fits two separate linear regression models on the
center and the range of the intervals. Based on this idea, [26]
introduced a bivariate approach which fits two regression models
on both the center and the range of the intervals simultaneously as
the predictors. A linear model to analyze interval-valued data was
also proposed by [27], based on the bivariate generalized linear
model by [28]. In [29], a method that fits a constrained linear
regression model on the center and range of the interval values
is suggested. [17] proposed a symbolic covariance method based
on the symbolic sample covariance introduced by [26]. Related
works concerning regression approaches for symbolic interval-
valued data include [30–32,6,33].

SDA also provides a number of clustering methods for interval-
valued data. These methods differ in the type of the considered
symbolic data, in their cluster structures and/or in the consid-
ered clustering criteria [34]. The literature has addressed hard
clustering methods for interval-values data, broadly divided into
hierarchical [35,36] and non-hierarchical approaches [37,38]. A
number of authors have also analyzed the problem of fuzzy clus-
tering for symbolic data [39,40]. Fuzzy clustering generates a fuzzy
partition based on the idea of partial membership expressed by
the degree of membership of each pattern in a given cluster. For
instance, [34] suggests adaptive and non-adaptive fuzzy c-means
clustering methods for partitioning symbolic interval data. Parti-
tioning fuzzy k-means clustering models for interval-valued data

1 Variability in data occur when each unit represents a specific group/class, or
when values express characteristics that float along a period of time.
2 Interval-valued data are either inherently observed as or processed to be

intervals.

were also introduced by [41]. A possibilistic fuzzy c-means cluster-
ing algorithm is addressed in [42]. Symbolic fuzzy classification us-
ing a fuzzy radial basis function network and self-organizing maps
are proposed in [43] and [44,45], respectively. More recently, [46]
suggested a fuzzy clustering algorithm for interval-valued data
based on the concept of participatory learning.

When considering a chronological sequence of interval-valued
data, interval time series (ITS) arises quite naturally. The tools for
ITS data analysis are very compelling and have been considered in
the SDA framework.Modeling and forecasting of ITS has the advan-
tage of taking into account the variability and/or uncertainty, and it
reduces the amount of random variations relative to that found in
classic single-valued time series [47]. The literature on themethod-
ologies for ITS forecasting fall roughly into two categories in rela-
tion to the method in which interval data is handled, i.e., splitting
single-valuedmethods or interval-valuedmethods [47]. In the first
category, the lower and upper bounds of interval data are treated
as two independent single-valued variables, such as in the works
of [48–50]. On the other hand, in the second category the lower
and upper bounds of interval data are treated using interval arith-
metic as interval-valued data, as in the interval Holts exponential
smoothing method (HoltI) [51], the vector autoregression/vector
error correction model [52,53], multilayer perceptron (MLP) [51],
interval MLP (iMLP) [54], the complex-valued radial basis function
neural network [47], and the hybrid HoltI multi-output support
vector regression model [14]. A comprehensive literature review
of the presented methodologies and techniques employed for ITS
forecasting can be found in [14,55].

This paper comes within the framework of ITS modeling and
forecasting by proposing a fuzzy inference system (FIS) designed
to process symbolic interval-valued data, namely iFIS. FISs have
been successfully applied in fields such as automatic control, data
classification, decision analysis, expert systems, and computer vi-
sion [56–60]. In this paper, the iFIS assumes a functional fuzzy rule-
based model structure, where the consequent part is expressed
as a (non)linear relationship between the input variables and the
output variable [61]. The identification of a iFIS concerns the iden-
tification of the antecedents and consequents of the fuzzy rules.
Rules antecedents are identified using the fuzzy c-means clus-
tering approach for symbolic interval-valued data using adaptive
quadratic Euclidian distances, proposed by [34]. The advantage
of adaptive distances is that the clustering algorithm is able to
recognize clusters of different shapes and sizes. Finally, consequent
parameters of the rules are estimated using the least squares algo-
rithm designed for interval-valued data, as suggested in [27]. Com-
putational experiments comprise the prediction of synthetic ITS
with linear and chaotic dynamics and real interval stock price time
series data forecasting. iFIS prediction performance is compared
with traditional single-valued time series methods and interval-
valued forecasting approaches in terms of accuracy measures and
statistical tests.

In summary, the novelty and contributions of this work can be
outlined as follows. First, we build on the literature on SDA by
suggesting a fuzzy inference system modeling approach designed
to process interval-valued symbolic data naturally, which is a new
based for SDA by incorporating a fuzzy clustering and regression
mechanisms in an inference framework to identify fuzzy rules
antecedents and consequents, respectively. Second, the possibility
of forecasting the lower and upper bounds of ITS simultaneously
using the proposed approach is examined based on simulated
ITS data with different dynamics and on real interval stock price
time series data. Third, the suggested approach provides a non-
linear mechanism to forecast ITS which, due to its fuzzy nature,
is also able to account for imprecise data and vagueness, mainly
when financial data is concerned. Finally, the iFIS concerns an ITS
forecasting modeling framework that enhances interpretability,
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providing a linguistic model which could be employed by decision
makers in many real-world applications.

Following this introduction, the paper is outlined as follows.
Section 2 details the interval-valued fuzzy inference system mod-
eling framework. Experimental results on forecasting simulated
ITS data and real interval stock market time series data are dis-
cussed in Section 3. Finally, concluding remarks are provided in
Section 4.

2. Fuzzy inference system for interval-valued data

The overall formulation of the suggested interval fuzzy infer-
ence system (iFIS) for interval-valued data forecasting is detailed
in this section. The definition of interval-valued data and interval
time series (ITS) are presented first. Further, the iFIS model struc-
ture and its identification are described.

2.1. Interval-valued data and ITS

An interval-valued variable x is defined as a closed bounded set
of real numbers in the form:

x = [xL, xU ]
T

∈ ℑ, (1)

where ℑ = {[xL, xU ]
T

: xL, xU ∈ ℜ, xL ≤ xU } is the set of
closed intervals of the real line ℜ, xL and xU are the lower and
upper bounds of interval x, respectively, and with the superscript
T denoting the transpose of the vector.

The center or mid-point of an interval-valued variable x, de-
noted as xc , is calculated as:

xc =
xL + xU

2
. (2)

Similarly, the range or half-length of x, xr , is:

xr =
xU − xL

2
. (3)

Notice that, if the center xc and range xr of an interval-valued
data x are known, its lower and upper bounds can be recovered as
xL = xc − xr and xU = xc + xr , respectively.

An interval-valued time series (ITS) is a sequence of interval-
valued variables observed in consecutive time steps t (t = 1, 2,
. . . , n) expressed as a two-dimensional vector xt = [xLt , x

U
t ]

T
∈ ℑ,

where n denotes the number of intervals in the time series, i.e. the
sample size.

In order to process interval-valued variables by the iFIS mod-
eling framework, the basic concepts of interval arithmetic must
be addressed. Interval arithmetic extends traditional arithmetic
to operate on intervals. This work uses the arithmetic operations
introduced by [62]:

x + y = [xL + yL, xU + yU ]
T ,

x − y = [xL − yU , xU − yL]T ,
xy =

[
min{xLyL, xLyU , xUyL, xUyU },

max{xLyL, xLyU , xUyL, xUyU }
] T ,

x/y = x (1/y) , with 1/y = [1/yU , 1/yL]T . (4)

Interval arithmetic subsumes classic arithmetic. This means
that if an operation of interval arithmetic takes real numbers as
operands, considering them as intervals of length zero, then we
obtain the same result as if the operation were performed using
traditional arithmetic.

2.2. iFIS model structure

The interval-valued fuzzy inference system (iFIS) modeling ap-
proach is formed by a set of functional fuzzy rules of the following
form:

Ri : IF X is µi THEN yi = f (X,βββ) , (5)

where Ri is the ith fuzzy rule, i = 1, 2, . . . , c , c is the number of
fuzzy rules in the rule base, X = [x1, x2, . . . , xp]T , xj = [xLj , x

U
j ]

T
∈

ℑ, j = 1, . . . , p, is the input comprised by p interval-valued
variables, µi is the fuzzy set of the antecedent of the ith fuzzy
rule whose membership function is µi(X) : ℑ

p
→ [0, 1], yi =

[yLi , y
U
i ]

T
∈ ℑ is the output of the ith rule, f (·) represents an

interval-valued affine function, and βββ is the matrix of real-valued
parameters of the consequent of the ith rule.

Fuzzy inference using iFIS rules in Eq. (5) is similar to the classic
Takagi–Sugeno [61] model counterpart except that the arithmetic
operations are the interval operations instead of the usual oper-
ations with real numbers. The output of the inference system is
computed as:

y =

c∑
i=1

(
µi(X)yi∑c
j=1 µj(X)

)
. (6)

The expression in (6) can be rewritten using normalized degrees
of activation:

y =

c∑
i=1

λiyi, (7)

where

λi =
µi(X)∑c
j=1 µj(X)

, (8)

is the normalized firing level of the ith rule.
The TS model uses parameterized fuzzy regions and associates

each region with a local affine model. The nonlinear nature of the
rule-based model emerges from the fuzzy weighted combination
of the collection of the multiple local affine models. The contri-
bution of a local model to the model output is proportional to its
degree of activation.

Identifying the iFIS comprises two tasks: (i) learning the an-
tecedent part of the model with a fuzzy clustering algorithm for
interval-valued data, and (ii) estimation of the parameters of the
affine consequents. The ith fuzzy cluster definesµi, the antecedent
of the ith fuzzy rule. The cluster structure defines the structure of
the model itself given that to each cluster there is a correspondent
fuzzy rule whose consequent is an interval affine function, i.e. an
affine local model. iFIS learning is described as follows.

2.3. iFIS antecedents identification

The identification of iFIS antecedents uses the adaptive fuzzy
c-means clustering algorithm for interval-valued data (IFCM), pro-
posed by [34], which concerns an extension of the classical fuzzy c-
means clustering algorithm [63] for symbolic interval data. In this
approach, the adequacy criterion is based on a suitable adaptive
squared Euclidean distance. The main idea is that a different dis-
tance is associated to each cluster to compare clusters and their
representatives that change at each iteration, i.e., the distance is
not definitively determined and differs from one class to another.
The advantage of these adaptive distances is that the clustering
algorithm is able to find clusters of different shapes and sizes [34].

Let Ω = {1, . . . , n} be a set of n patterns (each pattern is
indexed by t) describing p symbolic interval variables {x1, . . . , xp}
(each variable is indexed by j). Each pattern t is represented as a
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vector of intervals X = [x1, . . . , xp], where xj = [xLj , x
U
j ]

T
∈ ℑ.

Also, each prototype vi of cluster i, i = 1, . . . , c , is represented as
a vector of intervals Vi = [vi1, . . . , vip], where vij = [vL

ij, v
U
ij ]

T
∈ ℑ,

j = 1, . . . , p.
As in the standard fuzzy c-means algorithm [63], IFCM aims

to find a fuzzy partition of a set of patterns in c clusters and a
corresponding set of prototypes {V1, . . . , Vc} that minimizes a W
criteria measuring the fit of the clusters to their representatives
(prototypes).W is basedon an adaptive squared Euclideandistance
for each cluster and is defined as:

W =

c∑
i=1

n∑
t=1

(µit )mφi(Xt , Vi),

=

c∑
i=1

n∑
t=1

(µit )m
p∑

j=1

γij
[
(xLj − vL

ij)
2
+ (xUj − vU

ij )
2], (9)

where φ(·) is an adaptive Euclidian distance that accesses the
dissimilarity between a pair of vectors of intervals defined for
each class and parameterized by the vectors of weights γγγ i =

[γi1, . . . , γip], Xt = [x1t , . . . , xpt ] is a vector of intervals describing
the tth pattern, Vi = [vi1, . . . , vip] is a vector of intervals describing
the prototype of cluster i, µit is the membership degree of pattern
t in cluster i, andm is the fuzzification parameter (usuallym = 2).

The optimal fuzzy partition is obtained by Picard iterations for
which the criteria W in (9) is locally minimized. The algorithm
starts with an initial membership degree partition and alternates
between a representation step and an allocation step until con-
vergence (W reaches a stationary value representing a local min-
ima) [34]. The representation step, which defines the best proto-
types and the best distances, has two stages. First, themembership
degrees µit of each pattern t in cluster i and the vector of weights
γγγ i = [γi1, . . . , γip] are fixed. Prototypes Vi = [vi1, . . . , vip], for i =

1, . . . , c and j = 1, . . . , p, that minimize the clustering criterionW
are updated as follows:

vL
ij =

∑n
t=1 (µit )mxLjt∑n
t=1 (µit )m

, (10)

vU
ij =

∑n
t=1 (µit )mxUjt∑n
t=1 (µit )m

. (11)

In the second stage of the representation step, the membership
degrees µit and the prototypes Vi are fixed. The vector of weights
γγγ i = [γi1, . . . , γip] minimizing W under γij > 0 and

∏p
j=1 γij = 1,

for i = 1, . . . , c and j = 1, . . . , p, is updated with the following
expression:

γij =

{∏p
h=1

[∑n
t=1 (µit )m

(
(xLht − vL

ih)
2
+ (xUht − vU

ih)
2
)]} 1

p∑n
t=1 (µit )m

[
(xLjt − vL

ij)2 + (xUjt − vU
ij )2
] . (12)

Finally, in the allocation step, which defines the best fuzzy
partition, the prototypes Vi and the vector of weights γγγ i are fixed.
Thus, the membership degrees µit whichminimizeW under µit ≥

0 and
∑c

t=1 µit = 1 are updated as:

µit =

⎡⎣ c∑
h=1

( ∑p
j=1 γij

[
(xLjt − vL

ij)
2
+ (xUjt − vU

ij )
2
]∑p

j=1 γhj
[
(xLjt − vL

hj)2 + (xUjt − vU
hj)2
]) 1

m−1
⎤⎦−1

. (13)

By fixing the number of clusters c (2 ≤ c < n), an iteration
limit kmax, and an error criteria ϵ, the clustering method comprises
the iteration between the representation and allocation steps as in
the following algorithm. The process produces the vector of cluster
prototypes Vi = [vi1, . . . , vip] and the respective membership
degrees µit of each pattern t with respect to each cluster i, for
t = 1, . . . , n and i = 1, . . . , c , that locally minimize the criterion
W . The proof of expressions in (10)–(13) are found in [63] and [34].

2.4. iFIS consequents identification

Once the cluster structure is appropriately defined, i.e. the
clusters or fuzzy rules represented by their respective prototypes,
the identification of the iFIS requires estimating the consequent
parameters of the fuzzy rules. Notice that the iFIS consequents, as
defined in (5), concern the fitting of a classical regression model
used to predict the values of a dependent quantitative variable
in relation to the values of independent quantitative variables for
both lower and upper interval bounds. For single-valued variables,
the least square method is used to find the optimal parameters by
minimizing the sum of the square of residuals. Hence, in order to
take into account the variability and/or uncertainty inherent to the
data, an approach to fit a linear regressionmodel to interval-valued
symbolic data must be considered.

iFIS antecedents identification algorithm
Initialization:
1. Set c , ϵ and kmax
2. Initialize µit , i = [1, c], j = [1, n], µit ≥ 0,

∑c
t=1 µit = 1

3. k = 1
Representation step:
4. for i = 1, . . . , c and j = 1, . . . , p do
5. compute Vi = [vi1, . . . , vip] using Eqs. (10)–(11)
6. end for
7. for i = 1, . . . , c and j = 1, . . . , p do
8. update γγγ i = [γi1, . . . , γip] with (12)
9. end for
Allocation step:
10. for t = 1, . . . , n and i = 1, . . . , c do
11. compute µit using Eq. (13)
12. end for
Stopping criterion:
13. if |Wk+1 − Wk| ≤ ϵ or k > kmax then
14. stop
15. else
16. k = k + 1 and return to step 4
17. end if

Different approaches have been introduced in the literature
concerning regression analysis for interval-valued data. [5] sug-
gested a method based on the minimization of the center error,
in which the lower and upper bounds of the dependent variable
are predicted, respectively, from the lower and upper bounds of
the independent variable using the same vector of parameters.
On the other hand, [64] proposed a min–max approach, based
on the minimization of the errors from two independent linear
regression models on the lower and upper bounds of the intervals.
This is equivalent to supposing independence between the values
of lower and upper bounds of the intervals.

In this paper, iFIS consequents identification adopts the center-
range method, proposed by [33], to fit a linear regression model to
interval-valued symbolic interval data. This approach includes the
information given by both the center and the range of an interval
on a linear regression model in order to improve the models
prediction performance. Based on experiments using synthetic and
real symbolic data, [33] confirms the importance of considering
the range information in models to predict symbolic interval data,
where the center-range method exhibited significantly better per-
formance than the approaches of [5] and [64].

Let us consider a set of t = 1, . . . , n examples that are described
by p + 1 symbolic interval-valued variables yt , x1t , . . . , xpt . Each
fuzzy rule i, i = 1, . . . , c corresponds to a linear relationship. To
facilitate notation, henceforth we omit the index i related to each
cluster or fuzzy rule. Thus, the output of iFIS regarding each fuzzy
rule, considering the center-range method, can be written as:

yct = βc
0 + βc

1x
c
1t + · · · + βc

px
c
pt + ϵc

t ,
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yrt = βr
0 + βr

1x
r
1t + · · · + βr

px
r
pt + ϵr

t , (14)

where yc and yr are the center and range of y, respectively, xcj and
xrj are the center and range of xi, respectively, j = 1, . . . , p, and ϵc

and ϵr are the corresponding residuals for lower and upper interval
bounds equations, respectively.

In this approach, the squared sum of deviations represents the
sum of the center square error plus the sum of the range square
error, considering independent vectors of parameters to predict
the center and the range of the intervals [33]:

S =

n∑
t=1

(
(ϵc

t )
2
+ (ϵr

t )
2)

=

n∑
t=1

(yct − βc
0 − βc

1x
c
1t − · · · − βc

px
c
pt )

2

+

n∑
t=1

(yrt − βr
0 − βr

1x
r
1t − · · · − βr

px
r
pt )

2, (15)

where {βc
0, β

c
1, . . . , β

c
p} and {βr

0, β
r
1, . . . , β

r
p} are the parameters

associatedwith the affine center and range equations, respectively.
Differentiating (15) with respect to the parameters and setting

the results equal to zero to obtain the normal equations, the least
squares estimates of {βc

0, β
c
1, . . . , β

c
p} and {βr

0, β
r
1, . . . , β

r
p} which

minimize (15) can be written in matrix notation as follows [33]:

β̂ββ = [β̂c
0, β̂

c
1, . . . , β̂

c
p , β̂

r
0, β̂

r
1, . . . , β̂

r
p]

T
= (A)−1b, (16)

where A is a 2(p + 1) × 2(p + 1) matrix and b is a 2(p + 1) vector
denoted as:
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The reconstruction of the interval bounds is based on the center
and range estimates, i.e. the predicted ŷ = [yL, yU ]

T obtained from
the estimated values ŷc and ŷr as follows:

ŷL = ŷc − ŷr , and ŷU = ŷc + ŷr , (19)

where ŷc = (x̌c)T β̂ββ
c
, ŷr = (x̌r )T β̂ββ

r
, x̌c = [1, xc1, . . . , x

c
p]

T , x̌r =
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r
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T , β̂ββ
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p ]
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r
1, . . . ,

β̂r
p]

T .
The least squares estimates of consequent parameters defined

in Eq. (16) are computed for each fuzzy rule in iFIS consequent
identification. Therefore, β̂ββ i are the estimate of consequent param-
eters of the ith fuzzy rule. The iFIS output is then computed as
the weighted sum of the local models outputs by their normalized
degrees of activation as in Eq. (7).

3. Computational experiments

This section presents the experiments carried out to evaluate
the forecasting performance of the suggested iFIS modeling ap-
proach. Both synthetic and real financial interval-valued data will
be used against traditional statistical time series benchmarks and
with linear and nonlinear techniques designed for interval-valued
data.

The ARIMA and VECM methods comprise the statistical time
series models. The ARIMA is considered a splitting single-valued
method, i.e. lower and upper bounds in the intervals are processed
individually as independent univariate time series. On the other
hand, VECM, the linear Holt’s exponential smoothing (HoltI) [51]
and the nonlinear interval multilayer perceptron neural network
(iMLP) [54] were chosen as the interval-valued methods. Notice
that besides VECM as an interval-valued approach, the model does
not take into account the interrelations between the lower and
upper bounds as an interval structure as HoltI, iMLP and iFIS do.

The selection of the best ARIMA and VECM models was ac-
complished through the minimization procedure of the Bayesian
Information Criterion (BIC) [65]. Their parameters were estimated
bymaximum likelihood. HoltI smoothing parametermatriceswere
estimated by minimizing the interval sum of squared one-step-
ahead forecast errors using the limited memory BFGS method for
bound constrained optimization as in [51]. The BFGS quasi-Newton
method and backpropagation procedure were applied to estimate
the iMLP parameters. The number of neurons in the hidden layer
was chosen by carrying out simulations to reach the best per-
formance in terms of accuracy measure. This same methodology
was used to select the control parameter of iFIS, i.e. the number
of clusters or fuzzy rules c. All methods were implemented in
MATLAB computing environment.

To access the forecasting performance of the models among
the proposed iFISs and selected benchmark approaches, the root
mean square error (RMSE) and themean absolute percentage error
(MAPE) accuracy metrics are considered. They are computed as
follows:

RMSEB
=

√1
n

n∑
t=1

(
yBt − ŷBt

yBt

)2

, (20)

MAPEB
=

100
n

n∑
t=1

|yBt − ŷBt |
yBt

, (21)

where B = {L,U} represents the lower and upper interval bounds,
yt = [yLt , y

U
t ]

T and ŷt = [ŷLt , ŷ
U
t ]

T are the actual and predicted
intervals at t , respectively, n is the sample size, and RMSEL (MAPEL)
and RMSEU (MAPEU ) are the RMSE (MAPE) for the ITS lower and
upper bounds, respectively.

Since the data has an interval structure, it implies that both
characteristics (lower and upper bounds) that describe intervals
have to be taken into consideration together, using for example
dissimilarity measures based on interval distance between the ob-
served interval and its forecast. To quantify the overall accuracy of
the fitted and forecasted ITS, the interval average relative variance
(ARVI) and the mean distance error (MDE) are considered:

ARVI
=

∑n
t=1

(
yUt − ŷUt

)2
+
∑n

t=1

(
yLt − ŷLt

)2∑n
t=1

(
yUt − ȳU

)2
+
∑n

t=1

(
yLt − ȳL

)2 , (22)

MDE =
1
n

n∑
t=1

ϖ (yt ∪ ŷt ) − ϖ (yt ∩ ŷt )
ϖ (yt ∪ ŷt )

, (23)

where ȳ = [ȳL, ȳU ]
T is the sample average interval, and ϖ (·)

indicates the width of the interval.
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This paper also considers the computation of descriptive statis-
tics for ITS such as coverage and efficiency rates, as suggested
by [66]. The coverage rate is calculated as

RC
=

1
n

n∑
t=1

ϖ (yt ∩ ŷt )
ϖ (yt )

, (24)

and the efficiency rate as

RE
=

1
n

n∑
t=1

ϖ (yt ∩ ŷt )
ϖ (ŷt )

. (25)

These rates provide additional information on what part of
the observed ITS is covered by its forecasts (coverage) and what
part of the forecast covers the observed ITS (efficiency). If the
observed intervals are fully enclosed in the predicted intervals the
coverage rate will be 100%; the efficiency, however, could be less
than 100% and reveal that the forecasted ITS is wider than the
actual ITS. Hence, these statistics must be considered together. The
indication of a good forecast is observed when the coverage and
efficiency rates are reasonably high and the difference between
them is small [66]. Therefore, we take into account the potential
trade-off between the two rates by calculating their average: R̄ =

(RC
+ RE)/2.
Additionally, significant differences among the forecasting

methods are evaluated through the analysis of variance (ANOVA)
and Turkey’s HSD tests [67] in terms of ARVI considering a 5% level.

3.1. Synthetic interval-valued time series

To calculate the performance of the iFIS modeling approach in
interval-valued time series forecasting, four synthetic time series
with distinct dynamics were each simulated with 3000 observa-
tions, as in the methodology suggested by [68]. The simulation
procedure is described as follows:

• First, a generating process with a known structure for the
center interval time series is assumed xct , t = 1, . . . , n,
obtained from the interval-valued time series xt = [xLt , x

U
t ]

T ;
• Second, the respective range interval series xrt , t = 1, . . . , n,

obtained from the interval-valued time series xt = [xLt , x
U
t ]

T ,
are randomly generated from a uniform distribution in the
interval [a, b], i.e. xrt ∼ U[a, b];

• Finally, the interval time series xt = [xLt , x
U
t ]

T is constructed
with the relationship related to xct and xrt : x

L
t = xct − xrt and

xUt = xct + xrt ;
• Each simulated ITS is divided into an in-sample set with

two-thirds of the data (2000 observations) and an out-of-
sample set with the remaining one-third of the data (1000
observations). Models training concerns the in-sample set
whereas the forecasts are obtained and evaluated considering
the out-of-sample data.

Table 1 shows the data-generating process as a combination
of the center and range series of the interval-valued time series
used to compare the forecasting performance of ARIMA, VECM,
HoltI, iMLP and iFIS models. The first two configurations, Linear1
and Linear2, are linear processes, which present a linear correlation
between the future and past values of the center series plus a
random shock ϵt ∼ N(0, 1). Notice that configuration Linear1 is a
random walk process with drift, which implies that the history of
the process has no relevance to its future dynamic. On the other
hand, configurations Chaotic1 and Chaotic2 are nonlinear time
series with complex, chaotic behavior. Fig. 1 illustrates each of the
simulated interval-valued time series. The vertical line segments
correspond to the actual interval-valued data, and the extremes
correspond to the lower and upper interval bounds.

Table 1
Simulated interval-valued time series configurations.
Configuration xc process xr process

Linear1 xct+1 = 0.7 + xct + ϵt xrt+1 ∼ U[5, 10]

Linear2 xct+1 = 12 + 0.6xct + ϵt xrt+1 ∼ U[2, 12]

Chaotic1 xct+1 = 4xct (1 − xct ) xrt+1 ∼ U[2, 5]

Chaotic2 xct+1 = sin(12t) + ϵt xrt+1 ∼ U[0, 2]

The results were obtained from Monte Carlo simulation ex-
periments. For each data generating process configuration, 1000
ITS with 3000 observations were simulated.3 Therefore, at the
end of the experiments, the mean of the accuracy measures was
calculated based on the 1000 Monte Carlo replications concerning
the out-of-sample data. For Linear1, Linear2, Chaotic1 and Chaotic2
configurations, the iFIS best results were achieved based on a
structure with 3, 2, 4 and 3 fuzzy rules. Regarding the iMLP, the
method considered a network with 12 neurons in the hidden layer
for the four synthetic interval-valued series.

Table 2 shows the forecasting performance of the examined
methods in terms of accuracy for the different ITS configurations in
the 1000Monte Carlo replications. The best results are highlighted
in bold. Lower values of RMSE, MAPE, ARVI and MDE lead to better
forecasts, whereas higher R̄ rates are related to better forecasts.
The suggested iFIS model achieved a better average performance
in nearly all the situations considered, except for the ITS Chaotic2
configuration, in which iMLP provided more accurate results.4
For the linear interval-valued time series, Linear1 and Linear2,
ARIMA, VECM and HoltI presented similar performances due to
their linear structures. Concerning the chaotic interval-valued time
series, Chaotic1 and Chaotic2 configurations, significant superior
performance of the iFIS and iMLP methods is verified, revealing
the advantage of nonlinear techniques for complex time series
modeling. Note that, even for the series with a linear correlation
structure, Linear1 and Linear2, the fuzzy model achieved better ac-
curacy in the predictions than the ARIMA, VECM and HoltI models.
In terms of the comparison between the methods, iMLP and iFIS
provide similar and better results in all interval-valued time-series
configurations (Table 2).

When considering the comparison between the three linear
methodologies, the HoltI method only makes more accurate fore-
casts than ARIMA and VECM for the interval-valued time se-
ries with complex dynamics (Chaotic1 and Chaotic2), whereas
in the linear configurations (Linear1 and Linear2,), ARIMA and
VECM outperform the interval exponential smoothing approach
(see Table 2). Further, gains in accuracy by using the nonlinear
interval-valued models, iMLP and iFIS, over the linear alternative
approaches are more evident when the ITS assume nonlinear
chaotic behavior. The ARIMA, VECM and HoltI are inferior in that
they are linear approaches. In addition, in the case of ARIMA
and VECM, they ignore the possible mutual dependency between
the lower and upper bounds of ITS, evidencing the advantage of
interval-valued approaches.

Results were also compared in statistical terms considering the
ARVI values. First, an ANOVA test was performed to verify whether

3 Experiments were conducted for different number of simulated observations.
Models performances were not affected by the size of the data set, except when a
small number is used (such as less than 50 simulations), where all methods reduce
their accuracy for out-of-sample set as the data do not provide enough information
for learning their parameters in the in-sample estimation.
4 Besides the better accuracy of iMLP, one must note that the results from

iFIS and iMLP are very similar. This scenario can be explained by the well-known
no free-lunch theorem [69]: if an algorithm performs well on a certain class of
problems then it necessarily pays for that with degraded performance on the set
of all remaining problems.
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Fig. 1. Examples of simulated interval-valued time series with distinct dynamics.

Table 2
Models performance comparison in terms of accuracy measures for simulated
interval-valued time series forecasting.
Method Metrics

RMSEL RMSEU MAPEL MAPEU ARVI MDE R̄

Panel A: Linear1 model configuration

ARIMA 0.009 0.009 0.129 0.127 0.023 0.258 0.765
VECM 0.007 0.008 0.128 0.125 0.023 0.239 0.769
HoltI 0.018 0.019 0.215 0.211 0.034 0.301 0.791
iMLP 0.002 0.002 0.127 0.120 0.022 0.240 0.870
iFIS 0.002 0.001 0.118 0.115 0.018 0.237 0.875

Panel B: Linear2 model configuration

ARIMA 0.171 0.132 14.092 10.282 1.870 0.415 0.762
VECM 0.170 0.130 13.972 9.871 1.852 0.403 0.775
HoltI 0.230 0.198 15.726 12.362 2.019 0.498 0.760
iMLP 0.174 0.129 13.962 9.982 1.801 0.402 0.781
iFIS 0.169 0.125 13.900 9.847 1.755 0.368 0.813

Panel C: Chaotic1 model configuration

ARIMA 0.453 0.376 16.762 16.229 3.356 0.476 0.578
VECM 0.398 0.344 16.201 15.762 3.109 0.419 0.609
HoltI 0.298 0.287 14.720 15.276 2.271 0.366 0.692
iMLP 0.141 0.133 9.982 11.017 1.487 0.209 0.898
iFIS 0.146 0.139 10.265 11.094 1.511 0.216 0.892

Panel D: Chaotic2 model configuration

ARIMA 0.871 0.795 13.722 9.646 4.775 0.747 0.518
VECM 0.789 0.784 13.456 9.342 4.602 0.711 0.546
HoltI 0.653 0.591 11.928 8.911 3.927 0.771 0.672
iMLP 0.541 0.349 7.376 6.329 2.271 0.493 0.736
iFIS 0.538 0.343 7.341 6.305 2.237 0.482 0.748

a statistically significant difference exists among the competitive
methods. The ANOVA results are presented in Table 3. For the four
configurations, the statistics are significant at the 5% level, which
indicates that there are significant differences among the exam-
ined alternatives. To further compare the significance difference
between pairwise methods, the Tukey’s HSD test was conducted.
The results of the Tukey’s HSD test are shown in Table 4 for each
ITS configuration in a fashion that the methods are ranked from 1
(the best) to 5 (the worst).

According to the results in Table 4, the proposed iFIS and the
iMLP methods perform statistically better than all of the other
competitors in all cases, under a 95% confidence level . iMLP was
ranked as the best approach for ITS Chaotic2 configuration. How-
ever, in all cases the iFIS and iMLP showed equally accurate fore-
casts in statistical terms, i.e. the difference between the iMLP

Table 3
ANOVA test results for simulated interval-valued time series.
Configuration ANOVA test

Statistics F p-value

Linear1 34.761 0.000*
Linear2 41.299 0.000*
Chaotic1 36.417 0.000*
Chaotic2 38.530 0.000*

*Indicates significance at 0.05 level.

Table 4
Forecasting models ranking from Turkey’s HSD test for simulated interval-valued
time series.
Configuration Rank of methods

1 2 3 4 5

Linear1 iFIS > iMLP >** VECM > ARIMA >** HoltI

Linear2 iFIS > iMLP >** VECM > ARIMA >** HoltI

Chaotic1 iMLP > iFIS >** HoltI >** VECM > ARIMA
Chaotic2 iFIS > iMLP >** HoltI >* VECM > ARIMA

*Indicates the mean difference between the two competing methods is significant
at the 5% level.
**Indicates the mean difference between the two competing methods is significant
at the 1% level.

and the iFIS is not significant at the 0.05 level. Regarding the
linear approaches, for Linear1 and Linear2 ITS, VECM and ARIMA
outperform the HoltI method at 95% statistical significance. On
the other hand, for Chaotic1 and Chaotic2 ITS configurations, HoltI
achieved forecasts that were statistically superior to ARIMA and
VECM. The possible reason for this is that in nonlinear chaotic
dynamics, accounting for the interrelations between the ITS lower
and upper bounds plays an important role.

3.2. Real financial interval-valued time series

The forecasting performance of the suggested iFIS method was
also evaluated on real stock market ITS: S&P 500 and IBOVESPA
indexes from the period of January 2004 to December 2015. These
are themain indexes of the US and Brazilian stock exchanges. It can
be noted that S&P 500 index is a popular choice among researchers
to illustrate prediction methods in financial time series. Further,
the consideration of these indexes enables us to evaluate the
forecasting methods in the real stock market for developed (US)
and emerging (Brazil) economies.
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The intervals were constructed from a daily range of selected
price indexes, i.e., the lowest and highest trading index values for
the day were calculated to define the movement on the market
for that day. Fig. 2 depicts the daily ITS of S&P 500 and IBOVESPA
indexes from January 2, 2005 to April 28, 2005. Again, the first two-
thirds of the observations consists of the in-sample set, while the
remainder comprises the out-of-sample set.

For the real stock market ITS one-, five-, and ten-step-ahead
forecasts were performed to assess the short-, medium-, and long-
term forecasting ability of the proposed iFIS method and selected
competitors, respectively. To implement multi-step-ahead fore-
casting (five- and ten-step-ahead), a commonly used iterated strat-
egy is adopted in this study. Further, iMLP and iFISmodel represen-
tations can be summarized as follows:

ŷt+h ≈ f (yt , yt−1, . . . , yt−l) , (26)

where f (·) represents a nonlinear mapping, ŷt+h = [yLt+h, y
U
t+h]

T

is the h-step-ahead forecasted value of the actual ITS yt+h =

[yLt+h, y
U
t+h]

T , h is the forecasting horizon (h = 1, 5, and 10), and
(l+1) is the number of lagged values used as model inputs, chosen
by simulations to reach the best performance in terms of accuracy
measure.

For S&P 500 and IBOVESPA indexes, simulations indicate five
and four ITS lagged values as inputs, respectively, for both the iMPL
and the iFIS methods. Additionally, iFIS best results were achieved
based on a structure with 3, and 5 fuzzy rules for S&P 500 and
IBOVESPA indexes, respectively. The iMLP considered 15 neurons
in the hidden layer for both real stock market ITS.

Tables 5 and 6 display the error measures for S&P 500 and
IBOVESPA indexes ITS multi-step-ahead forecasting, respectively.
The performances of the ARIMA, VECM, HoltI, iMLP and iFISmodels
are evaluated by calculating the RMSE, MAPE, ARVI, MDE and
R̄ metrics. For both ITS stock indexes and prediction horizons,
the ARIMA and VECM models are beaten by the interval-valued
approaches (HoltI, iMLP and iFIS). The iFIS approach produced
the best overall results. Overall, the rankings from best to worst
are: iFIS, iMLP, HoltI, VECM and ARIMA for both interval-valued
S&P 500 and IBOVESPA (see Tables 5 and 6). The HoltI method
produced forecasts that were worse than the ones obtained by the
iMLP and iFIS models. Comparing the results between the iMLP
and iFIS methods, the former consistently achieved more accurate
predictions.

When comparing the performance of each method across three
prediction horizons (i.e., 1, 5, and 10 steps-ahead), the perfor-
mances of all methods for both S&P 500 and IBOVESPA indexes ITS
deteriorates with the increase in prediction horizon (Tables 5 and
6). It is worth noting that for medium- and long-term forecasts,
the superiority of iFIS over iMLP is more evident, mainly for the
interval-valued IBOVESPA time series where the errors found by
the iFIS are significantly lower than those obtained by the iMLP.

Forecasts were further evaluated in statistical terms. Table 7
displays the ANOVA statistics with the corresponding p-values. At
a 5% level, the results indicate significant differences among the
ARIMA, VECM, HoltI, iMLP models performance for all prediction
horizons, i.e. 1, 5 and 10 steps ahead. Therefore, comparisons
between pairwise methods are evaluated using the Tukey’s HSD
test, as shown in Table 8. Again, the forecasting approaches are
ranked from 1 (the best) to 5 (the worst).

According to the results from Table 8, for both S&P 500 and
IBOVESPA ITS, the proposed iFIS statistically outperforms all of
the alternative approaches at a 95% confidence level for long-term
forecasting, i.e. a ten-step-ahead prediction horizon. Concerning
the interval-valued S&P 500 index, for h = 1 and h = 5 forecasting
horizons, the iFIS and iMLP perform statistically better than the
remaining methods (Table 8). HoltI, VECM and ARIMA can be
considered equally accurate for S&P 500 ITS forecasting for all

Table 5
Models performance comparison in terms of accuracy measures for S&P 500
interval-valued time series multi-step-ahead forecasting.
Method Metrics

RMSEL RMSEU MAPEL MAPEU ARVI MDE R̄

Panel A: one-step-ahead prediction horizon

ARIMA 0.273 0.287 1.672 1.284 0.863 0.711 0.501
VECM 0.198 0.201 1.459 1.192 0.817 0.699 0.546
HoltI 0.120 0.124 1.283 1.019 0.792 0.659 0.602
iMLP 0.017 0.019 1.102 0.992 0.767 0.630 0.637
iFIS 0.014 0.012 1.073 0.889 0.730 0.601 0.674

Panel B: five-step-ahead prediction horizon

ARIMA 0.311 0.302 1.876 1.487 1.277 0.788 0.489
VECM 0.210 0.245 1.811 1.404 1.245 0.773 0.512
HoltI 0.134 0.153 1.562 1.354 1.109 0.710 0.573
iMLP 0.021 0.025 1.452 1.253 0.928 0.698 0.617
iFIS 0.018 0.015 1.373 1.154 0.848 0.640 0.633

Panel C: ten-step-ahead prediction horizon

ARIMA 0.378 0.335 1.876 2.377 1.980 0.780 0.465
VECM 0.264 0.308 1.811 2.233 1.876 0.783 0.488
HoltI 0.174 0.198 1.562 2.172 1.738 0.738 0.502
iMLP 0.031 0.036 1.452 1.982 1.562 0.701 0.544
iFIS 0.027 0.024 1.121 1.861 1.471 0.698 0.568

Table 6
Models performance comparison in terms of accuracy measures for IBOVESPA
interval-valued time series multi-step-ahead forecasting.
Method Metrics

RMSEL RMSEU MAPEL MAPEU ARVI MDE R̄

Panel A: one-step-ahead prediction horizon

ARIMA 0.155 0.167 2.430 2.513 0.876 0.679 0.508
VECM 0.146 0.154 2.366 2.334 0.845 0.646 0.530
HoltI 0.098 0.102 2.204 2.177 0.810 0.615 0.576
iMLP 0.029 0.034 1.985 1.911 0.759 0.593 0.587
iFIS 0.025 0.024 1.941 1.869 0.753 0.589 0.604

Panel B: five-step-ahead prediction horizon

ARIMA 0.278 0.222 3.409 3.019 1.354 0.780 0.481
VECM 0.236 0.187 3.341 2.902 1.220 0.773 0.483
HoltI 0.102 0.093 2.873 2.728 1.023 0.753 0.528
iMLP 0.056 0.053 2.663 2.563 0.981 0.710 0.534
iFIS 0.044 0.042 2.445 2.346 0.883 0.682 0.573

Panel C: ten-step-ahead prediction horizon

ARIMA 0.346 0.315 3.994 3.872 2.388 0.793 0.457
VECM 0.309 0.295 3.827 3.653 2.293 0.782 0.476
HoltI 0.127 0.128 3.674 3.546 1.873 0.756 0.498
iMLP 0.071 0.079 3.543 3.282 1.726 0.728 0.517
iFIS 0.054 0.051 3.276 3.112 1.542 0.690 0.521

predicting horizons considered in this study, except for long-term
forecasts where VECM provides statistically superior forecasts to
ARIMA. When considering the interval-valued IBOVESPA index,
iFIS, iMLP and HoltI outperform VECM and ARIMA methods at 95%
statistical significance (Table 8). Finally, VECM and ARIMA provide
equally accurate forecasts.

Summing up, from the experimental results provided in this
paper, the main findings can be summarized as follows: (i) con-
cerning the synthetic data sets, the interval-valued approaches,
iMLP and iFIS, do improve forecasting accuracy compared to the
alternative methods, more evidently when the data dynamics is
complex, as the improvements are higher for the chaotic interval
time series; (ii) concerning the financial interval indexes, results
are similar in favor of iMLP and iFIS, and mostly important, when
the forecasting horizon increases, the advantages of these interval-
valued methodologies are more evident, in contrast with the lost
of prediction accuracy of the other approaches for long-term hori-
zons; (iii) generally for both data sets, it is worth noting that when
data interval relationship is considered by the model, accuracy is
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Fig. 2. Part of the interval-valued time series of S&P 500 and IBOVESPA stock indexes.

Table 7
ANOVA test results for real stock market interval-valued time series.
Prediction horizon ANOVA test

Statistics F p-value

Panel A: Interval-valued S&P 500 index

h = 1 35.142 0.000*
h = 5 37.815 0.000*
h = 10 39.281 0.000*

Panel B: Interval-valued IBOVESPA index

h = 1 28.331 0.000*
h = 5 34.009 0.000*
h = 10 33.662 0.000*

*Indicates significance at 0.05 level.

Table 8
Forecasting models ranking from Turkey’s HSD test for real stock market interval-
valued time series.
Prediction Rank of methods

horizon 1 2 3 4 5

Panel A: Interval-valued S&P 500 index

h = 1 iFIS > iMLP >** HoltI > VECM > ARIMA
h = 5 iFIS > iMLP >** HoltI > VECM > ARIMA
h = 10 iFIS >* iMLP >** HoltI > VECM >** ARIMA

Panel B: Interval-valued IBOVESPA index

h = 1 iFIS > iMLP >* HoltI >** VECM > ARIMA
h = 5 iFIS > iMLP > HoltI >** VECM > ARIMA
h = 10 iFIS >* iMLP > HoltI >** VECM > ARIMA

*Indicates the mean difference between the two competing methods is significant
at the 5% level.
**Indicates the mean difference between the two competing methods is significant
at the 1% level.

consistently improves as evidenced by the results from iMLP and
iFIS; (iv) finally, the differences between iMLP and iFIS are more
significant for the real stockmarket ITS,where iFIS provided lowest
error values, suggesting the advantage of iFIS over iMLP due to
its fuzzy nature in the modeling of uncertain data, as observed in
financial prices.

4. Conclusion

The significant development of data collection technologies has
contributed to the production of huge volumes of data. There-
fore, approaches able to extract valuable information from large
databases are demanding. When data are represented by symbolic
interval-valued variables, it makes it possible to summarize the

data and provide a way to account for the variability and/or uncer-
tainty inherent to the data. In this domain, interval time series (ITS)
forecasting plays an increasingly important role in areas such as
financialmarkets,meteorology, and traffic flowmanagement since
it is seen as an additional tool for organizations and practitioners
in policy and decision-making processes.

This paper presented a symbolic interval-valued fuzzy infer-
ence system (iFIS) for ITS forecasting. iFIS concerns a fuzzy rule-
based modeling framework which provides a (non)linear frame-
work to process interval-valued data. Additionally, the suggested
approach is also able to account for imprecise data and vagueness
due to its fuzzy nature. The iFIS antecedents identification uses a
fuzzy c-means clustering algorithm for interval-valued data with
adaptive distances, whereas parameters of the linear consequents
are estimated with a center-range methodology to fit a linear
regression model to symbolic interval data. The forecasting per-
formance of the iFIS, in terms of accuracy measures and statistical
tests, was compared to single- and interval-valued competitive
methods through Monte Carlo experiments using both synthetic
interval-valued time series with linear and chaotic dynamics, and
real financial interval-valued time series.

The Monte Carlo simulations on both simulated ITS and real
interval stock price time series indicate the high forecasting perfor-
mance of the iFIS model, which is able to statistically outperform
the alternative methods. iFIS provides a reduction of approxi-
mately 39% and 27%, on average, for the prediction errors con-
cerning the synthetic and real-world data, respectively,when com-
pared to the traditional forecasting methods. When the interval-
valued time series exhibits chaotic behavior or multi-step-ahead
prediction horizons are concerned, the superiority of the iFIS over
the alternative forecasters ismore significant. It demonstrated that
the suggested iFIS methodology can be considered as a promis-
ing tool for interval time series forecasting. Future research in-
cludes the automatic selection of the number of clusters in iFIS
antecedents identification, its extension for dealing with differ-
ent symbolic data representations and also the development of
an evolving framework in order to model data as streams. The
evaluation of results on stock market data using economic criteria
is also of great interest to financial managers and analysts.
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