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A B S T R A C T

Mathematical Oncology investigates cancer-related phenomena through mathematical models as comprehensive 
as possible. Accordingly, an interdisciplinary approach involving concepts from biology to materials science can 
provide a deeper understanding of biological systems pertaining the disease. In this context, fractional calculus 
(also referred to as non-integer order) is a branch in mathematical analysis whose tools can describe complex 
phenomena comprising different time and space scales. Fractional-order models may allow a better description 
and understanding of oncological particularities, potentially contributing to decision-making in areas of interest 
such as tumor evolution, early diagnosis techniques and personalized treatment therapies. By following a 
phenomenological (i.e. mechanistic) approach, the present study surveys and explores different aspects of 
Fractional Mathematical Oncology, reviewing and discussing recent developments in view of their prospective 
applications.   

1. Introduction

Cancer embodies a group of diseases that emerge from abnormally
mutated cells and can appear in almost any body organ or tissue. It is the 
second leading cause of death worldwide and survival rates are pro
foundly related to timely access to quality diagnosis and treatment 
(World Health Organization, 2020). Experimental oncology and tech
niques involving molecular biology and, more recently, genetics have 
dominated most research projects on the subject, increasing the 
knowledge on malignancies characterization, diagnostic and treatment 
(Gatenby and Maini, 2003). In the last few decades, physics and math
ematics have been increasingly applied to cancer-related problems, thus 
giving rise to a new research area (Byrne, 2010; Rockne and Scott, 
2019). 

Mathematical Oncology broadens the development and application 
of models to manifold phenomena including tumor growth dynamics, 
anticancer therapies and personalized treatment (Jackson et al., 2014; 
D’Onofrio and Gandolfi, 2014). While this research field has rapidly 
evolved in the wake of increasing data availability from the recent 
expansion of bioinformatics (Khoury and Ioannidis, 2014; Meyer et al., 
2014), it still lacks theoretical models to understand, organize and apply 
clinical data (Gatenby and Maini, 2003). As strategic advantage, the 
often called in silico models can test and reproduce several scenarios, 

which could be unfeasible or even impossible through in vitro experi
ments. It then becomes a powerful analysis tool as clinical tests in 
humans are time and resource consuming. Furthermore, in research 
activities ‘know-why’ has been progressively desired over ‘know-how’, 
contributing to the development of models that suitably combine 
data-oriented and phenomenological approaches (Sam Saguy, 2016). 

Also called physics-based or mechanistic modeling, the phenome
nological approach to oncological processes is a complex and interdis
ciplinary task, mainly because governing equations are generally 
formulated by invoking concepts from different areas. Accordingly, 
Mathematical Oncology under phenomenological approaches remains 
largely an underexplored research niche (Anderson and Quaranta, 
2008) as a result of complex aspects such as variable compositions, 
heterogeneity and moving borders. 

In this context, the present paper reviews and discusses cancer- 
related models under an interdisciplinary viewpoint. As Fig. 1 illus
trates, Mathematical Oncology can benefit from approaches conveying 
engineering, physics, biosystems and nanothecnology. For instance, 
population dynamics and computational biology can be employed to 
analyze tumor growth (Wodarz and Komarova, 2014), fluid mechanics 
and reaction-diffusion phenomena can determine nutrient availability 
around cells, material science can characterize external forces and 
stresses on tissue surrounding neoplasms (Matoz-Fernandez et al., 
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2017), and nanomedicine can enhance clinical translation of oncology 
(Moradi Kashkooli et al., 2021). 

The idea is to follow mathematical approaches able to maintain 
deductive-reducionist model features without mischaracterizing even
tual complexities. One promising alternative is modeling via fractional 
calculus – an area of mathematical analysis that employs non-integer 
order differential and integral calculus (Oldham and Spanier, 1974; 
David et al., 2011; Teodoro et al., 2017; Luchko and Kochubei, 2019). 
Fractional models are characterized by the presence of an arbitrary 
order (i.e. not necessarily integer) of differentiation (or integration). 
This feature widely amplifies the application scope since it enables the 
model to present distinct behavior according to such fractional order, 
enhancing its ability to deal with properties from different scales 
regarding both fractal structure and memory of biological tissue (Magin 
et al., 2008; West, 2014). For this and other remarkable attributes, 
fractional models may be optimal to model biological phenomena 
(Craiem and Armentano, 2007) and have been successfully applied to
wards Mathematical Oncology (Sweilam et al., 2020; Akman Yildiz 
et al., 2018; Ionescu et al., 2017). 

Therefore, besides reviewing Mathematical Oncology and surveying 
some recent well-succeeded implementations of fractional models, the 
present study prospectively explores approaches to reductionist models 
that could help understand and describe cancer-related phenomena and 
predictive oncology. In theory, an interdisciplinary approach symbioti
cally combining physics, material science, biology and fractional cal
culus, could offer unpaired developments and distinct views on 
oncology phenomena. In fact, Byrne (2010) supports that it is the 
collaboration between theoreticians and modelers, i.e. the interplay 
among different areas, that could start improving Mathematical 
Oncology towards its effective application to real problems and 
personalized care. As different mathematical approaches can reproduce 
the same experimental results, Byrne (2010) also claims that it might be 
suitable to apply Occam’s razor concept in order to develop an 
oncology-applied model. In other words, a model should contain suffi
cient detail to describe the phenomenon of interest but not excessively to 
obscure it. Accordingly, preference should be given to reductionist 
approaches. 

Overall, this paper is organized as follows: section 2 provides a brief 
contextualization on Mathematical Oncology; section 3 surveys some of 
the most relevant continuum cancer-related models; on the other hand, 
section 4 presents cell-based and stochastic models; fractional calculus 
main aspects and oncology models are explored in section 5; finally, 
section 6 delves into hybrid approaches, discussing prospect 
investigations. 

2. An introduction to Mathematical Oncology

Cancer is the collective name given for a large group of over 100
diseases related to abnormal cell reproduction (Jackson et al., 2014). 
World Health Organization (2020) states that cancer is the second major 
cause of death worldwide, responsible for about 1 in 6 deaths. It is a 
disease that generally compromises health care systems mainly as a 
result of its lingering effects along with usually severe side-effects from 
lasting treatments. Whether combined or separately administered, 
chemotherapy, immunotherapy and radiation therapy are usually the 
most common interventions. Considering how cancer might develop 
very differently in each case while dose adaptation or fractionation are 
both subject to individual clinical responses, personalized therapy may 
require the support from mathematical models to optimize treatment 
strategies (Enderling et al., 2019; Rockne and Scott, 2019). 

In that context, Mathematical Oncology develops and applies models 
to cancer-related phenomena, ranging from tumor dynamics analysis to 
personalized treatment (Jackson et al., 2014; Abernathy et al., 2017; 
Cristini et al., 2017). It is a research field that has been benefiting from 
recent increase in data availability from quickly evolving biosensors and 
bioinformatics techniques (Khoury and Ioannidis, 2014). Predictive 

oncology may contribute to personalized treatment procedures by 
means of numerically virtualized scenarios based on tumor dynamics 
and individual gene expression. 

As all-inclusive modeling prospectively enhances creating and car
rying out innovative cancer treatments, research endeavors have been 
concerned to apply mathematics and physics towards cancer onset and 
early growth as well as tumor and intercellular interactions (D’Onofrio 
and Gandolfi, 2014). Mathematical Oncology indeed rises as a scientific 
area relying on the notion that ‘(1) mathematics can be applied to 
improve biomedical knowledge of the disease and (2) that biology 
proposes new mathematical challenges, which generates enhanced 
mathematical tools’ (Chauviere et al., 2010). Accordingly, Mathemat
ical Oncology claims for comprehensive theoretical models to under
stand, coordinate and employ clinical data in view of aiding 
decision-making in oncology (Gatenby and Maini, 2003). 

On that matter and to different extents and perspectives, Mathe
matical Oncology can encompass the so-called translational research, 
which bridges the gap between basic research and its final application in 
health systems (Barreto et al., 2019; Doroshow & Kummar, 2014). Also 
referred to as ‘blackboard-to-bedside’ or ‘bench-to-bedside’ research, in 
the present case it concerns how mathematical models can go from 
complex theoretical frameworks to comprehensive personalized strate
gies to identify and treat specific cancers. Applications of interest refer to 
early diagnosis improvement, such as decision-making support systems 
based on prediction algorithms (Chakraborty et al., 2020) or molecular 
testing through real-time tissue acquisition and analysis (Mitri et al., 
2018), and personalized medicine. On the latter, information combined 
from mathematical models and corresponding in silico experiments can 
build patient-specific tumor profiles and be implemented into preclini
cal and clinical use (Hamis et al., 2019). Overall, Mathematical 
Oncology can provide the necessary theory to connect the unique 
biology of patient’s tumor to tailored treatment routine or drug dosage, 
enabling true precision-guided therapy (Hormuth et al., 2021; Nenoff 
et al., 2020; Sarhaddi and Yaghoobi, 2020). 

Fig. 1. Sketch of possible interdisciplinary approaches to Mathematical 
Oncology and related keywords. 
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3. Deterministic and continuum models: Tumor growth
described by differential equations 

In spite of usually evolving differently, solid cancers have a common 
inception on the progenitor mutated cell that originates a primary 
tumor. Aiming at this mutual point may help grasp important charac
teristics of early tumor dynamics. Recently, gene sequencing and mo
lecular biology have progressively explored paths and signals leading to 
cancerous cell arise (Golub et al., 1999; Easton et al., 2015), yet it is 
equally important to understand mechanistic basis of tumor cells 
dynamics. 

Population or ecological models are customary approaches in view of 
grasping phenomenological foundations concerning general avascular 
tumor growth, being usually modeled in terms of ordinary differential 
equations (ODE) (Savageau, 1980; Sachs et al., 2001; Sarapata and de 
Pillis, 2014). Albeit more elementary than oncology models containing 
partial differential equations (PDEs), ODE-based approaches have ad
vantages motivating their current employment (Wodarz and Komarova, 
2014). Their relative simplicity (compared to PDE) enables the deriva
tion of analytical solutions, thus allowing mathematical description of 
phenomena evolution (de Souza-Santos, 2007). Moreover, ODE-based 
models free parameters can be usually fine-tuned against clinical data 
in order to describe different tumor phases (Benzekry et al., 2014; 
Hartung et al., 2014), favoring their flexibility and consequent use to 
support clinical advice. 

Being tailored towards specific experimental evidence and biological 
peculiarities, many ODE models have been elaborated to virtualize dy
namic tumor growth. Most follow a sigmoidal law relying on two pa
rameters, namely population growth rate and carrying capacity. 
Aforesaid definition is imposed so that models can capture the particular 
stages a primary tumor sustains in view of available resources such as 
neoplasm surface area and tissue heterogeneity (Marušić et al., 1994). 

Tumor progression often involves different stages such as random 
mutations, alterations in tissue biomechanics (Fritsch et al., 2010; 
Ramião et al., 2016) and epigenetic spontaneous cell changes (Boveri, 
2014; Lowengrub et al., 2010). Those features should be considered 
when modeling tumor development since they interfere with growth 
behavior, thus enabling a possibly better approach supported by 
multistage carcinogenesis (Wodarz and Komarova, 2014). Accordingly, 
some authors proposed models that integrate and express multifactorial 
or multistep growth patterns (Rodriguez-Brenes et al., 2013; Tracqui, 
2009; Spencer et al., 2004) (e.g. alternated dormancy periods modeled 
as stepwise patterns). 

Alternatively, there are other ODE-based approaches in Mathemat
ical Oncology besides ecological models. Kinetic interactions between 
tumor and immune cells on different cellular and sub-cellular levels can 
be modeled by means of ODE system (Dolfin et al., 2014). Other models 
can target the interaction between gene expression and population dy
namics concerning different cell classes (La Porta and Zapperi, 2017). 

However, Murphy et al. (2016) claim that ODE models may be un
able to fully consider the intricate tumor dynamical evolution and need 
to be carefully employed. For other authors, these models should 
necessarily be used to describe only general trends concerning neoplasm 
behavior, being inadequate to characterize specific cases (e.g. in 
personalized therapy) (Wodarz and Komarova, 2014). Such drawback is 
often a result of irregular growth patterns and aforementioned genetic 
instabilities in these organisms (Lowengrub et al., 2010; Fritsch et al., 
2010; Ramião et al., 2016). 

A subsequent climbing step in the complexity ladder takes cancer 
models into the significantly more robust PDE domain, describing tumor 
growth and other related phenomena in terms of not only dynamic 
variations (i.e. time dependence) but also gradients (i.e. spatial depen
dence), allowing a far-reaching description of reality. When employing 
models with PDEs well-established conservation laws can be conve
niently applied to incorporate a more mechanistic (i.e. phenomenolog
ical) approach to oncology modeling (Wodarz and Komarova, 2014). For 

that reason, PDE approach is a more comprehensive choice when 
studying tumor growth into surrounding tissue. 

Some models describe tumors as a fluid or a fluidized mixture, thus 
admissible of being modeled through transport equations. Byrne and 
Preziosi (2003) proposed an early two-phase model of an avascular 
tumor comprising cellular (solid) and interstitial (liquid) parts. Along 
with supplementary constitutive laws mass and momentum equations 
were applied to investigate time-spatial dependence of cell proliferation 
rate on cellular stress. Through their findings, the authors related the 
impact of mechanical effects on tumors equilibrium size, identifying a 
critical value for proliferation rate influencing on tumors outcome 
behavior (either growth or elimination). Fasano et al. (2014) proposed 
other models based on conservation laws and considering a heteroge
neous system. They also considered free boundaries, being an important 
particularity when treating expanding tumors and complex processes in 
multi-component neoplastic formation. Other models employ the 
transport equation for metastatic processes and beyond (Hartung et al., 
2014; Xu et al., 2016). 

In a surrogate approach, the diffusion equation can be used to study 
the dynamic of cell population density across tissues (Debbouche et al., 
2021; Polovinkina et al., 2021). In those studies, one may consider 
different combinations of population heterogeneity, possibly including 
stem and regular tumor cells, dead cells, healthy cells and even lym
phocytes or similar (Adam and Maggelakis, 1990; Pham et al., 2012; 
Wong et al., 2015). Stability and possible outcomes are frequently 
focused in those investigations since they allow the virtualization of 
general scenarios regarding tumor form such as dormancy, evanescence, 
or uncontrolled growth and invasion. 

Other models (La Porta and Zapperi, 2017) target specific cell 
behavior such as tumor angiogenic factors or mitosis rates trying to 
describe the specific interior cell behaviors leading to the accumulation 
of genetic chances and consequently emerging Hanahan and Weinberg’s 
(2011) hallmarks of cancer. A vast part of Mathematical Oncology also 
focuses on modeling treatment-related phenomena such as drug de
livery, tumor-immune dynamics, optimal chemotherapy and radio
therapy dosage, cycle-specific oncolytic virotherapeutics, and their 
impacts on tumor and healthy cells (Eladdadi et al., 2014). In those 
studies, not only PDEs are employed but also ODE systems and control 
techniques. 

As cancer is a systemic disease, some authors argue that it requires an 
equally systemic model approach. With the help of PDEs, a commonly 
adopted approach relies on modeling tumor micro-environment (i.e., 
neoplasm surroundings), considering not only where cancerous cells 
arise and proliferate but also on how they react to certain environmental 
conditions. In this context, the concept of dynamic capacity of the tissue 
bearing the tumor can be better approached by modeling factors such as 
nutrient availability (Benzekry et al., 2014), invasion tendencies 
(Rejniak, 2016), biomechanical stresses (Taloni et al., 2014; Ambrosi 
et al., 2017) and anticancer therapies. 

Nevertheless, using PDEs is mathematically more difficult and costly 
than employing ODEs due to the simultaneous dependence on more than 
one independent variable and often intricate boundary and initial con
ditions. Additionally (and quite paradoxically), an inherent limitation of 
models employing solely differential equations turns out to be exactly 
their characteristics of being continuous and deterministic. When a 
model invokes specific cellular structure and probabilistic nature 
involving cell proliferation, a different mathematical approach is 
required. 

4. Cell-based and stochastic models: tumor growth governed by
discrete models 

Anderson et al. (2007b) claim that while continuum mathematical 
models have been successfully employed to describe several portions of 
matter, they are essentially particles, cells, thus discrete. In the wake of 
the impressive progress of biochemical and biological concepts on 
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genetics, sub-cellular levels and their intricate mechanisms, 
computational-enhanced Mathematical Oncology faces the difficult task 
of transforming specific portion-sized data into complex information 
describing emergent higher-level multi-scale cellular phenomena. In 
recent years, many cell-based models have been proposed to face such 
challenge (Weerasinghe et al., 2019). 

Cell-based or discrete models are organized frameworks that keep 
track of fully independent individual parameters varying in time and 
space, reflecting the heterogeneity and complex, emerging, phenomena 
found in cancer. Computationally, they can rely on different approaches 
including Monte-Carlo simulations, energy minimization techniques, 
volume conservation laws, motion rules and others (Anderson et al., 
2007b). 

If these models follow a structural or grid organization, they are 
mathematically treated as lattice-based models, which are categorized 
according to the number of cells that each lattice site can hold (Metzcar 
et al., 2019). Lattice-gas cellular automata models admit more than one 
cell per site (being suitable for larger systems). On the other hand, if a 
single cell allegedly occupies many spots, then it should be modeled as 
sub-cellular systems (Jamali et al., 2010). Finally, if each cell can occupy 
a single lattice, it can be modeled as a regular cellular automaton (CA) 
(Metzcar et al., 2019). 

Virtualization (or numerical simulations) involving cell-based 
models are often referred to as in-silico modeling because of their sim
ilarity and logical extension of in vitro experimentation (Jeanquartier 
et al., 2016). Concerning regular CA models, relatively simple imple
mentations can go a long way in providing emergent complex behavior. 
Enderling et al. (2009) established only a basic set of rules concerning 
proliferation and migration rates for each type of tumor cell (regular or 
stem) in a CA model and investigated the virtualization of very different 
emergent scenarios when changing these rules, including cell clustering 
and tumor dormancy. Later, Poleszczuk & Enderling (2014) improved 
the model by implementing it with high-performance computational 
techniques. 

5. Fractional Mathematical Oncology

5.1. Fractional calculus basic theory 

Fractional calculus (FC) or calculus of arbitrary order may be 
considered an natural extension of traditional integer order calculus 
since it is a mathematical area of analysis that investigates and applies 
concepts of non-integer differential and integral calculus. It appeared for 
the first time in correspondences between L’Hospital and Leibniz in the 
end of the 17th century (Ross, 1977). Even with an ancient origin, FC 
had a slow development when compared with its integer counterpart. 
Only over one hundred years after those letters there was the first formal 
definition for a fractional derivative, accomplished by Laplace and 
Lacroix (Domingues, 2005). 

Later, Riemann’s and Liouville’s definitions became two of the most 
known and popular formulations for fractional integrals and derivatives 
(Oldham and Spanier, 1974). Nevertheless, the scenario changed when 
Caputo (1967) suggested a new approach from Riemann definition by 
incorporating initial conditions of integer order in the resolution of 
fractional differential equations. Such change allowed a greater fidelity 
to physical phenomena modeled with fractional calculus, which widely 
disseminated Caputo’s approach in applications ranging from physics to 
life sciences. Many other definitions have surfaced ever since, with 
different interpretations and particularities addressed to each one (Sales 
Teodoro et al., 2019; Ortigueira and Tenreiro Machado, 2017). Main 
publications on the theme have only appeared in the beginning of the 
20th century (Machado et al., 2010a, b), whose major history and 
grounding concepts can be found in classical materials from Oldham and 
Spanier (1974), Ross (1977) and, more recently, in works by David et al. 
(2011), Capelas de Oliveira and Tenreiro Machado (2014), Luchko and 
Kochubei (2019). 

Considering that FC is a generalization of integer order calculus, its 
fundamental concepts can be introduced by relying on simpler conjec
tures. Therefore, just as it is possible to state that real numbers are 
generalizations of natural and integer numbers, the same can be applied 
to some mathematical tools (Herrmann, 2014). Factorials, for instance, 
comprise only natural numbers, thus restricting its application domain. 
As factorial generalization, gamma function is introduced for any 
R(z) > 0 as 

Γ(z)=
∫ ∞

0
tz− 1e− tdt. (1) 

On the same line of thought, exponential Euler function 

ez =
∑∞

n=0

zn

n!
(2)  

can also be generalized by replacing its factorial component with a 
gamma function, yielding 

ez =
∑∞

n=0

zn

Γ(1 + n)
(3)  

and thus introducing the so-called Mittag-Leffler (ML) function for 
R(α) > 0 (Mittag-Leffler, 1903) 

Eα(z)=
∑∞

n=0

zn

Γ(1 + nα), (4)  

which was extended to admit two parameters for R(α) > 0 by Wiman 
(1905). 

Eα,β(z)=
∑∞

n=0

zn

Γ(nα + β)
. (5) 

ML function is as important for FC as are exponential functions for 
integer calculus since it is commonly employed to represent the solution 
of several fractional mathematical and physical problems. This is due to 
the fact that many simple and popular functions are particular cases of 
this generalization. Therefore, several researchers have long explored its 
uses and particularities (Camargo, 2009; Valério et al., 2013; Gorenflo 
et al., 2014). 

Considering the basic notation of conventional (i.e. integer order) 
derivative, one writes 

g(x)=
d
dx

f (x). (6) 

If, for instance, it is assumed f(x) = xk then 

d
dx

xk = kxk− 1, (7)  

whose generalization for n ∈ N is 

dn

dxnxk =
k!

(k − n)!
xk− n. (8) 

By considering that order n may be arbitrary to the point of including 
non-integer values, one may apply gamma function (as previously 
introduced) to extend Eq. (8) as 

dα

dxαxk =
Γ(1 + k)

Γ(1 + k − α)x
k− α x ≥ 0, k ∕= − 1, − 2,…, (9)  

in which x ≥ 0 and k is positive to assure the singularity of fractional 
derivative definition in view of the convergence of the integral in Eq. (1) 
for any integer z > 0. 

This intuitive approach has been long applied to several types of 
functions. Before formally defining fractional derivatives, it is more 
intuitive to present the definitions regarding fractional integrals in line 
with Herrmann (2014). An integration of a function is considered as the 
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inverse operation of its differentiation 
(

d
dx

)

(aI)f = f . (10) 

In turn, one defines the conventional integrator aI operator in a 
domain as 

aIf =
∫ x

a
f (ξ)dξ. (11) 

The definition of fractional integrals start with a multiple integral as 

aInf =
∫ xn

a

∫ xn− 1

a
…

∫ x1

a
f (x0)dx0…dxn− 1, (12)  

which represents the successive anti-differentiation of a continuous 
function f(x). From Cauchy’s Integral Theorem and the Fundamental 
Theorem of Calculus it is possible (Folland, 2002) to represent Eq. (12) 
in a more convenient way, thus writing integral Cauchy formulation: 

aInf (x)=
1

(n − 1)!

∫ x

a
(x − ξ)n− 1f (ξ)dξ. (13) 

By employing gamma functions, Eq. (13) can be extended for the 
fractional case as 

RLIα
+f (x)=

1
Γ(α)

∫ x

a
(x − ξ)α− 1f (ξ)dξ, (14)  

RLIα
− f (x)=

1
Γ(α)

∫ b

x
(ξ − x)α− 1f (ξ)dξ. (15) 

In those equations, a and b respectively determine the lower and 
upper limits of the integral domain. While Eq. (14) is called “left- 
handed” and valid for x > a since it collects function values for ξ < x, Eq. 
(15) is called “right-handed” and applies for x < b, collecting function 
values where ξ > x. The choice of a and b fundamentally sets apart two 
of the most used definitions of fractional calculus, namely Liouville’s 
and Riemann’s fractional integrals for a = − ∞ and b = + ∞, and a = 0 
and b = 0, respectively. Pragmatically, the distinction between those 
definitions may be observed from the differentiation of some specific 
functions that will result in significantly different solutions, depending 
on the chosen approach. 

From the definition of fractional integrals one can obtain fractional 
derivatives. Thus, the fractional derivative operator 

dα

dxα =Dα (16)  

is used to introduce the concept of operation sequence between integrals 
and derivatives. For instance, one can consider the following operation: 

Dα =DmDα− m =
dm

dxm aIm− α m ∈ N. (17) 

Such notation determines that a fractional derivative may be inter
preted as a fractional integral followed by a conventional integral. 
Therefore, once non-integer integral is defined, so is the corresponding 
fractional derivative. Another possibility regards an inverse sequence of 
operators as 

Dα =Dα− mDm=aIm− α dm

dxm m ∈ N, (18)  

leading to an alternative decomposition of the fractional derivative into 
a conventional derivative followed by a non-integer order integral. One 
must note that each decomposition can lead to a different result. 

From these definitions, it is possible to understand the non-locality 
mechanism in FC. The conventional derivative is the local operator 
and the fractional derivative can be interpreted as the inversion of the 
fractional integration, i.e. a non-local operation. As a result, both 
Liouville and Riemann approaches lead to different definitions of frac

tional derivatives depending on the adopted decomposition sequence. 
Therefore, for 0 < α ≤ 1 one obtains Riemann-Liouville fractional de
rivatives by employing equations for integral operators in the sequence 
given in Eq. (17): 

RLDα
+f (x)=

d
dx RLI1− α

+ f (x)=
d
dx

1
Γ(1 − α)

∫ x

a
(x − ξ)− αf (ξ)dξ, (19)  

RLDα
− f (x)=

d
dx RLI1− α

− f (x)=
d
dx

1
Γ(1 − α)

∫ b

x
(ξ − x)− αf (ξ)dξ. (20) 

If the operators sequence is inverted, as in Eq. (18), one obtains 
Caputo-Liouville or Caputo-Riemann derivatives: 

RLCDα
+f (x)= RLI1− α

+

d
dx

f (x)=
1

Γ(1 − α)

∫ x

a
(x − ξ)− αdf (ξ)

dξ
dξ, (21)  

RLCDα
− f (x)= RLI1− α

−

d
dx

f (x)=
1

Γ(1 − α)

∫ b

x
(ξ − x)− αdf (ξ)

dξ
dξ. (22) 

The fractional operator can also be written by stating the indepen
dent variable as subscript, i.e. Dα

x. It is worth mentioning that when the 
independent variable is time t, the definition given by Eq. (21) is also 
called “causal derivative”. Such name stems from the integral in the 
definition considering values smaller than t, i.e., considering what 
happened before that instant while defining time flow as causal (Orti
gueira and Tenreiro Machado, 2017). In this case, the non-locality 
feature is called memory effect, being very important to model 
nonlinear phenomena history such as cancer-related phenomena as 
addressed in next section. 

For the sake of simplicity, the “left-handed” Caputo-Riemann oper
ator can be written as either Dα

x or Dα
t , depending on the independent 

variable, and given by the definition 

Dα
x f (x)=

1
Γ(1 − α)

∫ x

0
(x − ξ)− αdf (ξ)

dξ
dξ, (23)  

which is widely known as Caputo’s derivative (Caputo, 1967). Its use
fulness to model physical problems and solve generalized differential 
equations is recurrent because, if f(x) is a constant, by applying Rie
mann’s definition one obtains 

RDα
+const=

const
Γ(1 − α)x

− α, (24)  

while in case of Caputo’s definition 

Dα
+const= 0, (25)  

which adheres to integer-order models with constant initial or boundary 
conditions, thus justifying its widespread use. 

For their many remarkable characteristics, fractional models have 
been increasingly chosen and successfully applied in many other areas 
such as signal processing (Miljković et al., 2017), thermoacoustics 
(Valentim et al., 2018), economy (David et al., 2016, 2021), robotics 
(Leyden and Goodwine, 2016), food science (David and Katayama, 
2013), chemical kinetics (Singh et al., 2017), electromagnetism (Mescia 
et al., 2019), traffic control (Kumar et al., 2018), among others (Val
entim et al., 2020b; David et al., 2020; David and Rabi, 2020; Mainardi, 
2018; Hernandez et al., 2010). 

5.2. Cancer-related fractional models 

One may refer to Fractional Mathematical Oncology as the inter
section between FC and Mathematical Oncology, wherein there are 
already many fields of application. For instance, concerning population 
or ecological models, the elevation of cancer cells may be interpreted as 
a population increase subjected to restrictions concerning substrate 
availability and competition (with healthy cells). Some works have 
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applied FC as an attempt to generalize the main models for tumor 
growth. Effectively, arbitrary orders in differential equations might 
refine cell growth dynamics description, allowing a deeper under
standing of investigated phenomena (Varalta et al., 2014). 

On that note, Valentim et al. (2020a) generalized and analytically 
solved relevant ODE models for tumor growth towards fractional order 
extensions. The solutions were then fitted to an extent clinical data set of 
breast cancer evolution in mice. Resulting best-fitted models perform 
better as predictors compared to their traditional counterparts, sug
gesting that inclusion of fractional models could avoid misdirection 
when choosing potential predictors. Moreover Bolton et al. (2015) 
suggested that fractional models with a specific arbitrary order (in case 
0.68) would better fit to experimental curves obtained from tumor 
growth in mice. 

Stemming from ODE frameworks, Valentim et al. (2021) proposed 
fractional variable-order models to describe multi-stage tumor charac
teristics. Exploring the memory effect in non-integer order models, the 
authors interpreted the variable order as indicative of tumor memory. 
Clinical data were employed to fit and analyze different mathematical 
behaviors relating to tumor particularities. Results suggested that vari
able order α(t) modeled as a periodic function can better describe tumor 
evolution regarding the fitted data, potentially capturing dormancy 
periods. 

Within the viscoelastic scope, Magin (2010) developed a fractional 
rheological model that is not limited to particular definitions of 
Maxwell, Voigt and Kelvin. Thus the author managed to obtain better 
results when identifying benign and malign tumors in elastography data 
from MRI scans. Magin et al. (2008) also claim that “fractional operators 
encode information about molecular interactions regarding the spin of 
water that is built in polymer structures and in the extracellular matrix 
of cells and tissues”, being able to store extra information on the physical 
phenomena being modeled when compared to traditional integer order 
models. 

Another featured application of FC in Mathematical Oncology refers 
to modeling the invasion of healthy systems by tumors as well as cancer 
cells transport throughout the organism, characterizing metastasis 
onset. Such processes are often modeled as diffusion phenomena in 
which several parameters must be taken into account in order to 
maintain the accuracy of the phenomenological description. In a non- 
integer order model, one can adjust the arbitrary order so that the sys
tem acquires sub-diffusive or super-diffusive behaviors, visualizing 
complex aspects that traditional (i.e. integer-order) counterparts cannot 
reproduce, as shown in a tumor diffusion model by Iyiola and Zaman 
(2014). 

In continuous transport models, FC also allows to incorporate sta
tistical randomness by combining a probability distribution function 
with a dynamic (i.e. time-dependent) random-walk model. Therefore, it 
is possible to simultaneously consider stochastic and deterministic na
tures when simulating tumor evolution, whose random-related muta
tions can suddenly lead to pivoting features favoring growth, movement 
or invasion of healthy tissue (Iomin, 2006). 

Regarding treatment therapies, Iomin (2014) investigated the effects 
of different mathematical functions to represent chemotherapeutic 
treatments in scenarios modeled through fractional kinetics. Namazi 
et al. (2015) proposed a new prediction method based on Hurst coeffi
cient and fractional-diffusion equation aiming at modeling the effect of a 
specific drug in lung-cancer patients’ DNA. The authors found that the 
new model could simulate drug effects with 3.21% mean difference from 
real sick patients’ DNA. FC has also gained strength in exploring ideal 
combinations of chemotherapy and immunotherapy through optimal 
control to minimize cancerous cells with the lowest possible impact on 
healthy cells (Akman Yildiz et al., 2018). 

Other studies embrace treatment optimization methods (Ucar et al., 
2019; Khajanchi and Nieto, 2019), control in invasion systems (Man
imaran et al., 2019; Dai and Liu, 2019), bioengineering (Ionescu et al., 
2017), and general tumor growth (Ren et al., 2018; Sowndarrajan et al., 

2019; Farayola et al., 2020). From aforementioned studies, one can note 
the contemporary interest of the scientific community towards mathe
matical tools that suitably describe oncological models, improve the 
understanding of tumor mechanics and evolution, and expand diag
nostic options and treatment routines. In this context, fractional 
oncology may play a promising and strategic role to allow more accurate 
and reliable virtualization devices. 

6. On the prospective fractional hybrid models

Hybrid models are a recent category in which continuum charac
teristics are incorporated into discrete frameworks. Advantages of such 
approach are very clear for modeling multi-scale phenomena since the 
discrete part can focus on cell movements scale while the continuum 
methods can model events on larger scales (Rejniak and Anderson, 
2011). This capacity to bridge scale gaps while communicating aspects 
of very different magnitudes across the model makes hybrid approaches 
very interesting to describe several aspects of cancer phenomena 
(Anderson et al., 2007a). 

Accordingly, Anderson et al. (2007b) proposed a hybrid model 
comprising discrete methods to deal with tumor cells while considering 
continuous methods to model micro-environment factors such as host 
tissue, matrix-degradative enzymes and oxygens. Their model focused 
on micro-scale level to simulate tumor at tissue-scale and could be easily 
implemented to incorporate other scales (e.g. sub-cellular). 

In the following years, many other hybrid models were proposed, 
each with their own characteristics and often involving either discrete or 
continuum tools (Chamseddine and Rejniak, 2019). Zangooei and 
Habibi (2017) combined CA and machine learning methods to develop a 
vascular multi-scale framework capable of predicting cell phenotypes. In 
silico results indicate that their model can represent key cancer features, 
such as angiogenesis, while presenting good agreement with biological 
behavior. Phillips et al. (2020) also proposed a hybrid model capable of 
describing the physical interaction between tumor and surrounding 
blood vessels, but focused on complementing cells’ discrete behavior 
with a mathematical description of vascular endothelial growth factor 
(VEGF). 

Additionally, Norton et al. (2019) reviewed agent-based and hybrid 
models that specifically handle the interplay between tumor immune 
micro-environment and cancer immune response, thoroughly discussing 
the importance of modeling tumor heterogeneity. Alemani et al. (2012) 
combined CA with lattice Boltzmann method to model multi-scale tumor 
dynamics considering nutrient diffusion and immune competition. The 
authors replaced PDEs with a statistic and stochastic approach claiming 
that such system combination could successfully capture cellular, mo
lecular and continuum complexities. 

On that context, coupled differential equations can help purely sto
chastic models cover some shortcomings. For instance, integrating a 
diffusion PDE to a hybrid model could tackle at least two problems at 
once. Firstly, if a CA disregards dead cells, it also dismisses their re
mains, which could cause some sort of toxicity in tumor micro- 
environment. Secondly, it is known that tumors can react very differ
ently depending on oxygen lack or abundance. By its nature, some cells 
can effectively change biomechanical characteristics in order to migrate 
from an oxygen-deprived environment. Therefore, a model that does not 
take tissue nutrient availability into account can overlook important 
tumor dynamics details. 

Accordingly, the diffusion equation could be an important tool to 
model tumor micro-environment. It could mathematically describe 
diffusive transport of chemical species (e.g. oxygen and nutrients 
simultaneously with cell remains) through the tissue in which the tumor 
grows. By following transport laws (e.g. Fick’s law), this part of the 
model would be completely deterministic while also depending on 
outcomes from stochastic CA (e.g. if a cell replicates, it will increase 
nutrient consumption in that lattice area, thus influencing the diffusion 
equation). On the other hand, at each time step the deterministic portion 
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of the model would also affect probabilities generated from the CA (e.g. 
if nutrient availability is very low, the chance for local apoptosis is 
higher). 

Moreover, the literature generally confirms that diffusion processes 
are better modeled with a time-fractional derivative (Costa and Capelas 
de Oliveira, 2012; Wu et al., 2015; Agrawal, 2002). These fractional 
models would be capable of presenting sub-diffusive and super-diffusive 
phenomena by only varying the arbitrary order of model time deriva
tive. This feature could provide a much powerful tool to represent how 
nutrients are transported through tissue and affect tumor growth, 
possibly enhancing accuracy of the hybrid model. 

On the other hand, CA models often disregard healthy cells, not 
establishing any stress relation between cells and their surrounding 
extracellular matrix. As an attempt to improve this characteristic on a 
hybrid framework, a differential equation to model viscoelasticity of 
both tumor and its surrounding tissue may be useful. 

Furthermore, external stresses such as pressure and mechanical 
resistance can strongly affect tumor progression, malignancy and 
metastasis possibility (Fritsch et al., 2010; Ramião et al., 2016; La Porta 
and Zapperi, 2017). As a result, it becomes very important to account for 
these factors by modeling tumor (or its surrounding tissue) as either soft 
or viscoelastic material. As discussed in (Magin, 2004, 2012; Catania 
et al., 2008), fractional approaches can generally provide more effective 
reductionist viscoelastic models, being a viable option to mathemati
cally describe such phenomena. 

On that note, a hybrid model could potentially contain at least two 
equations modeling tumor micro-environment, namely one dealing with 
nutrient diffusivity and the other tackling tissue stresses. A conceptual 
scheme of a prospective hybrid model as previously described is illus
trated in Fig. 2. Although there are other hybrid CA models developed in 
the literature, there are few that profoundly consider such aspects 
through an interdisciplinary view. Moreover, even fewer (if any) rely on 
improved capabilities of fractional models to describe natural phe
nomena in differential equations constituting the deterministic part of 
these models. This could be a prospective research field in Mathematical 
Oncology that could potentially contribute to areas of interest such as 
understanding tumor evolution, early diagnosis techniques and 
personalized treatment therapies. 

7. Concluding remarks

There are tools in Mathematics still waiting to establish their way in
Theoretical Biology and such is the case of fractional (i.e. non-integer 
order) calculus, whose historical and philosophical aspects have 
attracted growing interest. As addressed and discussed in the present 
review work, the application of fractional calculus indeed arises as 
powerful and strategic modeling approach in view of prospective chal
lenges and opportunities in Mathematical Oncology. Besides well- 

known advantages of either testing or reproducing different in silico 
scenarios (which could be impractical or even impossible via corre
sponding in vitro experimentation), Fractional Mathematical Oncology 
can straightforwardly deal with heterogeneous scales, memory effects 
and/or dormancy periods related to tumor onset and development. 
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Valério, D., Trujillo, J.J., Rivero, M., Machado, J.A.T., Baleanu, D., 2013. Fractional 
calculus: a survey of useful formulas. Eur. Phys. J. Spec. Top. 222, 1827–1846. 
https://doi.org/10.1140/epjst/e2013-01967-y. 

Varalta, N., Gomes, A.V., Camargo, R.F., 2014. A prelude to the fractional calculus 
applied to tumor dynamic. Tendências em Matemática Aplicada e Computacional 
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