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A B S T R A C T

Civil engineering structures are commonly monitored to assess their structural behaviour, using alarm thresholds
to indicate when contingency actions are needed to improve safety. However, there is a need for guidelines on
how to establish thresholds that ensure sufficient safety. This paper therefore proposes a general computational
algorithm for establishment of reliability-based alarm thresholds for civil engineering structures. The algorithm
is based on Subset simulation with independent-component Markov chain Monte Carlo simulation and applic-
able with both analytical structural models and finite element models. The reliability-based alarm thresholds can
straightforwardly be used in the monitoring plans that are developed in the design phase of a construction
project, in particular for sequentially loaded structures such as staged construction of embankments. With the
reliability-based alarm thresholds, contingency actions will only be implemented when they are needed to satisfy
the target probability of failure.

1. Introduction

Observation of structural behaviour is standard practice in civil
engineering, in particular for structures of high importance or high risk.
As the cost for sensors and other equipment reduces, more and more
structures are being monitored. Examples include large dams, bridges,
nuclear power facilities, and geotechnical structures such as tunnels
and excavations [1–7]. The purpose can be, for example, validation of
design assumptions and evaluation of need for design alterations or
remedial measures to ensure structural safety or satisfactory service-
ability. Observations of structural behaviour can also be used to gain
information about engineering properties of existing structures in as-
sessments of their structural safety. Additional information generally
implies that uncertainties are reduced and that the calculated structural
reliability is improved; thereby, costly replacement or strengthening
interventions may be avoided. This principle is widely applied in re-
liability-based design and reliability-based safety assessments of civil
infrastructure; see e.g. [8–17].

As additional information is more favourable in terms of reliability
improvement when uncertainties are large, observations of structural
behaviour are particularly useful in geotechnical engineering, because
its construction materials—soil and rock—are created by nature, which
implies that their engineering properties are largely uncertain and, in
addition, may exhibit a substantial inherent spatial variability.

Consequently, geotechnical design codes particularly emphasise the
need for monitoring during their construction; for example, Eurocode 7
[18] requires details of the planned monitoring to be included in the
Geotechnical Design Report. Moreover, the challenge of managing large
uncertainties in geotechnical engineering has spurred the development
of a design method in which observation during construction is a key
feature: “the observational method” [18,19].

When monitoring or other types of observation of the structural
behaviour are targeting structural safety, an essential concern is how to
ensure that safety-enhancing contingency actions are put into operation
in time. A common method is to establish an alarm, which helps the
decision maker to timely interventions based on the monitoring results,
but lets the decision maker attend to other tasks most of the time [20].
When the alarm threshold is violated, the decision maker is alerted to
act and failure of the monitored structure can be avoided.

Despite the crucial role of alarm thresholds to ensure structural
safety and satisfactory serviceability, there is little guidance available to
the designing engineer on how to establish them. For example, neither
Eurocode 7 nor the available application guidelines provide any de-
tailed advice: Frank et al. [21] point out that “it is the designer’s re-
sponsibility to prepare and communicate specifications for any such
monitoring”. This lack of guidance causes problems especially when
applying the observational method, as the alarm threshold defines
when the design must be changed. This deficiency may have
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contributed to the limited use of the observational method; the need to
clarify the safety aspects of its application has been discussed for dec-
ades [22–25].

In this paper, we address this lack of guidance and discuss how to
establish alarm thresholds for monitored structures so that their struc-
tural safety and serviceability is continuously satisfactory. The paper
builds directly on the findings of Spross and Johansson [26], who
presented a reliability-based methodology that aids a decision-making
engineer in choosing between the observational method and conven-
tional design. Their methodology also showed how alarm thresholds
need to be related to the acceptable probability of failure of the struc-
ture. However, Spross and Johansson [26] mainly discussed the deci-
sion-theoretical considerations regarding the application of the ob-
servational method. Therefore, we focus this paper on the more general
issue of establishing alarm thresholds for civil engineering structures.
While Spross and Johansson only looked at examples with analytical
solutions, we here show how their methodology can be applied to a
more general class of engineering problems by making use of the Finite
element method and Subset simulation.

The paper is structured as follows: Chapter 2 describes the features
of an alarm that ensures structural safety; Chapter 3 provides the
structural reliability considerations in the establishment of alarm
thresholds; Chapter 4 presents an algorithm for how reliability-based
alarm thresholds can be set for structures that are analysed with the
finite element method; Chapter 5 presents an illustrative example
where the algorithm is applied to a concrete beam; Chapter 6 discusses
the applicability of the proposed algorithm to civil engineering struc-
tures; and Chapter 7 summarises the major findings.

2. What is an alarm?

Alarm as a concept may be differently defined depending on the
discipline. Wallin [27] identifies three different definitions (Fig. 1). In
civil engineering, the stimuli-based model is normally used, as it allows
a technical definition of the alarm based on the state of the monitored
object. In contrast, the response-based model implies that the observer
defines what constitutes as an alarm based on the incoming informa-
tion, such as when an operator at a public-safety answering point de-
cides on whether to send the rescue service or not to the caller. The
message-based model refers to cases where the term “alarm” is used for
the alarm notification exchanged by systems; this is common in the
telecom industry. In the context of structural safety, the stimuli-based
alarm model implies that structural behaviour is monitored and when
some predefined threshold is violated, the alarm goes off, requesting
the decision maker to act.

A crucial aspect is the establishment of the alarm threshold. The
threshold should neither be too conservative, nor be too allowing: while
the former may lead to costly false alarms that reduce the credibility of

the alarm in the long run (known as the “cry-wolf effect”) [28–30], the
latter may make the alarm go off too late, resulting in a failed structure.

The alarm threshold must be clearly distinguished from the point
where unacceptable behaviour is expected to occur. The time in be-
tween the alarm threshold and the point of unacceptable behaviour is
defined as the “lead-time” of the alarm (Fig. 2) [31]. This timeframe
must be large enough to allow for contingency actions to be put into
operation. Consequently, the required lead-time depends on the type of
intervention, equipment availability, and—not to forget—the efficiency
of the project organisation [32]. In a complete analysis of the lead-time,
the expected failure type also needs to be considered, as the failure type
will affect the available timeframe; in principle, the potential situation
can be considered either time variant or time invariant. Time-variant
loads either follow a more or less predictable pattern or occur as a
completely unpredictable (e.g. accidental) event. For predictable load
variations, the concept of lead-time is relevant; however, for completely
unpredictable load increasing events, the required lead-time is by de-
finition not possible to define. Deterioration is similar to time-variant
loads, but implies instead a decrease in capacity with time. For time-
invariant loads, on the other hand, any load increase is under human
control and there is no restriction in time when putting contingency
actions into operation. A typical example of a time-invariant load in-
crease under human control is the decision to raise the embankment
height during staged construction of road or railway embankments;
additional examples are discussed in Section 6.1. Thus, in principle, the
alarm threshold should be selected based on the following two aspects:

• The critical limit, where unacceptable behaviour occurs with too
high probability.

• The lead-time that is required to allow for contingency actions to be
put into operation.

Consequently, if a required lead-time is to be assessed accurately,
the designer of the alarm system needs to consider also the possible
contingency actions. This implies that all monitoring plans that involve
alarm thresholds must be accompanied by a contingency action plan.
The need to directly link the monitoring result to contingency actions is
emphasised by Olsson and Stille [32], who suggest the following gen-
eral definition of an alarm threshold in a report aiming at improving the
design of the monitoring system for the construction of the Swedish
nuclear waste repository:

“The alarm threshold is a predetermined value of one or a combi-
nation of several monitor parameters which, if exceeded, will trigger
predetermined measures in order to prevent damage.” [Authors’ ita-
licization]

This principle is also a key aspect of the observational method in

Fig. 1. Alarm definitions, extended from [59]. We use the stimuli-based defi-
nition, which is common in engineering. (© 2017. Wallin [27]. With permission
of Springer.)

Fig. 2. False alarm and lead-time.
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geotechnical engineering. In this paper, we focus on loading situations
with time-invariant loads, although we discuss the possibility to extend
the procedure to cover time-variant loads and deterioration in Section
6.1.

3. Reliability-based alarm thresholds

3.1. Assessment of failure probability

In the general case, a civil engineering structure consists of one or
more structural components, for which the performance can be de-
scribed by the respective limit state function, XG ( ), where the vector X
contains all random variables that are relevant to describe the limit
state. If model errors are present, they can be straightforwardly ac-
counted for in the limit state formulation; see e.g. [8,33]. The event of
unsatisfactory performance of the component—“failure”—is defined as

= XF G{ ( ) 0}. Taking a reliability-based perspective on structural
safety, unsatisfactory performance should occur with sufficiently low
probability; i.e. the probability of unsatisfactory performance, pF,
should be equal to or less than the target failure probability, pF,T. The
relevant pF,T should be clear from the applicable design guideline or
code. In the general case, pF is provided by the multidimensional in-
tegral

=p f x x( )d ,XF
(1)

where x is the realisation of X , f x( )X is the joint probability density
function of X , and is the region of the failure event in the outcome
space of X . For component failure,

XG{ ( ) 0}. (2)

3.2. Updating of failure probability with additional information

If no additional information will become available during con-
struction, i.e. no monitoring will be performed, the safety criterion
p pF F,T must be satisfied with the information that is available in the
design phase. This information may, for example, consist of results from
site investigations, laboratory tests, experience from previous projects,
and other types of engineering judgement. However, if additional in-
formation, Z, is gained at some point, pF may be evaluated con-
ditionally on Z. In the context of this paper, sources of information can
be measurements of relevant parameters; examples include structural
deformation, pore water pressure, and water inflow [10–12,25,34–36].
The updated probability of failure conditional on Z is given by

=p f x x( )d ,XF Z Z
Z (3)

where the updated failure region Z accounts for any reformulations of
the limit state functions that the information called for, and fX Z is the
updated joint probability density function. Taking a Bayesian view on
structural failure probabilities, as is common in structural reliability
analysis [37], the updating can be performed with Bayes’s rule, such
that

=f
L f
L f

x
x x
x x x

( )
( ) ( )
( ) ( )d

,X
X

X
Z (4)

where L x( ) is the likelihood of observing Z, given the multidimensional
variable X .

In principle, two types of information Z from numerical measure-
ments may be provided: either in terms of a specific measurement result
(known as equality information; see [38–40]), or in terms of violated or
non-violated alarm thresholds (inequality information); the latter in-
formation category is the focus of this paper.

In general terms, inequality information may be described as

= XZ h{ ( ) 0}, (5)

where the function Xh ( ) defines how the structural model relates to the
measurement data.

With inequality information available, the updating in Eqs. (3) and
(4) becomes straightforward, because the explicit computation of L x( )
can be circumvented: the conditional pF Z may be obtained from the
definition of conditional probability,

=p P F Z
P Z
( )

( )
,F Z (6)

because Xh ( ) can be seen as a limit state function that describes the
event Z. With this formulation, pF Z can be obtained with any structural
reliability method, because Eq. (6) may be reformulated into

= =X X X X
X

p P G h P G h
P h

( ( ) 0 ( ) 0) ({ ( ) 0} { ( ) 0})
({ ( ) 0})

,F Z (7)

where the numerator is analysed as a parallel-system multiple failure
mode and the denominator as a single failure mode. Significant mea-
surement error in the observations reduces the effectiveness of the
updating [41]; however, this aspect is not accounted for here.

3.3. Establishment of alarm thresholds based on target failure probability

Monitoring of structural behaviour and comparing the measurement
result with an alarm threshold is an example of collecting inequality
information. Observing that a property X1 is less than the corresponding
predefined alarm threshold, x1,alarm, provides the information that

=Xh x X( ) 01,alarm 1 . (For convenience, we presume that critical be-
haviour corresponds to exceeded thresholds; note, however, that for
some applications, it may be relevant to define an alarm threshold
against too low readings rather than too high. This case is straightfor-
wardly managed by instead defining =Xh X x( ) 02 2,alarm , with re-
ference to Fig. 3.)

Using Eq. (7), a value for x1,alarm can be established in advance with
the following equality, which ensures that the structural behaviour is
acceptable (i.e. p pF F,T) as long as the monitoring result falls below
the alarm threshold:

=XP G X x p( ( ) 0 ) .1 1,alarm F,T (8)

This procedure is suggested by Spross and Johansson [26] for

Fig. 3. An alarm threshold against too high readings of X1 is provided by a
truncation of X1 at its upper end. This implies that the overlapping of the two
distributions is significantly reduced and so is the corresponding failure prob-
ability. Correspondingly, an alarm threshold against too low readings of X2 may
be provided if X2 is truncated at its lower end. (© 2017. Spross and Johansson
[26]. CC–BY 4.0, https://creativecommons.org/licenses/by/4.0.)
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establishing acceptable limits of behaviour for the observational
method and is illustrated in Fig. 3. An algorithm for finding x1,alarm in
Eq. (8) for structures using the Finite element method and Subset si-
mulation is presented in Chapter 4. Note that in the general case, there
may be more than one monitored parameter for which an alarm
threshold needs to be established; i.e. we have that

=X X xP G p( ( ) 0 ) ,alarm F,T (9)

where the vector xalarm contains the respective alarm thresholds for the
monitored parameters. This definition implies that the alarm goes off
when one of the thresholds is violated. Eq. (9) may be solved similarly
to Eq. (8), but the equation becomes underdetermined when there is
more than one alarm threshold to establish. Thus, to find the optimal
set of alarm thresholds in xalarm, the cost and effectiveness of the re-
spective measurement system need to be considered; for example, if the
measurement of one parameter is expensive or associated with a large
measurement error, it may be favourable not to measure this parameter
at all. In essence, this is a decision-theoretical problem.

4. Proposed algorithm

The advantage of using the finite element method, compared to
using analytical models, to analyse civil engineering structures is that it
allows the engineer both to account for more complex geometries and
to capture local effects. However, the finite element analysis easily
becomes computationally demanding. This poses a challenge when the
finite element analysis is to be combined with a reliability analysis,
because standard numerical reliability methods typically require a large
number of realisations. For example, the required number of samples in
a crude Monte Carlo simulation is inversely proportional to the calcu-
lated pF. To overcome this inefficiency, more advanced Monte Carlo
simulation methods have lately been developed; examples include
Subset simulation [42], Line sampling [43], and Asymptotic sampling
[44].

In the following, a general computational algorithm for establishing
reliability-based alarm thresholds is proposed. The algorithm combines
finite element analysis, to establish the limit state function, and subset
simulation, to determine the failure probabilities. The theoretical
foundations of these two methods are introduced, after which the al-
gorithm is presented.

4.1. The finite element method for solid mechanics

Before presenting the finite element system of equations, we es-
tablish the basic equations of solid mechanics and introduce the re-
levant assumptions (note the use of tensor notation in Eqs. (10) to (15)).
Given the assumption of small displacements and rotations, the en-
gineering strain definition to relate the displacement vector u to the
symmetric second-order strain tensor is used:

= + =u u u1
2

[( ) ] ,T S
(10)

where is the gradient operator, and S is introduced as a notation for
the symmetric gradient operator. The equilibrium equations for solid
mechanics follow from Newton’s second law, which, if neglecting in-
ertial terms, state that body forces in vector fb acting over an in-
finitesimal volume must be balanced by the change in stress given by
the second-order symmetric tensor . This must strictly hold for every
point in domain ; i.e., we have that

= +0 f· in .b (11)

Note that no difference is made between different frames of re-
ference and, hence, neither between different stress measures. To relate
the stresses and strains, Hooke’s law is used:

= EC( , ): , (12)

where EC( , ) is the fourth order elasticity tensor, which for an iso-
tropic material is given by two material constants, e.g. Young’s mod-
ulus, E , and Poisson’s ratio, . To complete the initial-boundary value
problem, Eqs. (10) to (12) need to be complemented with appropriate
initial and boundary conditions. Given that we are only interested in
stationary solutions to Eq. (11), initial conditions are always given as
zero displacement. Boundary conditions can be set as Dirichlet type on
surface 1 by directly prescribing the displacements to be u0:

=u u on .0 1 (13)

Alternatively, Neumann type boundary conditions can be used by
prescribing the surface traction t on surface 2, such that

=n t· on ,2 (14)

where n is the normal vector of the surface.
This strong form description of solid mechanics implies that equi-

librium must hold locally in every point of domain . This conflicts
with the approxamitive nature of the finite element method. To over-
come this constraint, all terms in Eq. (11) are multiplied with a test
function v and integrated over the domain . Then, using integration-
by-parts and the divergence theorem to remove second order deriva-
tives, we arrive at

= +v dS v E d v d0 t C u f· ( , ): V V,S S
b (15)

which now holds for all test functions, instead of as previously for every
point in , and is on a form suitable for finite element discretization.
Using the Galerkin method, we approximate both approximate v and u
as a linear combination of a set of shape functions contained in the
matrix N( ), which describes the variation in the three-dimensional
space of the solution, such that

= =vu N u N v( ) ( ) and ( ) ( ) , (16)

whereas vectors u and v contain discrete values of the solution in so-
called nodal points. Substituting Eq. (16) into Eq. (15) and switching to
matrix notation, we arrive at the discretized equilibrium equation for
linear solid mechanics:

= + +E d dS d0 v LN C LN u v N t v N f( ) ( , ) V V,T T T T T T
b

(17)

where L is the matrix equivalent of S. Since this equation must hold
for every v , we can write the final system of equations as

=Ku f, (18)

where K is the system matrix (often called stiffness matrix) defined by
the integral in the first term on the right-hand side of Eq. (17), u
contains the unknowns, and f is the load vector given by the integral in
the second and third terms. In principle, Eq. (18) gives the equations for
a single finite element and to arrive at a total system of equations of an
entire structure, techniques to assemble several finite elements are
necessary. This is omitted here, but follows standard procedures of fi-
nite element analysis [45]. However, this global system of equations
will be on an identical form, as in Eq. (18), where the unknowns u in
principle are solved by multiplying both sides with K 1.

4.2. Subset simulation

This adaptive simulation method is particularly efficient when es-
timating low failure probabilities for limit states with many random
variables [46]. The basic idea is to calculate pF as a product of larger
conditional probabilities, which are nested intermediate events, such
that F F FM0 1 , where F0 is a certain event and =F FM is the
event of interest. Then, we have that

= =
= =

p P F P F F( ).
k

M

k
k

M

k kF
1 1

1
(19)
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The intermediate events are defined as = XF G c{ ( ) }k k , where the
values of the limit ck are set to correspond to a predefined probability p0
for the event Fk. The procedure is to simulate N samples of X con-
ditionally on the previous intermediate event, Fk 1, and evaluate the
limit state function XG ( ) with the simulated samples. The limit ck is set
as the p0-percentile of the calculated values of XG ( ). To generate the N
samples, independent-component Markov chain Monte Carlo simula-
tion (MCMC) [47] is applied, using the samples that satisfied the pre-
vious intermediate event, Fk 1, as seeds in the simulation. “In-
dependent-component” implies that a Metropolis–Hastings algorithm is
used to generate samples from a proposal probability density function
qi for each parameter i in X independently of each other, after which
the conditioning event is checked. The number of seeds (i.e. the number
of Markov chains) is =N p Nc 0 and each seed generates =N p1s 0
sample proposals, which then are either accepted or rejected depending
on their suitability for the target distribution. The procedure is repeated
until ck becomes negative, at which point the final subset level M is
reached. For the last event, = XF G c{ ( ) }M M , the limit =c 0M . The pF
can then be estimated as

=p p p p ,M
MF F 0

1 (20)

where pM is the estimate of the last conditional probability P F F( )M M 1
and given by

=
=

p
N

I x1 ( ),M
i

N

M
1

F 1
(21)

where IF is the indicator function of F evaluated with the samples in
xM 1 generated conditionally on the event FM 1; i.e., we have that

=I x( ) 1MF 1 , if G x( ) 0M 1 and =I x( ) 0MF 1 otherwise. More detailed
discussions of Subset simulation algorithms and their application to
civil engineering problems are found in [47–49].

To establish the alarm threshold in Eq. (8), pF must, however, be
estimated conditionally on the information =Z X x{ }1 1,alarm . Fol-
lowing the approach suggested by Straub et al. [46], the intermediate
events are reformulated into F F FM0 1 , where =F F Zk k
and = =F F Z Z0 0 . Then, we can modify Eq. (19) into

= = =
= =

p P F Z
P Z

P F F P F F( )
( )

( ).
k

M

k
k

M

k kF Z
1

0
1

1
(22)

4.3. Simulation algorithm for establishment of alarm thresholds

The proposed algorithm for establishment of reliability-based alarm
thresholds for civil engineering structures combines the concepts of
Subset simulation with independent-component MCMC, structural re-
liability analysis, and finite element analysis. It is presumed that one of
the random parameters, X1, relevant for the limit state XG ( ) is mon-
itored.

In principle, the algorithm uses an iterative process to find the
x1,alarm that satisfies the equality of Eq. (8), i.e. the x1,alarm that is re-
quired to ensure that p pF Z F,T, which shows that the structural be-
haviour is acceptable. In each iteration, a Subset simulation with in-
dependent-component MCMC [47] is performed.

The iterations end when the error, , between pF Z and pF,T is less
than a predefined tolerance, τ, for the x j

1,alarm
( ) that was suggested in the

previous iteration. The algorithm is developed to allow evaluation of
one or more of the needed random variables in X with a finite element
model, using available knowledge in terms of “basic” random variables
in a vector B. This can be exemplified with the need for evaluating the
response of a structural component from a loading with a finite element
model. In principle, though, the algorithm will work also for other types
of models; hence, it is referred to as a structural model in the algorithm.
In the calculation example in Chapter 5, the algorithm is applied in
combination with both a finite element model and an analytical model
to allow for comparison. The general algorithm has 4 main steps and is

presented in Table 1.

4.4. Comments on the algorithm

4.4.1. Definition of simulation constants
The constant p0 determines the intermediate probabilities and af-

fects how many seeds that are picked out in step 3.c. According to Zuev
et al. [50], p0 should be set in the range [0.1, 0.3] to ensure high ef-
ficiency. N should be selected large enough to estimate p0 accurately
[48]. Also, it must be ensured that =N p Nc 0 and =N p1s 0 are positive
integers. The constant κ ensures that there are enough samples entering
the truncation procedure in step 3.b. to have N parameter sets of
samples in xZ. Consequently, the required κ will depend on the number
of rejected sets of samples in the truncation. The choice of τ adjusts the
accuracy in the final pF,T for the accepted x1,alarm in step 3.g.

Table 1
Proposed algorithm for establishment of reliability-based alarm thresholds.

1. Definition of simulation constants and basic, case-specific data.
a. Select pF,T, N, p0, τ, and κ. (κ is a factor to provide sufficient amount of samples

after truncation in step 3.b.)
b. Define XG ( ) and the joint probability density function of the basic random

variables, fB .
2. Initial crude Monte Carlo simulation.

a. Generate Nκ i.i.d. sets of samples, b, from fB.
b. Run the structural model (i.e., in principle, solve Eq. (18)) for each parameter

set of samples in b to evaluate the remaining parameters in x .
c. Evaluate G x( ).
d. Set the first guess of the alarm threshold, x1,alarm

(1) (see section 4.4.2 for details).
e. j= 1.

3. While > τ (iterative loop to find x1,alarm)
a. k = 1.
b. Satisfy the initial event =F Z0 by accepting, from the Nκ parameter sets in x , N

sets of samples that satisfies <x x j
1 1,alarm

( ) , into a matrix xZ. If the number of
acceptable sample sets is less than N, increase κ and start over from step 2.a.

c. Order the sets of samples in xZ in increasing order of magnitude of their limit
state value G x( ) and let ck be the p0-percentile of the ordered samples. Let the

=N p Nc 0 first parameter sets of samples be denoted xk
(seed), while bk

(seed)

contains the corresponding seeds of the Markov chains for the basic random
variables. Set =F G cx{ ( ) }k kZ .

d. While >c 0k (Iterative loop for Subset simulation)
i. For all Nc Markov chains (NB: index k is suppressed in step i. for

convenience):
– Generate =N p1s 0 sets of conditional samples

=b b b b[~ , ~ , , ~ ]i i i
l

i
N(1) ( ) ( s) from a proposal PDF q b( )i i

(seed) for
each basic parameter in B .

– Calculate for each proposal =ri
l qi bi

l bi fBi bi
l

qi bi bi
l fBi bi

( ) ( ( ); (seed)) ( ( ) )

( (seed) ; ( ) ) ( (seed) )
.

– Generate ui
l( ) uniformly distributed on [0,1] for each proposal.

– Set for all l and all basic parameters, =
<

b
b u r

b

if

otherwise
i

l i
l

i
l

i
l

i

( ) ( ) ( ) ( )

(seed)and collect them inbk .
ii. Run the structural model for each set of samples in bk to find the complete

set of proposed samples, xk.
iii. Set, for all N parameter sets of proposed samples, =

F
x

x x
x

if
otherwisek

k k k

k
(seed)

iv. Order the samples in xk in increasing order of magnitude of their limit state
value G x( ) and let +ck 1 be the p0-percentile of the ordered samples. Let the
Nc first samples be denoted +xk 1

(seed) and let the corresponding +bk 1
(seed) contain

the next seeds of the Markov chains.
v. = +k k 1.

e. Identify the number, NF, of sample sets for which Fxk M1 and calculate
=p p k N

NF 0
1 F .

f. Calculate the error between pF and pF,T as =
p p

p
|( F F,T)|

F,T
.

g. Set
< > +

> <
+x

x p p

x p p
to be

if (1 )

if (1 )
j

j

j1,alarm
( 1) 1,alarm

( )
F F,T

1,alarm
( )

F F,T
(see Section 4.4.2 for details).

h. j= j+ 1.
4. =x x j

1,alarm 1,alarm
( 1) .
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4.4.2. Iterative suggestions of the alarm threshold
In step 2.d., the first suggestion of the alarm threshold, x1,alarm

(1) , is
made. In principle, x1,alarm

(1) can be set anywhere in the generated sample
x1. For load-related parameters, we suggest to set x1,alarm

(1) in the range
x x[ ¯ , max ]1 1 , where x̄1 is the sample mean, and for resistance-related
parameters, we suggest the range x x[ min , ¯ ]1 1 . Note that if the alarm
threshold is needed in the other end of the range of x1 than suggested
above, in order to satisfy pF,T, the probability of violating x1,alarm, i.e.

>P X x( )1 1,alarm for load-related parameters, will be substantial. This
would indicate a high probability of needing to put contingency actions
into operation to ensure structural safety, as discussed by Spross and
Johansson [26].

In step 3.g., a new guess is to be made for x j
1,alarm
( ) . As the calculated

pF indicates whether x j
1,alarm
( ) is set too high or too low, each iteration

will reduce the possible range of the final x1,alarm. Therefore, we suggest
that each new guess should be aimed to reduce the remaining range as
much as possible. A simple solution is to set +x j

1,alarm
( 1) to be the average

value of maximum and minimum values of the remaining possible
range.

4.4.3. Proposal PDF in the MCMC
The selection of proposal PDFs qi that are used to generate the

candidate samples bi in step 3.d.i. will affect the transition from the
current state to the next. As discussed by Au and Wang [47], a safe
strategy, as well as a convenient choice, is to make a random shift from
the current sample (a “Metropolis random walk”), letting bi be normally
distributed with mean =µ bi ib,

(seed) and standard deviation =i ib, b, ,
which is the standard deviation of fBi. Other possibilities include using a
uniform or triangular distribution.

4.4.4. Efficiency of subset simulation algorithms
Our algorithm is based on the algorithm for subset simulation with

independent-component MCMC proposed in [47], which we find suf-
ficiently effective for the problem at hand; the most time-consuming
part of the algorithm lies in the evaluation of the finite element model
and not in the subset simulation. However, for increased efficiency of
the subset simulation, the user may straightforwardly implement recent
findings on subset simulation, e.g. [48,51,52], in their application.

5. Illustrative example

5.1. Case description: Deformation of a simply supported beam

To illustrate the proposed algorithm for establishment of alarm
thresholds, we have applied it to find a reliability-based alarm
threshold for a simply supported reinforced concrete beam loaded with
a distributed load (Fig. 4). The threshold indicates when the probability
of violating the limit state becomes unacceptably high. This simplified
case allows evaluation of the computational cost of using a finite

element model, as there is an analytical solution available. Concrete is
chosen as the material for the beam; however, the algorithm will work
for any material. Random properties for the basic random variables in B
are chosen as the tensile strength ft, Young’s modulus E and the dis-
tributed area load q; their distributions are presented in Table 2. The
dimensions of the beam are fixed (Fig. 4) and Poisson’s ratio is set to
0.2. For simplicity, we have not considered spatial variation of random
parameters in the analysis; though, such aspects may straightforwardly
be added to the finite element model.

The limit state function for the example is

=XG
f
E

( ) 0,t
(23)

where is the maximum strain in the beam subjected to q. For a simply
supported beam, is always located at the bottom material fibre in the
mid-section. The sought alarm threshold in terms of strain is denoted

alarm, which straightforwardly may be converted to an alarm threshold
in terms of vertical deformation, ualarm. Note that the defined limit state
does not describe failure of a concrete beam; rather, it indicates when
cracking first occurs, which can be seen as a serviceability limit state.
This implies that the finite element analysis can be limited to linear
solutions (as described in Section 4.1); however, the proposed algo-
rithm is also applicable with nonlinear structural models, but at a sig-
nificantly larger computational cost.

5.2. Analytical model

To set up the analytical solution for , we define from structural
mechanics the maximum field moment for a simply supported beam as

=M ql
d8

,f
2

(24)

where l is the length and d the depth of the beam. With Eq. (24), the
bending strain is calculated to

= =M h
EI2

ql h
EId16

,f
2

(25)

where I is the second moment of area around the bending axis, and h is
the height of the beam. The vertical deflection at mid-span is

Fig. 4. Schematic description of the analysed concrete beam including dimensions, finite element discretization, and boundary conditions.

Table 2
Random properties for the analysed concrete beam.

Parameter Symbol Distribution type Mean Coefficient of
variation

Tensile strength ft Lognormal 3 MPa 0.15
Young’s modulus E Lognormal 30 GPa 0.15
Distributed area

load
q Lognormal 6 kN/m2 0.15
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=u ql
EId

5
384

.
4

(26)

5.3. Finite element model

A continuum description of the beam is set up in two-dimensions
using the plane stress assumption. As indicated in Fig. 4, a vertical
symmetry plane is utilized in the mid-section to reduce the model size
and computational time. This is done using the Dirichlet condition in
Eq. (13) on surface a, where the displacement component normal to a
is constrained to zero. The roller boundary condition of surface b is
described using a special form of the Dirichlet condition to allow for
rotation of the surface around its midpoint m. This can be written as

= +u u R I( )·( ) on ,0 m b (27)

where I is the unit matrix and matrix R describes the rigid body rota-
tion of b. The vertical component of rigid body displacement u0 is
constrained to zero. The distributed load is applied using the Neumann
condition in Eq. (14) on surface c, where the normal surface traction

=t qn . The finite element discretization of the beam is shown sche-
matically in Fig. 4, with the element size set to 0.04 × 0.04 m. Each
finite element is in the example defined using quadratic serendipity
shape functions and thus N( ) becomes a 16 × 16 matrix. In total, the
model contains 974 unknowns. In the current study, the general-pur-
pose finite element software COMSOL Multiphysics 5.3 [53] is used to
solve the finite element model.

5.4. Simulation constants

Table 3 shows the values of the simulation constants that were used
in the simulations. Setting pF,T = 0.001 corresponds to a serviceability
limit state associated with high consequence, as proposed by Fenton
et al. [54]. For the Subset simulation, 10 000 sets of samples were
generated in step 2.a (see Table 1), out of which the first 5000 that
satisfied the initial event =F Z0 (step 3.b) were used in the subsequent
simulation. To allow for comparison of the computational cost when
using the respective model to evaluate the structural response, each
iteration of the loop to find alarm (step 3) was clocked. The Subset si-
mulation algorithm was also compared to crude Monte Carlo simula-
tion, for which NMC = 150 000 sets of samples were generated. Out of
these, approximately 2/3 satisfied the condition Z and were subse-
quently used to calculate the alarm threshold in a loop with the same
acceptable tolerance τ as in the Subset simulation. Matlab R2013b [55]
was used for the simulations.

5.5. Calculation results

Fig. 5a illustrates the sample after step 3.b in the algorithm in the
last iteration (Table 1). The contour lines correspond to F0 (i.e. the
initial crude Monte Carlo simulation) and the black dots to F0 . Fig. 5b
illustrates the last generated sample of the MCMC procedure after re-
jecting the unsuitable proposals. The calculated alarm thresholds for
the respective structural model are presented in Table 4, together with
the total calculation time and the average calculation time, t̄ , per
iteration in the loop of step 3. For all cases, the loop of step 3 was

entered 4 times. As the analysed case is linearly elastic, the two struc-
tural models are expected to provide approximately the same answer.
For reference, the expected probability of exceeding ualarm is 28%
(equivalent to the portion of grey dots in Fig. 5a) and the pF without the
alarm is 0.0043.

Timing the analyses for the two structural models and the two si-
mulation methods illustrates the efficiency of the algorithm for the two
structural models (Table 4). Using Subset simulation together with the
analytical model is 29 times more effective than with the finite element
model in this illustrative example. Clearly, the evaluation of the finite
element model effectively stands for almost all computational effort
when such structural models are used with the algorithm. Note also the
long t̄ when using Subset simulation and a finite element model (375 s/
iteration) compared to using crude Monte Carlo simulation (110 s/
iteration). The reason is that Subset simulation requires N evaluations
of the structural model in each iteration of the loop of step 3.d, while
for crude Monte Carlo simulation the structural model is run NMC times,
but outside of the loops (at the equivalence of step 2.b in the proposed
algorithm in Table 1). For the given set of model parameters in Table 3,
the total number of limit state function calls is approximately 50 000
for the subset simulation (depending on the convergence of step 3 and
step 3.d, respectively), compared to 150 000 for the crude Monte Carlo
simulation.

Investigating the variability in the calculated results, we found that
the calculated ualarm is affected mainly by the number of Subset simu-
lations, N. Increasing N reduces the variability in ualarm; for example,
increasing N from 5000 to 10000 implies a reduction in coefficient of
variation for ualarm from 4.7% to 3.1% (based on 50 calculations of ualarm
each). The variability reduction obviously comes with a larger com-
putational cost.

6. Discussion

6.1. Practical applicability to civil engineering structures

As discussed in Chapter 2, the purpose of establishing an alarm
threshold for a structure is to ensure that action is taken to prevent
structural failure or unsatisfactory performance, e.g. in terms of viola-
tion of a limit state. The proposed algorithm has the advantage of let-
ting the decision maker establish the threshold based on pF,T, thereby
ensuring that the structure is sufficiently safe as long as the threshold is
not violated. Though, this implies that if a threshold is violated, so is
also the pF,T, which should not be acceptable. However, this is not true
for all cases; it is therefore important to distinguish between the fol-
lowing two situations: (1) when observations are used to predict a fu-
ture behaviour for which an alarm has been established, and (2) when
observations are compared directly against the alarm limit to assess the
current situation.

In many civil engineering projects, the former is the case. Typical
examples are civil engineering structures that have a sequential load
increase during construction, such as the excavation of a rock tunnel
where each blast round implies additional loading on the lining [17] or
the staged construction of an embankment [11]. Then, measurements
from each stage can be used to predict the final behaviour, implying
that the predicted final behaviour is compared against the alarm
threshold rather than the current behaviour. Thus, if pF,T is expected to
be violated because of the next load increase, the prepared contingency
actions need to be put into operation before the load increase is made.
This is possible when the loading is completely under human control
(i.e., time invariant).

The latter case, where measurements only relate to the current si-
tuation, can be exemplified with piezometric measurements of uplift
pressure during the remedial grouting of a dam foundation; too large
uplift pressure may cause sliding failure of the dam [25]. As a future
piezometric pressure would be difficult to predict, the alarm threshold
for when to drill relief wells to reduce the pressure must relate to the

Table 3
Simulation constants used in the example.

Constant Value

pF,T 0.001
p0 0.1
τ 0.1
N · κ (Subset sim.) 5000 · 2
NMC (crude MC) 150 000
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current situation. The threshold must therefore also account for the
lead-time of this contingency action (cf. Fig. 2), such that the uplift
pressure increase can be stopped before the required pF,T is violated.

Application of the proposed algorithm is most straightforward to
structures of the former category, i.e. when observations are used to
predict a future behaviour and the alarm threshold does not need to
account for a lead-time because of a time-variant load. Regarding the
time-variant situations (see Section 2), the proposed procedure can be
extended to cases with predictable load changes and deterioration,
given that the variation with time, t, of the variables can be described in
the limit state function: =XG t( , ) 0. Presuming full correlation between
measurements of the variable X1 at the time ti and those at the later time

+t ti lead (i.e. after the potential lead-time tlead, if contingency actions
were put into operation at ti), Eq. (8) can be extended to

+ + + =XP G t t X t t x t t p( ( , ) 0 ( ) ( )) .i i ilead 1 lead 1,alarm lead F,T (28)

Having established +x t t( )i1,alarm lead with the proposed algorithm
(Table 1) as a percentile Palarm of X1 (cfr. Fig. 3), the sought alarm
threshold for ti is then obtained from the corresponding percentile of X1
at ti:

=x t P X t( ) ( ( )).i i1,alarm alarm 1 (29)

Conceptually, Eqs. (28) and (29) imply that the alarm goes off at ti if
the measurement of X1 is found in the same percentile as the percentile
that was cut off by the alarm threshold truncation occurring when the
algorithm was run for the predicted situation at +t ti lead. To establish
such time-variant alarm thresholds, the structural model needs to be
time dependent and have sufficient accuracy and temporal resolution to
allow evaluation and interpolation for every measurement that is taken.
Consequently, the procedure can quickly become very computationally
expensive.

As discussed in Chapter 2, false alarms can both be costly and re-
duce the credibility of the alarm. In the context of structural mon-
itoring, false alarms can be adhered to a scenario where the alarm
malfunctions and goes off even though the observed structural beha-
viour is acceptable, e.g. because of some technical or human error. Such

situations are, in our opinion, best addressed by other means a risk
management, such as quality control of the installation of the alarm
system. Note that a correctly measured violation of the alarm threshold,
that is not causing failure, should not be interpreted as a false alarm in
the context of time-invariant loads, as the remaining margin to failure
does not satisfy the required pF,T.

6.2. Inequality or equality information?

A possible objection to using alarm thresholds to ensure structural
reliability is that all information in the performed measurement is not
used; i.e., if the measurement data were treated as equality information
such that = =XZ h{ ( ) 0}, instead of treating the data as inequality in-
formation (Eq. (5)), the updated failure probability pF Z would poten-
tially be more reduced. We believe, however, that the use of alarm
thresholds has a practical advantage over direct computation of pF Z, as
this allows simple offline readings on site. This makes the principle of
an alarm threshold easy to communicate to the staff at the construction
site, which is beneficial from a risk management perspective. Thus,
reliability-based alarm thresholds can straightforwardly be im-
plemented by the designing engineer as a part of a monitoring plan,
such as the plan required by Eurocode 7 for geotechnical structures.
This would be an improvement compared to today’s practice, where
alarm thresholds normally are established on a less rigorous analysis.
The use of equality information requires, in comparison, rather so-
phisticated online computer computations during the course of con-
struction before it can be decided whether a contingency action is
needed or not.

6.3. The concept of acceptable failure probability

As the proposed algorithm uses a limit state function to establish the
alarm threshold, it requires a clear definition of failure, i.e., un-
satisfactory behaviour. For many civil engineering structures, this is
achieved by defining a bearing capacity. However, the establishment of
an alarm requires a measurable parameter; preferably, it should also be
easy to observe. For many structures, deformation is such a parameter.
Consequently, the limit state needs to be possible to formulate in terms
of deformation (or strain); fortunately, this can often be achieved with a
finite element analysis as suggested in the proposed algorithm, as this is
a displacement-driven method. However, in rock engineering, for ex-
ample, some types of unsatisfactory behaviour may be difficult to de-
scribe accurately with a limit state function; see e.g. [56–58].

The applicability of linear analyses in establishing alarm thresholds
for civil engineering structures in the ultimate limit state needs to be
further studied, in particular for those made of brittle materials such as
concrete and rock. For example, the linear limit state function in Eq.
(23) was in the example only seen as a serviceability limit state and

Fig. 5. Simulation results for the concrete beam. a) The remaining sample (in black), given that ε < εalarm. b) The last generated subset sample, given that G(X) < ck
and ε < εalarm.

Table 4
Calculation results: alarm thresholds in terms of both bending strain and ver-
tical deformation, as well as the total calculation time and the average calcu-
lation time for one iteration of step 3 in the algorithm (Table 1).

Subset sim. Crude Monte Carlo sim.

Parameter Analytical model FEM Analytical model FEM

alarm [millistr] 0.0670 0.0678 0.0661 0.0659
ualarm [mm] 1.11 1.11 1.10 1.10
ttot [s] 61 1781 452 4543
t̄ [s/iter. of step 3] 15 375 113 110
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would not be applicable if one were interested in the failure of the
beam; a reinforced concrete beam only behaves linearly until the first
crack appears and the bearing capacity can exceed this limit by orders
of magnitude. To extend the structural model to cover any nonlinear
behaviour, e.g. plasticity or creep, to capture a realistic failure in the
ultimate limit state would require more effort in the modelling and
description of the related uncertainties. In addition, this would ob-
viously increase the computational cost in solving the structural model
significantly. For brittle failures that are expected to progress quickly, it
may be favourable to define unacceptable behaviour at the point where
the failure progression is expected to be initiated, rather than where it is
expected to end with structural collapse; as a consequence, the alarm
threshold then needs to be established with a safety margin to the point
where failure progression is initiated.

7. Conclusions

We have presented a general computational algorithm for estab-
lishment of reliability-based alarm thresholds for civil engineering
structures. The algorithm is based on subset simulation with in-
dependent-component MCMC and can be used both with analytical
models and finite element models to evaluate the limit state function.
The alarm threshold is established such that the target failure prob-
ability is satisfied as long as the observations do not violate the
threshold. The concept is mainly applicable to sequentially loaded
structures, where the observations can be used to predict the final be-
haviour. We believe that the proposed algorithm may prove useful in
preparing monitoring plans for construction projects, in particular in
geotechnical engineering where observations of structural behaviour
often are required during construction. Contingency actions are then
only implemented when they are needed to satisfy the target prob-
ability of failure.
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