
Softw Syst Model
DOI 10.1007/s10270-015-0486-9

REGULAR PAPER

Design notations for secure software: a systematic literature review

Alexander van den Berghe1 · Riccardo Scandariato2 · Koen Yskout1 ·
Wouter Joosen1

Received: 25 July 2014 / Revised: 2 July 2015 / Accepted: 10 July 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract In the past 10years, the research community has
produced a significant number of design notations to repre-
sent security properties and concepts in a design artifact.
These notations are aimed at documenting and analyzing
security in a software design model. The fragmentation of
the research space, however, has resulted in a complex tangle
of different techniques. Hence, practitioners are confronted
with the challenging task of scouting the right approach from
a multitude of proposals. Similarly, it is hard for researchers
to keep track of the synergies among the existing notations, in
order to identify the existing opportunities for original con-
tributions. This paper presents a systematic literature review
that inventorizes the existing notations and provides an in-
depth, comparative analysis for each.

Keywords Security · Notation · Software design ·
Empirical study

Communicated by Prof. Alexander Pretschner.

This research is partially funded by the Interuniversity Attraction
Poles Programme Belgian State, Belgian Science Policy, and by the
Research Fund KU Leuven.

B Alexander van den Berghe
alexander.vandenberghe@cs.kuleuven.be

Riccardo Scandariato
riccardo.scandariato@chalmers.se

Koen Yskout
koen.yskout@cs.kuleuven.be

Wouter Joosen
wouter.joosen@cs.kuleuven.be

1 iMinds-DistriNet, KU Leuven, 3001 Leuven, Belgium

2 Software Engineering Division, Chalmers and Göteborg
University, 41756 Göteborg, Sweden

1 Introduction

Dealing with security right from the start in a software devel-
opment project has the potential of avoiding higher costs
related to fixing security flaws later on. Ideally, security con-
cerns should be tackled as early as the software design phase.
This is the central tenet of security by design, which is advo-
cated by both industry and academia.

To ensure that the security considerations of a design do
not remain in the head of the designer, thereby evaporat-
ing over time, and also that analysis and verification tasks
can be performed at the design level, the security aspects
need to be explicitly represented within the design of the
software system. This implies that a designer needs to have
access to a concrete technique that supports the recording of
security-relevant information in relation to the design. This
paper focuses on approaches that enable this, by offering
support for explicitly representing and/or analyzing security
concepts and properties in a software designmodel,whichwe
will henceforth refer to as notations for security. For exam-
ple, an approach that includes a graphical convention for the
designer with the purpose of indicating which parts of the
software system are subject to access control is considered as
a notation. Clearly, notations are only one aspect of security
by design. We acknowledge that, besides notations, design
methodologies are equally important, as well as design sup-
port tools, such as security patterns and the like. However,
these are outside the scope of our work.

To elaborate on this point a bit further, this paper consid-
ers secure design notations separate from any methodology
that they possibly belong to. A secure design methodology
supports the process of converting security requirements into
a design that satisfies these requirements, and can range from
a set of guidelines to a predefined sequence of steps. In con-
trast, a notation for security (as defined above) offers a way

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-015-0486-9&domain=pdf

A. van den Berghe et al.

to explicitly represent or analyze the security aspects of a
design. As mentioned before, a designer eventually needs
such a concrete way of representing security at the design
level, with the purpose of documentation, analysis, and ver-
ification, irrespective of the methodology that is followed (if
any).

A methodology can either rely on one or more notations
to achieve its goals, or it can be defined without specific
security notations in mind. This allows the designers to
apply the methodology using any notation that they see fit.
The question remains whether a notation, when proposed as
part of a methodology, can be considered separately from
this methodology. We argue that we can separate both for
the purpose of this paper, because we only focus on the
security-specific aspects that currently can (or cannot) be
represented in a design, rather than the process of incorpo-
rating them into it. Of course, some notations will be more
adequate for use with one methodology than with another.
Also, note well that we by no means intend to suggest that
using a suitable notation will lead to a design secure by itself.
Indeed, a notation does not take away from the careful rea-
soning that the designer must perform whenever designing a
secure system. Nevertheless, a good notation can support the
designer in expressing the outcome of this process in a nat-
ural manner (using what could be called a domain-specific
language for security) and serve as input for an analysis
process.

Within this context of design notations for security, the
research community has produced a sizeable number of
approaches in the past ten years that are aimed at document-
ing security concepts and analyzing security properties in a
software design model. The fragmentation of the research
space, however, has resulted in a complex tangle of differ-
ent techniques, which might have hindered the emergence
of a leading approach that could be taken up and promoted
by the industry. Hence, practitioners are confronted with the
challenging task of scouting the right approach from a mul-
titude of proposals. Similarly, it is hard for researchers to
keep track of the synergies among the existing approaches,
in order to identify the existing opportunities for original
contributions.

We define three research objectives tomitigate these prob-
lems. First, we want to create an inventory of the existing
notations and characterize each notation from the perspec-
tive of its applicability. For instance, we want to assess
whether tool support is provided and whether the notation
is specific to a given design style (e.g., service-oriented
architectures, rather than data-centric systems). Second, as
there are multiple facets to security, such as confidentiality,
integrity, auditability, and so on, we want to create a map
of which notation is suitable for each of the aforementioned
security concerns. Third,wewant to assess towhat degree the
notations (and associated techniques) are validated in real-

istic conditions, which is a measure of the reliability of an
approach.

This paper achieves our objectives via a systematic lit-
erature review (particularly, a mapping study) that we have
performed to disentangle the domain of notations for secure
software design. We followed the methodology of Kitchen-
ham et al. [41]. This means that the selection of the papers
being included in this study has been dictated by a precise,
repeatable process. As a result, we ended up analyzing 42
papers, corresponding to a total of 28 notations. This paper
is accompanied by a web site containing all the “raw” data
used to compile the information presented here, togetherwith
additional tables and graphs that might be of value for the
interested reader [71].

The results of this empirical study show that most nota-
tions are very specialized with respect to the security
concerns they address, which is possibly a reason for the
fragmentation of the research space mentioned above. The
study also shows that several security concerns (such as
auditability and availability) are poorly covered. This is
even more the case when it comes to analyzing a design
with respect to those concerns. Further, most design nota-
tions lack a credible validation. These results are of interest
to both researchers and practitioners. Practitioners can use
this overview as a shopping guide to find the most suitable
technique. Researchers can leverage this study to determine
where the interesting opportunities for original contribution
lie.

The remainder of this paper is structured as follows. Sec-
tion 2 summarizes the research questions addressed by this
study, and Sect. 3 describes the research methodology. Sec-
tions 4–6 present our findings, which are discussed in Sect. 7.
Section 8 outlines the limitations of this study. Finally, Sect. 9
discusses the relatedwork, and Sect. 10 presents the conclud-
ing remarks.

2 Research questions

The goal of this study is to inventorize and characterize
the existing notations and associated techniques in the field
of secure software design. This is achieved by means of a
systematic analysis of the relevant literature. As mentioned
before, the study addresses three research questions.

RQ1: Applicability. What is the practical applicability of
existing notations for secure software design? The paper
starts by building a general overview of the state of the art.
In this study, software design refers to both architectural and
detailed design. The notations are then characterized in terms
of their scope (e.g., do they specifically apply to service-
oriented architectures?) and their tool support. Clearly, these

123

Design notations for secure software: a systematic literature review

Fig. 1 This study employs
three search methods to collect
the relevant papers

aspects are valuable to practitioners that are scouting for a
notation to use in their projects.

RQ2: Coverage. What security concerns are addressed by
each notation? The purpose of the second research question
is to link the notations and associated techniques to specific
security concerns. Such concerns are, for example, confiden-
tiality, integrity, and availability. The full set of concerns used
in this study is discussed later on. Practitioners can select use-
ful notations based on the security concerns that matter the
most in their application domain or design project at hand.
Researchers can determine gaps in the state of the art by
assessing which security concerns are not (or rarely) consid-
ered.

Furthermore, notations might have been devised for dif-
ferent purposes. For instance, a notation can focus more on
documenting security decisions in a software design for the
sake of tracking such decisions (e.g., to facilitate the mainte-
nance of the software system). Alternatively, the focus could
lie on analyzing software designs in order to verify whether
they satisfy the security requirements (e.g., that unauthorized
users are not able to gain access to confidential data). Practi-
tioners could use this information to further refine the set of
potential notations. For example, practitioners who require
to be able to verify the design (e.g., because of compliance
requirements) would discard notations that do not support
formal analysis.

RQ3: Validation. What evidence is provided that the nota-
tions works? The third and final research question provides
an assessment of how each notation is validated and eval-
uated. The answer to this question is primarily relevant to
practitioners, so that they can better judge the maturity of a
notation and its applicability to real-world cases. However,
the answer to this question alsomatters to researchers, as they
can discover opportunities in the area of empirical research.

3 Methodology

In order to answer the above questions, the authors have ana-
lyzed a large corpus of research papers. We limited the time
frame to a decade, namely from January 2002 until Decem-
ber 2012. We choose to begin from the year 2002 as this
was the point when top-tier publications concerning secure
design notations started to emerge. Notations described in
papers published before this period have either been devel-
oped further (thus being included through later papers) or
have become outdated for current technology.

3.1 Collection of the papers

The papers have been collected according to three comple-
mentary search methods in order to achieve the maximum
coverage of the domain. The search strategy is summa-
rized in Fig. 1. First, we performed a manual search of the
proceedings of several conferences which are particularly
relevant to the domain of software security (i.e., dealing with
security in the software artifacts) and software engineering.
In particular, we have looked into the past ten editions of
the conferences mentioned in Table 1. We also manually
searched the issues of relevant journals that have been pub-
lished over the past ten years, which are also mentioned in
Table 1. These sources were selected based on the experi-
ence of the authors and are not meant to be exhaustive, yet
still representative. In case a source is not considered by the
manual search, we count on the other two search methods to
retrieve relevant papers from it.

Second, we searched through the digital libraries men-
tioned in Table 1 using the search string of Listing 1. Note
that Google Scholar was not used because it imposes a max-
imum length of 256 characters on the search string, which is
not sufficient in our case. However, Google Scholar is still

123

A. van den Berghe et al.

Table 1 Sources for the
collection of research papers

Source Relevant
papers

Conferences
European Conference on Object-Oriented Programming (ECOOP) 0
European Conference on Software Architecture (ECSA) 1
Symposium on Engineering Secure Software and Systems (ESSoS) 4
International Conference on Software Engineering (ICSE) 7
International Symposium on Architecting Critical Systems (ISARCS) 1
Model Driven Engineering Languages and Systems (MODELS) 11
Working IEEE/IFIP Conference on Software Architecture (WICSA) 3
Total 27

Journals
Journal of Systems and Software (JSS) 3

6)MySoS(gniledoMsmetsySdnaerawtfoS
ACM Transactions on Software Engineering and Methodology (TOSEM) 1

3)EST(gnireenignEerawtfoSnosnoitcasnarTEEEI
Total 13

Digital libraries
911)gro.mca.ld//:sptth(yrarbiLlatigiDMCA

CiteSeerX (https://citeseerx.ist.psu.edu) 32
82)moc.egallivgnireenigne.www//:sptth(xednepmoC

IEEE Xplore (http://ieeexplore.ieee.org) 82
ISI Web of Science (https://apps.webofknowledge.com) 122
Springer Link (http://link.springer.com) 12
Total (without duplicate results) 183

instrumental to the search strategy, as described later (e.g.,
to find citations). The search string has been initially con-
structed using terms selected from a set of relevant papers. It
has beenfine-tuned inorder to reduce thenumber of irrelevant
papers using the top 100 results returned by the ACMDigital
Library and CiteSeerX. The search string contains four parts.
The first part (line 1) defines two mandatory terms, while the
second (line 2) delimits the domain of the results to software
design. The third part (line 3) lists all considered security
concerns. The fourth part (line 4) delimits the paradigm in
which the results could be situated.

Listing 1: Search string used to retrieve papers from digital libraries.
1 (secur ∗ AND model ∗) AND
2 ((so f tware AND (develop ∗ OR des ign ∗ OR eng ine ∗ OR a r c h i t e c t ∗ OR

s p e c i f i c a t i o n)) OR (system∗ AND (develop ∗ OR des ign ∗ OR
eng ine ∗ OR a r c h i t e c t ∗ OR s p e c i f i c a t i o n)) OR (a r c h i t e c t ∗ AND
(develop ∗ OR des ign ∗ OR eng ine ∗ OR s p e c i f i c a t i o n)) OR (
app l i c a t i o n ∗ AND (develop ∗ OR des ign ∗ OR eng ine ∗ OR
a r c h i t e c t ∗ OR s p e c i f i c a t i o n))) AND

3 (au then t i c a t i on OR pr ivacy OR (a c c e s s AND c on t r o l) OR
c o n f i d e n t i a l i t y OR s e c r e cy OR i n t e g r i t y OR av a i l ∗ OR account
∗ OR audi t ∗ OR l og ∗ OR au tho r i z a t i on OR (th r ea t AND model ∗)
OR (at tack AND model ∗) OR (i n t r u s i o n AND detec t ∗) OR (
i n t r u s i o n AND model ∗) OR (in fo rmat ion AND f l ow) OR
encrypt ion) AND

4 (model−dr iven OR MDD OR MDS OR MDA OR aspect−o r i en t ed OR AOD OR
AOSD OR AOM OR (un i f i e d AND modeling AND language) OR UML∗
OR (modeling AND language))

Third, we performed the so-called snowballing on inclu-
ded papers. For each paper that is part of the study, snow-
balling consist of retrieving the papers that are cited by
the considered paper (forward snowballing) and the papers
that cite the considered paper as a reference (backward
snowballing). For the forward snowballing, we used the bib-
liography sections of the papers that are part of this study.
Google Scholar was used to perform the backward snow-
balling.

The papers collected through the different search meth-
ods overlap with each other. A majority of 54 papers (out of
96) was found by more than one search method. Of the 42
papers thatwere only foundby a singlemethod, 4 paperswere
obtained frommanual search, 12 came from digital libraries,
and 26 paperswere obtained by snowballing.When only con-
sidering the final set of 42 included papers, a large majority
(30 papers) was found through multiple methods. The digital
libraries and snowballing each account for 6 of the remaining
papers. These numbers show that, while significant overlap
exists between the results from each of the search methods,
it is advisable to use a combination of methods in order to
ensure a broad coverage of the available literature.

Filtering irrelevant papers. The considered conference pro-
ceedings and journal volumes, as well as the results obtained
via the digital libraries and the snowballing, contain many
papers that are not relevant to this study (false positives) and
need to be filtered out.

As shown in Fig. 1, relevance is assessed in two steps. In
the first step (left-hand side of figure), the papers are browsed
and only the title, abstract, and keywords are considered. In
case of doubt, the conclusion section of the papers is also
consulted. Based on this information, a decision is made on
whether to conditionally include the paper in the study. The
papers that pass this initial selection step are then read fully
in order to reassess their relevance in a second filtering step
(right-hand side of figure), and a final decision is made about
the inclusion of each paper in this study.

When assessing the relevance to this study of a given paper
(in both steps), crisp criteria are needed in order to make the

123

Design notations for secure software: a systematic literature review

process objective and repeatable. We have defined both pos-
itive and negative criteria. Negative criteria, when met, yield
to the exclusion of the considered paper. These exclusion
criteria are:

– The paper only mentions security as a general introduc-
tory term or

– is available only as extended abstract, poster, or presen-
tation (no full version)

– is a duplicate of another relevant paper or
– is superseded by another relevant paper.

If no exclusion criteria hold, the paper is assessed vis-a-vis
a list of positive criteria for inclusion. The inclusion criteria
are:

– The paper represents security concerns in software design
or

– analyzes security concerns in software design or
– models attacks or threats in software design or
– validates a notation described in another relevant paper.

If no inclusion criteria are met, the paper is definitively dis-
carded. Note that in case of duplicate papers only the most
recent or most extensive version is included.

As this study is mainly performed by one researcher (with
the support of two more for quality control), due to time and
resource constraints, the authors had to reduce the number of
papers that needed to be reassessed. Therefore, to make the
study feasible, the authors introduced an additional filtering
step (see the gray boxes in the center of Fig. 1). That is, we
excluded from the study those papers that are not published at
top-tier venues. In particular, we considered conferences that
are rated as “A” or higher and journals that are rated “B” or
higher by theExcellence inResearch forAustralia (ERA) ini-
tiative 1.Weassume thatmost interesting andpromisingnota-
tions wind up being published in top-tier venues eventually.

As mentioned in Fig. 1, the collection phase of this study
resulted in the final inclusion of 42 papers.

3.2 Analysis of the papers

For each paper, we start by gathering the type of publication
(e.g., conference vs journal) and the venue of publication.
The paper is then read carefully and classified according to
a multidimensional taxonomy, as described in the remainder
of this section.

Applicability. First, we characterize the applicability of each
notation (see top of Fig. 2). In particular, we categorize the
scope of each notation as being either generic or specific
to a technology (like service-oriented architectures), design

1 http://www.arc.gov.au/era/era_2010/archive/era_journal_list.htm.

concern (like data storage), and so on. Furthermore,we assess
whether tool support is described in the paper and whether
this tool support is publicly available. Clearly, the presence
of a tool is of utter importance for the industrial application
of the notation. However, a publicly available open-source
tool could be of interest for researchers as well. Finally, we
collect the citation count (using Google Scholar) as an initial
approximation to measure each notation’s popularity within
the research community.

Support for security. For each included paper, we list the
security concerns that are addressed by the research work.
As shown in the middle-left part of Fig. 2, the security con-
cerns are divided in declarative properties and operational
mechanisms. Declarative properties are the well-known
CIAA properties (confidentiality, integrity, availability, and
auditability), whereas operational mechanisms are the mech-
anisms used to implement the declarative properties.

Purpose. For a given security concern, a paper can just pro-
pose a way to represent such security concern in a design
model, or also include a technique to verify the model
vis-a-vis the concern (see the middle-right part of Fig. 2).
In this study, a representation is every explicit modeling
notation, either graphical or textual. The representation cate-
gory is further divided into documentation and construction.
Documentation means that the representation is only used
as a mean to record certain security-related design deci-
sions, without serving any other explicit purpose during the
development. Construction means that the representation is
actively used. For example, an annotation about confiden-
tiality could be used to generate glue code to incorporate a
cryptographic library in the implementation. This is often the
case in model-driven engineering.

Analysis is the verification activity that leverages a repre-
sentation in order to check whether a design satisfies the
security requirements. The presence of some support for
analysis could be important for practitioners that have com-
pliance requirements. Analysis can be algorithmic, by which
we mean that the analysis procedure is described algorith-
mically. It can be performed automatically, or by a human.
Conversely, we define an expertise-based analysis as one that
relies on implicit knowledge, requiring human reasoning.
The first type could be less expensive from a management
perspective, provided that good tool support exists. Neither
of the defined analysis types considers the scope, in terms of
addressed security concerns, of a design notation.

Usage. For each paper, practical usage information is also
collected (see themiddle-right part of Fig. 2). This comprises
the types ofmodels that are involved in the notation, aswell as
the notation mechanism that is used. When selecting a nota-
tion, practitioners often have constraints related to their own

123

http://www.arc.gov.au/era/era_2010/archive/era_journal_list.htm

A. van den Berghe et al.

Fig. 2 The papers are
categorized according to the
depicted taxonomy

123

Design notations for secure software: a systematic literature review

development environment. For instance, someone working
on a project that already uses UML as themainmodeling lan-
guage might more likely be interested in a notation that deals
with security concerns in a homogeneous way, i.e., using
the same language. We also record whether any by-product
artifacts are generated, such as security polices expressed in
a domain-specific language. These artifacts could be of use
later on in the software development process.

Validation. As shown at the bottom of Fig. 2, the notation
presented in a paper can have been evaluated in different
ways and with different degrees of rigor. In an illustration, a
notation is applied to a small example as a demonstration of
how the notation works. In a case study, a notation is applied
to an industrial-size project. In an experiment, a notation is
used under controlled conditions and its performance is eval-
uated empirically. Such experiments allow to assess different
aspects of a design notation. For example, an experiment can
assess whether applying the proposed notation improves the
quality of the design, i.e., leads to a more secure design,
compared to other notations. Experiments also provide the
opportunity to asses the usability of a design notation in a
controlled environment. In any case, the paper can provide
different degrees of details with respect to the evaluation.
The full detail category means that a thorough description of
the evaluation procedure is provided, and an analysis of the
results that states the observed benefits and limitations of the
notation, the lessons learned, and so on. This type of descrip-
tion is obviously more valuable. An evaluation without any
details only mentions/claims the existence of the evaluation
without further description. The cases in between are cate-
gorized as “some detail.”

The provider category refers to who performed the evalu-
ation. This can be the authors of the notation themselves,
a third party or a combination of both. Clearly, a third
party evaluation adds credibility to the notation. Finally,
we track the type of application domain (e.g., e-health) in
which the evaluation is situated. This information might be
instrumental to practitioners that are inclined to adopt the
notation and are developing a system in the same application
domain.

3.3 Quality control

The data analysis in this study is mostly performed by a
single researcher. To ensure correctness and objectivity of
the results, two quality control activities have been put into
place.

Calibration via a pilot study. Prior to the study, the above-
mentioned researcher performed the analysis of an initial
set of 12 papers. Another senior researcher has repeated
the analysis independently. The inconsistencies have been

discussed extensively in order to clear any ambiguities and
correct issues in the protocol of the study (for instance, the
list of security concerns has been updated). This guaranteed
a smoother execution of the rest of study, i.e., when the full
set of papers has been considered.

Random quality checks. During the execution of the study,
we have selected a sample containing about 15% of the
papers (out of the 96 mentioned in Fig. 1). This sam-
ple consisted of papers for which the decision to include
or exclude it was difficult, supplemented with randomly
selected papers for which inclusion was reasonably straight-
forward. These papers have been reassessed independently
by another researcher. The second researcher has evaluated
the relevance of the papers using the inclusion/exclusion cri-
teria and also performed the analysis itself.

Concerning the relevance of papers, the researchers dis-
agreed on 3 papers (which belong to the difficult cases added
to the sample), caused by subtle differences in opinion about
the fulfillment of the inclusion criteria. These discrepancies
were resolved through an in-depth discussion on why the
paper is relevant or not, and (when necessary) a refinement of
the inclusion/exclusion criteria for the rest of the evaluation.

A comparison of the analysis results of the relevant papers
showed very few discrepancies (i.e., <5% of the collected
data), which were not systematic (i.e., they were spread over
the various categories of the taxonomy). The discrepancies
mostly originated from a different interpretation of a sen-
tence in the paper andwere also resolved through a discussion
between the two researchers. At all times, a third researcher
would join to allowamajority vote in case the two researchers
could not come to an agreement, but thiswas never necessary.

4 Applicability of the notations (RQ1)

Figure 3 plots the number of publications included in this
study for each year of the 10-year windowwe selected as our
time frame. It seems like the research interest for the topic
of design notations for security has been rather constant over

Fig. 3 Over time, there has been a constant stream of top-tier publica-
tions

123

A. van den Berghe et al.

time, with an average of about 4 top-tier publications per
year. The 42 included papers describe a total of 28 design
notations, which are listed in Table 2. Concerning the nam-
ing convention for the notations, when the original authors do
not explicitly mention a name, we defined one by combining
the name of the main author with a suffix. In this paper, we
provide an analysis of the design notations by aggregating
related papers. The interested reader can find the analysis of
each individual paper online [71]. The companion website
also contains additional tables and graphs that have not been
included in this manuscript.

The large majority of the notations (17) are generic
and do not specialize in a specific application domain (see
Table 2). Among the domain-specific notations, service-
oriented architecture (SOA) is quite popular (6 notations).
Possibly, this architectural style calls for a different approach
to security than conventional distributed software devel-
opment. Existing standards such as WS-Trust [65] and
WS-SecurityPolicy [64] are likely perceived as to low level
from a designer perspective. This could justify the need for
a domain-specific, higher-level notation.

The 3 notations focussing on data security discuss the
general importance of information security with respect to
databases. However, no further reasons are provided con-
cerning the specific security requirements that need to be
addressed in a specialized way at design level.

Finally, 2 notations are very specialized. AMF focusses on
authorization systems, while ADM-RBAC extends a method
for modeling hypermedia and web systems (the method is
defined by the same authors in previous work).

Tool support. UMLsec and SecureUML provide a more
mature tool supportwhich is publicly available for download.
Only 2 other design notations (Hoisl-SOA and Memon-
SECTET) offer the same level of tool support. A striking
total of 12 notations offer no support at all. The remain-
ing 12 notations mention the existence of some kind of
prototype, which, however, is not released. Due to this unbal-
anced situation, we have not investigated further on the
matter of tool support (e.g., licenses, documentation, and
so on). We remark that the general lack of tool support is
a testimonial of a deficiency with respect to maturity in

Table 2 This study analyzes 28
design notations for secure
software

Scope Tool
support

Notation Papers Cit. Cross-ref. G
en

er
ic

SO
A

D
at
ab

as
e

A
ut

hZ
sy
st
em

s

W
eb

sy
st
em

s

T
oo

l

P
ro
to
ty
p
e

ADM-RBAC [16] 4 0 • •
Ahn-AC [3] 9 0 •
Alam-SECTET [4] 26 1 • •
AMF [26] 3 0 • •
Buyens-LP [9] 1 0 • •
FDAF [10,12] 22 0 • •
Georg-AO [20,19] 140 4 •
Giordano-AC [21] 2 0 • •
Gomaa-UML [22] 12 1 •
Hafner-SOA [23] 31 1 •
Hoisl-SOA [25] 4 0 • •
Kim-AC [40] 3 0 • •
Kong-Threat [44] 6 0 •
Mariscal-AC [57] 14 2 • •
Medina-DB [17,18,67] 109 5 • •
Memon-SECTET [48] 0 0 • •
Nakamura-SOA [51,60] 84 3 •
PbSD [1,2] 0 0 • •
Ray-AC [58] 80 3 •
SecureSOA [49,50] 42 1 • •
SecureUML [7,6] 399 15 • •
Sohr-AC [62] 36 0 • •
UML AC [42,43] 143 3 •
UMLS [24] 18 1 •
UMLsec [30,31,33]

[8,35,34] 853 24 • •
Vela-DB-XML [69] 3 0 •
Xu-Petri [72] 83 0 •
Yu-AC [73] 13 0 •

Total 17 6 3 1 1 4 12

123

Design notations for secure software: a systematic literature review

the field of secure software design. In any case, there is a
potential business (or applied research) opportunity in this
area.

Popularity. Citation count is a possible metric to provide
an indication concerning how popular the existing design
notations are within the research community. We count the
citations for each notation (third column in Table 2) as
the sum of the citation counts of each paper included for
this notation. The shown citation counts thus constitute an
upper bound. UMLsec and SecureUML are in the command
position, while Georg-AO, UML AC, and Medina-DB fall
somewhat behind.

Furthermore, limiting the citation count to cross-refere-
nces among the 42 analyzed papers (fourth column in
Table 2), we observe UMLsec and SecureUML taking a
clear lead. These two notations seem to serve as baseline
comparisons with other notations, whereas Georg-AO, UML
AC, and Medina-DB barely distinguish themselves anymore
among the other notations.

Clearly, the citation count is influenced by age. The 2most
referential notations mentioned before were among the first
to introduce security notations into software design. UMLsec
was introduced in 2001, and SecureUML was first published
in 2002. However, being early alone seems insufficient to
become popular. In fact, Georg-AO, UML AC, and Medina-
DB were also published in 2001–2002, but their citation
count is not as high.

Interestingly enough, the two most referenced nota-
tions have a different level of specialization. UMLsec is
broadly applicable and covers a variety of security con-
cerns. SecureUML is more specific and geared toward
role-based access control only. It seems like ‘popularity’
favors these two extremes rather than notations in the middle
ground.

Furthermore, an obvious commonality between the most
referenced notations is that they are all based onUML. Using
a widespread modeling language such as UML is likely to
increase usability and hence adoption.

A final important quality concerning the popularity of
notations is their continued development, i.e., publications
with new additions. All the top notations have been extended
throughout the 10-year window considered by this study,
either by including support for additional security concerns
or by providing further validation.

5 Coverage of security concerns (RQ2)

Table 3 maps the identified notations to the security concerns
that they support both declarative properties and operational
mechanisms (seeSect. 3.2). The reader can appreciate that the
number of design notations addressing each concern varies

Table 3 Summary of the security concerns addressed by each design
notation

Declarative Operational

Notation C
on

fid
en

ti
al
it
y

In
te
gr
it
y

A
va

ila
bi
lit
y

A
ud

it
ab

ili
ty

P
ri
va

cy

A
cc
es
s
C
on

tr
ol

A
ut

he
nt
ic
at
io
n

L
og

gi
ng

C
ry
pt

og
ra
ph

y

T
ot
al

ADM-RBAC • 1
Ahn-AC • 1
Alam-SECTET • 1
AMF • 1
Buyens-LP • 1
FDAF • • 2
Georg-AO • 1
Giordano-AC • 1
Gomaa-UML • • • 3
Hafner-SOA • • • 3
Hoisl-SOA • • • 3
Kim-AC • 1
Kong-Threat • 1
Mariscal-AC • 1
Medina-DB • • 2
Memon-SECTET • • 2
Nakamura-SOA • • • 3
PbSD • 1
Ray-AC • 1
SecureSOA • • • • 4
SecureUML • 1
Sohr-AC • 1
UML AC • 1
UMLS • 1
UMLsec • • • • • 5
Vela-DB-XML • • 2
Xu-Petri • 1
Yu-AC • 1

Total 4 7 0 2 0 20 5 2 7

‘•’ means the notation offers some kind of support for the concern

strongly. With 20 design notations, access control is by far
the most supported security concern. A possible explana-
tion for its popularity is the fact that a number of relevant
standards, for example, role-based access control (RBAC,
[59]), are widespread and well-described in the literature.
These standards provide a solid guideline for incorporating
access control into design. Incidentally, most of the notations
addressing access control do not cover any other security
concern, i.e., access control is mostly considered in isola-
tion. Integrity and cryptography are distant second in terms
of coverage (7 notations each). Notably, availability and pri-
vacy are not considered at all in the investigated literature.

Table 3 also shows that a majority of 18 notations con-
sider only a single security concern, with 15 of these focusing
exclusively on access control. In general, most notations spe-
cialize in a small number of security concerns. Only one
notation (UMLsec) is more complete in terms of coverage,
having five (out of nine) security concerns covered. This spe-
cialization makes it difficult to single out one notation to be
used in larger and more complex design projects, which typ-
ically entail several security requirements of diverse nature.

Among the notations considering multiple concerns, only
3 are domain independent (UMLsec, Gomaa-UML and
FDAF). Developing a design notation that is both generic

123

A. van den Berghe et al.

in scope and broad in coverage seems to be a challenge that
only few are willing to tackle.

Looking at the declarative properties and operational
mechanisms separately, the first observation is that 20 nota-
tions only consider operational mechanisms. It is worth
noting that only 3 notations (Hafner-SOA, Kong-Threat, and
Xu-Petri) work solely with declarative properties. Thus, con-
sidering declarative properties alone is rare. This may be
due to declarative properties being rather closely related
to requirements, whereas operational mechanisms are more
solution-oriented, and easier to integrate in a software design.
However, declarative properties are important because they
allow to trace the rationale behind operational mechanisms
adopted in a design. This rationale is often instrumental in
preserving the integrity of the design and to avoid decay over
time. Finally, it is remarkable that of the 5 notations that sup-
port both declarative properties and operational mechanisms
(Hoisl-SOA, Memon-SECTET, Nakamura-SOA, Secure-
SOA, and UMLsec), 4 are oriented toward service-oriented
architectures. It could be that there is a larger need to declar-
atively specify security concerns in service-oriented designs,
or perhaps that it is easier to do so because of the rather high
abstraction level of such designs.

5.1 Purpose of the design notations

Wehave further investigated the purpose of each design nota-
tion (i.e., the type of support provided) with respect to the
security concerns it covers. A notation can provide just a way
to represent the security concern in a design or can also pro-
vide the means to perform some form of analysis. These two
aspects are further detailed in Sects. 5.2 and 5.3, respectively.

First, we start with some general observations, based on
Tables 4 (representation) and 5 (analysis), which provide a
more detailed view on the information fromTable 3. Figure 4
graphically summarizes these two tables in order to make the
gaps in the coverage more visible.

Except for availability and privacy, each of the security
concerns in the taxonomy of Fig. 2 (middle-left part) can be
represented by at least two notations. However, only five of
the considered concerns canbe analyzed, so in general, analy-
sis is not as well supported as representation. A total of 17
notations provide support for representation only, 8 notations
provide support for both representation and analysis, and 3
notations provide support for analysis only. These last three
cases (Buyens-LP, Kong-Threat, and Xu-Petri) perform their
analysis on top of existing representations and design mod-
els, without extending them for the sake of security. That
is, these approaches use an implicit representation for the
security concerns. Buyens-LP extracts the intended access
policy from the documentation and architecture, whereas
Kong-Threat and Xu-Petri require the designer to model the

Table 4 Representation support of the different design notation for
each security concern

Representation Declarative Operational

Notation C
on

fid
en

ti
al
it
y

In
te
gr
it
y

A
va

ila
bi
lit
y

A
ud

it
ab

ili
ty

P
ri
va

cy

A
cc
es
s
C
on

tr
ol

A
ut

he
nt
ic
at
io
n

L
og

gi
ng

C
ry
pt

og
ra
ph

y

T
ot
al

ADM-RBAC C 1
Ahn-AC D 1
Alam-SECTET C 1
AMF C 1
Buyens-LP 0
FDAF D D 2
Georg-AO D 1
Giordano-AC C 1
Gomaa-UML D D D 3
Hafner-SOA D D D 3
Hoisl-SOA C C C 3
Kim-AC D 1
Kong-Threat 0
Mariscal-AC C 1
Medina-DB C C 2
Memon-SECTET C C 2
Nakamura-SOA C C C 3
PbSD C 1
Ray-AC D 1
SecureSOA D D D D 4
SecureUML C 1
Sohr-AC D 1
UML AC D 1
UMLS C 1
UMLsec C C C C C 5
Vela-DB-XML C C 2
Xu-Petri 0
Yu-AC D 1

Total 4 5 0 2 0 19 5 2 7

Possible values are Documentation (D) or Construction (C). An empty
cell means no support

intended behavior using sequence diagrams and petri nets,
respectively.

We also note that analysis is found almost exclusively
among notations specializing in a single security concern,
with UMLsec being the only exception. Finally, among the
11 notations providing support for analysis, only 4 notations
(Georg-AO, Kong-Threat, UMLsec, and Xu-Petri) consider
security concerns beyond access control.

5.2 Representation support

Table 6 summarizes the representation put forward by each
notation and indicates the design models that are involved.
Among the modeling languages used to represent the secu-
rity concerns, UML [53,54] is by far the most common
language (23 notations). Furthermore, Hoisl-SOA also uses
SoaML [56] and UML4SOA [47], both of which are UML
extensions and thus increase UML’s dominance even fur-
ther. A likely reason for UML’s popularity is that it offers
an extensive modeling language for software development
and provides several extension mechanisms such as profiles
and metamodel extension. Using such an existing, extensible
language allows the authors of a notation to focus on the new

123

Design notations for secure software: a systematic literature review

Table 5 Analysis support of the different design notations for each
security concern

Analysis Declarative Operational

Notation C
on

fid
en

ti
al
it
y

In
te
gr
it
y

A
va

ila
bi
lit
y

A
ud

it
ab

ili
ty

P
ri
va

cy

A
cc
es
s
C
on

tr
ol

A
ut

he
nt
ic
at
io
n

L
og

gi
ng

C
ry
pt

og
ra
ph

y

T
ot
al

ADM-RBAC 0
Ahn-AC 0
Alam-SECTET 0
AMF A 1
Buyens-LP A 1
FDAF 0
Georg-AO E 1
Giordano-AC 0
Gomaa-UML 0
Hafner-SOA 0
Hoisl-SOA 0
Kim-AC 0
Kong-Threat E 1
Mariscal-AC 0
Medina-DB 0
Memon-SECTET 0
Nakamura-SOA 0
PbSD A 1
Ray-AC 0
SecureSOA 0
SecureUML A 1
Sohr-AC A 1
UML AC E 1
UMLS 0
UMLsec A A A A 4
Vela-DB-XML 0
Xu-Petri E 1
Yu-AC E 1

Total 1 3 0 0 0 7 2 0 1

Possible values are Algorithmic (A) or Expertise-based (E). An empty
cell means no support

elements they introduce for their representation, instead of
having to define the syntax and semantics from the ground up.

Taking a closer look at the diagrams used, we observe that
UML class diagrams are by far the most used by notations. In
fact, only a single UML-based notation, Hoisl-SOA, does not
support class diagrams. UML sequence, activity, and collab-

Table 6 The representations provided by the notations are largely based
on UML

UML-based

Notation C
la
ss

di
ag

ra
m

Se
qu

en
ce

di
ag

ra
m

A
ct
iv
it
y
di
ag

ra
m

C
ol
la
b
or
at
io
n
di
ag

ra
m

O
th

er
U
M
L

di
ag

ra
m
(s
)

N
on

-U
M
L

di
ag

ra
m
s

Mechanism

ADM-RBAC • AC policy modeled separately

Ahn-AC • • • AC policy modeled separately
+ OCL constraints

Alam-SECTET • Separate model + SECTET-
PL rules

AMF • AC policy modeled separately
+ OCL constraints

Buyens-LP (no explicit representation)

FDAF • Aspect represents security con-
cern

Georg-AO • • • Aspect (static and dynamic
view) models

Giordano-AC • AC policy defined using visual
models

Gomaa-UML • • Security service classes

Hafner-SOA • • OCL-like expression added to
elements

Hoisl-SOA • • Secure Pins, Stereotypes and
Notes

Kim-AC • • RBAC artifacts modeled using
aspect model

Kong-Threat (no explicit representation)

Mariscal-AC •
Policy defined in separate mod-
els (Role-slice, User, delegation
diagrams)

Medina-DB •
AC policy and logging defined
using tagged values and OCL
constraints

Memon-SECTET • • Stereotypes + SECTET-PL
rules

Nakamura-SOA • • Stereotype + attributes

PbSD • Association as a class + stereo-
types + OCL constraints

Ray-AC • • RBAC artifacts modeled using
aspect model

SecureSOA • • UML classes with stereotypes

SecureUML • • Association as a class + Stereo-
types + OCL constraints

Sohr-AC • • Separate model + OCL con-
straints

UML AC • • UML Class and Object dia-
grams model policy and rules

UMLS • • • • Labels
UMLsec • • • • Stereotypes + Tagged values

Vela-DB-XML •
Stereotypes + Tagged values
+ Rules (modeled as UML
classes)

Xu-Petri (no explicit representation)

Yu-AC • • Policy in separate model +
OCL constraints

Total 22 5 5 5 6 4

Fig. 4 Several gaps can be
observed in the overall coverage
of security concerns Declarative properties Operational mechanisms

123

A. van den Berghe et al.

Fig. 5 The dominance of
construction design notations is
largely due to access control

oration diagrams follow at considerable distance, each being
used by only 5 notations. Other UML diagrams, e.g., deploy-
ment and object diagrams, are rarely used. This difference in
popularity indicates two trends. First, the notations focus on
the structural aspects of security concerns. Second, the nota-
tions are more oriented toward the detailed design phase than
the architectural design phase.

Documentation versus construction. Before delving deeper
into the actual representations used by the notations, we
first briefly look into the type of representation. Recall from
Sect. 3.2 that the representation can be used just to document
the security concerns, or as a starting point to construct other
artifacts. A first observation from Table 4 is that 14 notations
use their representation constructively, while the representa-
tion of 11 notations serves as documentation only. Recall that
3 design notations do not propose any custom representation
at all. In a model-driven setting, support for construction is
often expected, whichmay explainwhymore notations focus
on this aspect. Nevertheless, the numbers for the two types
do not lie far from each other.

A closer look at how the types of representation are dis-
tributed over the security concerns (Fig. 5) indicates that
the observed difference is largely due to access control. A
representation for access control properties indeed allows
for a straightforward use in further development phases.
One possibility is to generate a run-time access control pol-
icy from it. For example, Giordano-AC generates XACML
policies, and both Hoisl-SOA and Nakamura-SOA generate
WS-SecurityPolicy specifications for web services. Further-
more, this canbe complementedwith enforcement logic (e.g.,
SecureUML can be used to generate skeleton implementa-
tions for the EJB and .NET platforms). Another option is the
creation of test cases that verify the implementation of the
policy, which is done by AMF and UMLsec, for example.

Finally, note that all design notations that use the repre-
sentation for constructive purposes do so for one or more
operational mechanisms. This is not surprising, given that
the generation of an artifact requires sufficiently concrete

information. The operationalmechanisms capture such infor-
mation better than the declarative properties, which specify
requirements rather than solutions. Nevertheless, 4 nota-
tions (Hoisl-SOA, Memon-SECTET, Nakamura-SOA, and
UMLsec) consider also declarative properties for artifact
generation.

UML-based notations. Todiscuss the large number of design
notations based on UML, we divide them into four broad
types, namely notations that (1) use standard UML elements;
(2) use UML extension mechanisms; (3) combine UMLwith
other languages; or (4) use UML in an aspect-oriented way.
The following paragraphs discuss each of these types inmore
detail.

Four notations (Ahn-AC,AMF, Sohr-AC, andYu-AC) use
standard UML class diagrams to model (role-based) access
control policies, augmented with OCL to specify constraints
such as separation of duty. Ahn-AC also employs collabo-
ration diagrams to model dynamic aspects of access control
such as checking permissions. It is worth noting that standard
UML is only used by notations focusing on access control.

The most common way in which UML is used, with a
total of 12 notations, is extending it with security-specific
elements. The manner in which these notations extend UML
varies strongly, though. On one hand, there are lightweight
extensions that define new stereotypes and tagged values, for
example, using a UML profile. On the other hand, there are
heavyweight extensions in which the UMLmetamodel itself
is extended with new elements, or new diagram types are
defined.

An example of a lightweight extension is Medina-DB,
which adds tagged values to classes in order to indicate the
security levels and roles of the annotated classes. Supple-
mented with OCL constraints, these tagged values define an
access control policy. Similarly, UMLsec defines an exten-
sive UML profile containing various stereotypes and tagged
values. For example, a class that contains confidential infor-
mation can be stereotyped as “critical,” and the “secrecy” tag
is used to specify the confidential data itself. Gomaa-UML,

123

Design notations for secure software: a systematic literature review

Nakamura-SOA, and PbSD make similar use of stereotypes
to model their security concerns.

UML AC goes a bit further than the above notations, by
not only adding stereotypes but also giving a new interpreta-
tion to object diagrams. The authors use object diagrams to
graphically model both policy rules and constraints. A policy
rule for assigning a role to a subject is modeled as an object
diagram containing two objects, which represent the subject
and the role. The objects are connected by a stereotyped link.

UMLS proposes a heavyweight extension, by adding so-
called labels to, for example, standard UML classes and
attributes, in order to model access control information such
as the owner of an attribute, and who is allowed to read it.
Another example is Vela-DB-XML, which adds, among oth-
ers, new types of classes to model the rules that are used for
modeling access control and logging policies.

A number of notations define new diagram types, based on
existing UML elements. For example, Mariscal-AC defines
four new diagrams, mostly using class diagram elements,
for modeling access control. The secure subsystem diagram
models the public interface that is subject to access control.
The role-slice diagram models the role hierarchy and spec-
ifies, for each role, the allowed and disallowed operations.
The user diagram models the assignment of users to roles,
and the delegation diagram models how users may delegate
their roles.

Rather than just extending UML itself, some design nota-
tions combine UML with one or more other languages.
Hoisl-SOA, for example, combines UML, SoaML, and
UML4SOA, in order to represent security concerns for SOA
applications at multiple levels during the development. First,
themetamodel for UML activity diagrams is extended to rep-
resent security requirements at the business level, by adding
new elements (e.g., SecurePin and SecureNode) and new
semantics (usingOCLconstraints). Furthermore, SoaMLand
UML4SOA are extended to model security at the service
level. Hence, Hoisl-SOA extends the different modeling lan-
guages in a complementary manner in order to represent the
security concerns.

SecureUML, in contrast, merges its security design lan-
guage with the design language that is used to design the
system into a so-called dialect language. UML is used as the
concrete language for the security concerns, and the authors
only demonstrate this approach using design languages
which are subsets of UML (in particular, ComponentUML
and ControllerUML). This leaves the feasibility of merging
with design languages that are not based on UML as an open
question.

SecureSOA uses the SecureUML dialect mechanism to
merge Fundamental Modeling Concepts (FMC) [37], more
specifically FMC block diagrams, as a design language
with their security design language. The FMC metamodel
is extended with SecureSOA-specific concepts, where UML

classes and stereotypes are used as concrete syntax for the
security concerns of these concepts.

Finally, four notations use UML in an aspect-oriented
way. FDAF represents a security concern as an aspect,
whose different pieces must be woven into the design
at hand. The aspect encapsulates both the attributes and
the operations that are required for the security concern.
For example, the role-based access control aspect [12]
defines, among others, a CreateRoleSession and a
CheckRolesForActionsoperation.The formermust be
woven in after each login operation, while the latter must be
attached to the execution of every user request.

The three other aspectual notations use one or more mod-
els to define their security aspects. Georg-AO defines authen-
tication protocols using UML class and sequence diagrams.
Kim-AC uses UML class and sequence diagrams to repre-
sent role-based access control aspects. Similarly, Ray-AC
uses UML class and collaboration diagrams for this purpose.
To use these notations, these aspect models must eventually
be woven into the design model(s) of the system itself.

Non-UML-based notations. We have identified only two
notations that do not use UML for their representation,
namely ADM-RBAC andGiordano-AC. Both define a visual
language for role-based access control. They introduce mod-
els for defining roles, with their mutual relations, and
assigning permissions to roles. Furthermore, access control
policies can be generated using both notations. ADM-RBAC
supports the generation of access tables, whereas Giordano-
AC generates XACML policies.

Despite their similarities, both notations have different
reasons for defining their own modeling language. ADM-
RBAC is an extension of the Ariadne Development Method
(ADM), a web system development methodology by the
same authors [15]. In contrast, Giordano-AC explicitly aims
to be usable by all different kinds of users, from develop-
ers to top-level enterprise managers. To achieve this aim, the
authors decided to construct a specially crafted visual lan-
guage.

Interaction with design models. How the security-specific
representations provided by a notation interactwith the (often
already existing) model of the software system is another
interesting point of viewbesides the usedmodeling language.
By abstracting the notation mechanisms given in Table 6, we
identified four different interaction types that are used by the
notations (see Table 7).

First, annotations can be used to add security informa-
tion to the existing system model elements. For example,
UMLsec defines stereotypes and tagged values to annotate
several UML elements with security requirements. In total,
11 notations take this route.

123

A. van den Berghe et al.

Table 7 A large majority of
design notations either annotate
system design models or
provide separate models

Notation Annotation Separate element Aspect Separate model

ADM-RBAC •
Ahn-AC •
Alam-SECTET •
AMF •
Buyens-LP
FDAF •
Georg-AO •
Giordano-AC •
Gomaa-UML •
Hafner-SOA •
Hoisl-SOA •
Kim-AC •
Kong-Threat
Mariscal-AC •
Medina-DB •
Memon-SECTET •
Nakamura-SOA •
PbSD •
Ray-AC •
SecureSOA •
SecureUML •
Sohr-AC •
UML AC •
UMLS •
UMLsec •
Vela-DB-XML •
Xu-Petri
Yu-AC •
Total 11 1 4 9

Second, separate elements that represent the security con-
cerns can be added to the existing models. These elements
differ from annotations in that they also have a mean-
ing on their own. Gomaa-UML introduces separate service
classes encapsulating security concerns. For example, an
AccessControlAgent in [22] offers operations to ver-
ify whether a user is authorized to use certain services. The
authors explicitly choose to clearly separate security from the
rest of the application in order to reduce the complexity of
the design and to allow the reuse of services across different
applications. It is noteworthy that no other notation takes this
route.

Third, aspects are used to model security concerns inde-
pendently from the specific application context. The aspects
are then instantiated by weaving them into a given design.
For example, Georg-AOmodels authentication using a UML
class diagram and a sequence diagram. In order to provide
authentication in a software system, these two models are
woven into their corresponding system design models. The
weaving is a mostly manual process in which the designer
defines the mapping of the elements in the aspect and design
models. Next to Georg-AO, three other notations (FDAF,
Kim-AC, and Ray-AC) follow a similar route.

Fourth, separate models can represent security concerns
orthogonal from the main design. The difference with the
above aspect-based notations is that separate models are not

Table 8 A summary of the analysis techniques used by each notation

Notation Analysis technique

AMF UML + OCL and Alloy
Buyens-LP Set theory
Georg-AO OCL + Alloy
Kong-Threat Graph grammar
PbSD UML + OCL
SecureUML OCL
Sohr-AC UML + OCL
UML AC Graph
UMLsec Model checking + Theorem proving
Xu-Petri Petri net
Yu-AC UML

incorporated into the software design models. For exam-
ple, Giordano-AC models access policies in separate models
orthogonal to the software being designed. Thus, the policy
and design models are developed and maintained indepen-
dently from each other. Interestingly, all 9 notations using
separate models consider only access control, indicating that
for other concerns it may not be feasible to model them
orthogonally to the rest of the design.

5.3 Security analysis support

As mentioned before, only 11 design notations support the
analysis of security concerns. As shown in Table 8, most

123

Design notations for secure software: a systematic literature review

notations combine different types of techniques for analysis.
A recurring technique is the use of OCL constraints (Object
Constraint Language, [55]) which are applied to UML dia-
grams and verified via constraint solvers.

Algorithmic analysis. From Table 5, it follows that 6 nota-
tions offer an algorithmic analysis (according to the definition
of algorithmic given in Sect. 3.2). It is remarkable that, except
for UMLsec, these notations are all limited to access control.
This is likely due to the fact that requirements concerning
access policies are rather clear and unambiguous, thereby
allowing easier (algorithmic) analysis.

UMLsec bases its analysis on the notion of an adver-
sary with certain knowledge and behavior. It utilizes several
formal methods, such as theorem provers and model check-
ers, to perform the actual analysis. For example, a UMLsec
design, together with the adversary model, can be translated
to Promela, allowing the Spin model checker to automati-
cally verify whether the adversary can successfully violate a
security requirement [35].

Among the five notations supporting an algorithmic analy-
sis for access control, Buyens-LP is the only one not relying
on OCL. Buyens-LP allows to analyze a software archi-
tecture for least privilege and separation of duty violations
by deriving a so-called Task Execution Model (TEM) from
the architecture and its documentation. The TEM identifies
the relations between principals and the tasks the system at
hand can perform (i.e., it represents the policy defined in the
architecture). The analysis consists of verifying whether the
TEM is consistent with the intended policy as defined by the
requirements. Note that the analysis is agnostic to how the
intended policy is described, i.e., the actual representation of
the intended policy is not part of the notation.

The remaining four notations supporting an algorithmic
analysis (AMF, Sohr-AC, PbSD, and SecureUML) use OCL
constraints to analyze access control policies, although they
differ in how they use OCL. AMF and Sohr-AC both gen-
erate possible system states and verify these against OCL
constraints that specify, for example, separation of duty con-
straints. It is worth noting that AMF also uses Alloy to verify
whether the designed policy conforms to the formal specifi-
cation by generating test cases.

PbSD, on the other hand, works with templates of com-
mon security patterns (e.g., RBAC), which are modeled in
UML and are augmented with template OCL constraints.
The patterns are instantiated into application models, and
PbSD verifies whether the pattern application conforms to
the multiplicities, cardinalities, and language specified by
the pattern template. Furthermore, the OCL constraints are
verified within the application in which the security pattern
is instantiated.

SecureUML uses OCL to formalize parts of the models
to be analyzed, as well as the access control properties to be

verified. The required semantics of the used dialect (the com-
bination of SecureUMLand a design language) are expressed
using OCL. The properties to be verified are consequently
expressed as OCL queries which are verified against snap-
shots (i.e., run-time instances) of the dialect metamodel or
policy model. The provided machinery allows an automatic
analysis of the modeled RBAC policies.

Expertise-based analysis. Some of the notations support-
ing an expertise-based analysis (Georg-AO, Kong-Threat,
and Xu-Petri) require the designer to manually define the
sequence of steps in an attack and to relate these steps to the
elements of the design. In particular, Georg-AO represents
possible attacks as aspects using UML class and sequence
diagrams. Each generic attack must be instantiated in the
context of the software under development. Therefore, the
designer must have in-depth knowledge of the workings of
the attack in question, and know how it relates to the software
at hand. Kong-Threat and Xu-Petri require the modeling of
threats (which must be gathered through risk analysis) using
UML sequence diagrams and petri nets, respectively. Again,
extensive knowledge on how a threat can exploit the software
being designed is required.

An alternative analysis approach is followed for Yu-AC,
where scenarios for verifying the defined access control
policy are generated from so-called operation invocation pat-
terns. These patterns are manually defined by a designer and
constrain the initial state and allowed sequence of operation
invocations. It is up to the designer to select and define the
most interesting patterns (i.e., those that are most likely to
show faults in the policy).

Finally, UML AC analyzes an access control policy by
verifying whether all reachable states satisfy the access con-
trol constraints. These constraints are derived from the access
control model (e.g., a role must have at least one associated
permission for RBAC) and the application domain (e.g., only
treating physicians may access a patient file in a medical
application). The actual analysis consists of a designer ver-
ifying whether the policy rules, which control the reachable
states, can violate any of the constraints. If a violating policy
rule is found, this rule must be refined in order to mitigate
the violation.

6 Validation of the notations (RQ3)

Table 9 summarizes the type of validation that is performed
for each design notation. In Fig. 6, the data from Table 9
are combined with the information about the level of detail
provided in the papers describing the validation.

Almost all notations are illustrated by means of one or
more examples. However, these illustrations are generally
lacking in detail as far as their documentation is concerned.

123

A. van den Berghe et al.

Table 9 The notations are
mostly validated through
(poorly documented) illustrative
examples. Table shows for each
notation the number of
validations per validation
technique

Notation Illustrations Case studies Experiments Total

ADM-RBAC 1 1 2
Ahn-AC 0
Alam-SECTET 1 1
AMF 1 1
Buyens-LP 5 5
FDAF 2 2
Georg-AO 2 2
Giordano-AC 1 1 2
Gomaa-UML 1 1
Hafner-SOA 1 1
Hoisl-SOA 2 2
Kim-AC 2 2
Kong-Threat 1 1
Mariscal-AC 1 1
Medina-DB 2 1 3
Memon-SECTET 1 1
Nakamura-SOA 2 2
PbSD 2 1 3
Ray-AC 1 1
SecureSOA 2 2
SecureUML 2 2
Sohr-AC 0
UML AC 2 2
UMLS 1 1
UMLsec 6 7 13
Vela-DB-XML 1 1
Xu-Petri 1 1
Yu-AC 1 1

Total 44 9 3 56

Fig. 6 Most notations are lacking a credible validation

This could pose some issueswhen it comes to learning a given
notation. However, the most striking observation is that, in
most cases, the validation does not go beyond the illustrative
examples that are used to demonstrate the notation. Such
illustrations have their use to initially show the applicability
of a notation or highlight particular strengths of a technique,
but they are typically small and, to some extent, crafted to
showcase the strengths of the notation at hand. Very few
notations are validated by means of a controlled experiment
or a case study (in both cases, 3 notations). Concerning the

case studies, only two are documented in full detail, meaning
that they provide an in-depth analysis of the application of
the design notation. Case studies are an interesting form of
evaluation as they put the notations to the test in realistic
industrial conditions. However, we acknowledge that case
studies are costly in terms of time and effort. Furthermore,
it is not always possible to carry out a case study because it
can be challenging to find an interested industrial partner for
a novel technique for instance.

Next to the limited quality of the validation, we also
observed limitations as far as quantity is concerned. The
majority of the notations only provide one or two evalua-
tions (12 and 10 notations, respectively). In some cases, no
evaluation is provided at all (see Ahn-AC and Sohr-AC in
Table 9). Given that we only consider papers published in
top-tier venues, this was a surprising discovery.

A notable exception is UMLsec, which provides a total of
13 evaluations (see Table 9). Two fully detailed case stud-
ies describe the analysis of a single-sign-on-mechanism of a
search engine at a car manufacturer [8] and a mobile system
architecture at a telecommunication company [34]. These
case studies are performed by industry partners in collabo-
ration with the authors. Incidentally, these are the only cases
we saw of third party validation.

123

Design notations for secure software: a systematic literature review

AlsoMedina-DBreports an in-depth case studyperformed
by the authors, concerning the redesign of an accounting
database for a government agency [17].

PbSD provides a well-documented experiment [2]. The
authors compare their notation to specify access control
policies to directly specifying the policies using SQL and
Oracle’s VPD. This experiment was conducted with 148 stu-
dents as participants divided into two groups. The authors
evaluated, among others, the quality of the resulting access
control policies and the time required to construct them.

ADM-RBAC [16] and Giordano-AC [21] report similar
types of experiments where the authors compare their nota-
tion to an existing one, respectively, NIST RBAC and XGrid.
These experiments lack an in-depth analysis and are per-
formed on a smaller scale.

7 Discussion

To summarize the findings of our study, we identified four
major gaps in the state of the art concerning design nota-
tions for secure software. First, not all security concerns are
equally supported by the existing notations. Access control
is considered by a large number of notations, whereas the
other concerns are more sparingly addressed. In particular,
availability and privacy are completely neglected. Looking
at the possibilities for verifying a design against its security
requirements, we observed that just five out of nine secu-
rity concerns can currently be analyzed. This could represent
a problem when it comes to more critical systems, which
require a higher level of assurance. Second, a large majority
of the notations are highly specialized and address only a
single security concern. Third, most notations are evaluated
using only illustrations. A limited amount of case studies are
documented in the literature, but they mostly belong to one
specific notation. Fourth, the available tool support is gener-
ally limited. We found that only four notations have a tool
that is publicly available for download.

The landscape depicted by this systematic study outlines
that the “secure by design” goal could be very difficult to
attain in practice, given the technological support available
today. If you were the head software designer of a medi-
um/large development project, you would be faced with an
impassable obstacle when selecting a suitable secure design
technique for your team to work with. As an example, take
two security requirements such as the authorization of users
and the auditability of user actions (which are only sketched
here, for the sake of staying general). These requirements are
very common in most of the realistic systems, as observed
during the authors’ own experience of collaboration with
industrial partners. When designing a system that encom-
passes these security concerns, a designer would not find
any notation in our inventory that could be used to docu-

ment the design choices and analyze the resulting design
model vis-a-vis the security requirements. Beyond the spe-
cific example, this would be the case for many other groups
of security requirements. In summary, unless you were con-
cerned with a restricted set of specific security problems,
finding an overarching secure design notation would not be
possible.

The alternativewouldbe to adopt a collectionof synergetic
techniques. As many notations in our inventory are based on
UML, this task appears to be feasible. However, as clearly
visible in Table 6, this would require the designers to deal
with a mix of OCL specification, stereotypes, aspects, and
domain-specific declarative languages. The learning curve
would be rather steep as considerable expertise would be
required. Further, the coherence of the resulting artifacts
would be lost, which might negatively affect the integrity
and soundness of the design over time. In essence, the com-
bination of the existing specialized notations is far from
straightforward.

A charter for future research. Despite a track record of over
ten years of efforts, the research community has yet quite
some way to go in the field of design notations for secure
software. The results of this study can be used to sketch a
guideline for future research. First, there is a need for a com-
prehensive, yet elegant notation that is able to cover themany
concerns of security. Such notation should play the role of
a “one-stop shop” for secure design. From the practition-
ers’ perspective, it is more effective to invest in learning an
approach that winds up being used routinely for all the secure
design tasks faced in the field. Still, it could be useful to have
a modular notation that allows to incrementally extend the
amount of notational concepts that are used, depending on
the complexity of the design task at hand (e.g., as soon as
more security concerns need to be considered). This way, the
endeavor of mastering the notation could be tackled incre-
mentally. Similarly, it is advisable to keep the notation close
to the current practice of software design, which is largely
dominated by the use of UML. Further, the notation should
be applicable to the mostly used design diagrams (includ-
ing class and sequence diagrams), but also stretch to more
abstract design artifacts such as the software architecture and
business processes.

The notation should take care to support the possibility
to analyze its security concerns. This aspect is underval-
ued by the current notations. Especially a tool-supported
algorithmic analysis can provide significant gains concern-
ing the security of resulting systems. Such an analysis can
provide strong guarantees concerning the satisfaction of the
security requirements by a system. The tool support should
shield developers from requiring any specific expert knowl-
edge, e.g., formal methods, minimizing the learning curve

123

A. van den Berghe et al.

and allowing a straightforward incorporation into the used
development process.

To achieve this aim of a thorough notation, two inroads
can be taken. First, one could attempt to merge and extend
the best of the existing work. The challenge, in this case, is to
assemble a coherent and elegant notation, which is far from
trivial. Alternatively, one could start from scratch, although
thiswould be amajor undertaking. In both cases, having a real
impact on the practice of software design should be the main
goal. Therefore, it is advisable to include practitioners in the
loop and join forces in a collaborative effort of the research
community (eventually, via a standardization consortium).
A suggested way to achieve impact is to investigate the real
design needs of practitioners. This has been neglected so far
and could be achieved, for instance, by setting up surveys
with practitioners.

Finally, the community should take the responsibility of
thoroughly validating future proposals via large case studies
and multiple controlled experiments.

8 Limitations of the study

As any empirical study, this work also suffers from some
threats to validity. First, the restriction to top-tier journals
and conferences resulted in discarding a considerable num-
ber of papers. This restriction could potentially lead to biased
conclusions. However, we are confident that the final set of
42 papers constitutes a representative subset of all relevant
literature concerning design notations for secure software.
Further, since we selected the top-tier papers, the set of ana-
lyzed articles contains the most influential research work in
the field.

Second, since most of the work in this study is performed
by a single researcher, there is a risk of subjectivity in the
selection of relevant papers as well as in their analysis. To
mitigate this risk, we put in place an elaborate strategy for
quality control (see Sect. 3.3), which, however, does not rule
out entirely the possibility of human errors.

Third, the list of security concerns used in this study (see
Fig. 2) is somewhat coarse-grained. For example, integrity
can be divided further in data and transmission integrity, and
so on. Similarly, privacy is also a complex concern that can be
further decomposed [14]. However, most referential security
taxonomies are similar to ours [5,63].

Finally, there are many aspects that we did not investigate
due to the lack of time and resources. For instance, we did
not look into the usability of the tool support. Further, we
did not assess the learnability of the design notations, e.g.,
by considering whether the notations provide sufficient doc-
umentation. These and other aspects are interesting areas of
future work.

9 Related work

Over the years, various studies comparable to ours have been
performed. We have divided them into three categories: sys-
tematic reviews, surveys, and comparative studies. We will
discuss the work in each of these categories and compare it
to the study presented here.

Systematic reviews The systematic review category only
includes studies that follow the guidelines by Kitchenham
andCharters [41]. Therefore, these studies are closest to ours.
We have identified two other systematic reviews in the area
of secure software design.

Firstly, Nguyen et al. [52] study model-driven security
with a focus on the model-driven aspects such as the usage
of model-to-model and model-to-text transformations by
the approaches. The study analyzes a total of 80 papers
covering UMLsec, SecureUML, and Medina-DB (named
Secure data warehouses). The authors conclude that most
approaches support authorization, especially access control.
Furthermore, the authors observe a lack of thorough semantic
foundations and in-depth evaluation of approaches.

Secondly, Jensen and Jaatun [29] also study security in
model-driven development. Due to their focus on code gen-
eration, the scope of their study is narrower than ours. Also,
their objective is to provide only a rough overview. The
review includes a total of 30 papers, overlapping with four
notations from our study, namely SecureUML, Hafner-SOA,
Alam-SECTET, and Medina-DB. The authors limit them-
selves to a qualitative reflection on the state of the art, without
an explicit comparison of the included approaches. Their
main conclusion is that there is a need for more empirical
studies and standardization.

Surveys The survey category also contains studies that pro-
vide an overview of the domain, possibly including compar-
isons of the different notations. Themajor differencewith the
systematic review category is that a survey is not performed
in a systematic manner, which makes them more difficult to
repeat or update.

Uzunov et al. [68] survey a total of 31 security method-
ologies for distributed systems, including UMLsec (named
MBSE/UMLsec), SecureUML (named Model-Driven Secu-
rity), Alam-SECTET and Memon-SECTET (combined as
SECTET), Georg-AO and Ray-AC (combined as AORDD),
SecureSOA and Gomaa-UML. The authors define secu-
rity methodologies “as systematic approaches combining
security and modern software engineering”, resulting in a
broader scope than our survey. First, the approaches are
classified along four classes: model-, architecture-, pattern-,
or agent-driven methodologies. Furthermore, each approach
is described along different dimensions such as specificity,
security concerns, and supported software development life

123

Design notations for secure software: a systematic literature review

cycle (SDLC) stages. These descriptions are supplemented
with a qualitative discussion of the strengths and weaknesses
of the approaches. Second, the authors evaluate the more
mature methodologies, 18 in total, for industry adoption
according to 12 criteria. Based on these two parts of the sur-
vey, the authors conclude that no ideal security methodology
tailored to industry needs exists. Although each approach has
its merits, more effort is required to advance the state of the
art as state of the practice. The authors list a number of future
directions such as extending the range of security solutions
and encapsulating both security solutions and related knowl-
edge into catalogs.

Dai and Cooper [11] survey 11 approaches, including
SecureUML, Gomaa-UML (named Separating Modelling
of Application and Security Concerns), UMLsec (named
UML/Theorem Prover Approach), and the authors’ own
FDAF. The authors first evaluate the strengths and limi-
tations of each approach individually. Second, the authors
shortly compare the approaches based on the supported
security concerns, the modeling language used, the sup-
ported analysis, and the available evaluation. They conclude
that the wide variety of modeling notations indicates the
need for more thoroughly investigating which are suitable
for modeling and analyzing security concerns. Furthermore,
they remark that additional evaluation of the approaches is
required.

Lúcio et al. [45] provide a detailed survey of five model-
driven security approaches, includingUMLsec, SecureUML,
and SECTET, using a taxonomy based on that used in [36,
39,52]. The authors focus on model-driven aspects such as
model transformations. A main conclusion is that a better
level of maturity should be reached. The authors state that
this requires both building tool support and provide more
systematic industrial experimentation.

Talhi et al. [66] survey 17UML-based approaches (includ-
ing UMLsec, Mariscal-AC, SecureUML, and Ray-AC)
focussing on the usability of UML as security specification
language. The authors group the approaches in five differ-
ent groups based on how they use and/or extend UML. The
groups are stereotypes and tagged values, OCL, behavior dia-
grams, extending the UMLmetalanguage and defining a new
metalanguage. These groups are evaluated for the expressive-
ness, tool support, verifiability, and complexity. The authors
conclude that stereotypes are most usable for security speci-
fication, whereas OCL is not suited. Furthermore, the authors
conclude that creating a new metalanguage is preferable to
extending the UML metalanguage due to the fact that the
latter is too constraining.

Dehlinger and Subramanian [13] survey aspect-oriented
approaches for designing and implementing secure software.
The authors review only three approaches of which one,
Georg-AO, is also included in our study. The approaches
are evaluated using the standards of Shah and Hill [61].

The authors conclude that neither approach measures up
to the standard, and thus further development and evalua-
tion of the approaches are required before they are usable in
an industrial setting. Furthermore, the authors discuss other
aspect-oriented approaches such as secure coding outside the
scope of our review.

Jayaram and Mathur [28] aim to provide a representa-
tive overview of approaches throughout the entire software
development life cycle, without the intention of being com-
plete. Focussing mainly on approaches for requirements
engineering and specification, however, their scope is com-
plementary to ours. The authors consider, amongst others,
SecureUML and UML AC for modeling access control
during requirements engineering and specification. Further-
more, they discuss using UMLsec for the analysis and design
of secure software. They conclude that more research is nec-
essary concerning the use of formal methods in software
security, which ideally leads to the removal of all manual
intervention in every phase of the development life cycle.
Furthermore, the authors conclude more research is required
to better integrate security requirements with system require-
ments and code generation.

Villarroel et al. [70] survey and compare 11 manually
selectedmethodologies includingUMLsec,Medina-DB, and
Georg-AO. To compare the methodologies, the authors use
the comparison framework of Khwaja and Urban [39].
Because this framework lacks security-specific criteria, the
comparison handles security in a rudimentary way. The
authors conclude that there is a need for a standardized
methodology which considers security aspects from the
earliest development stages. Furthermore this methodology
should be an extension of already existing development
methodologies and standards, in order to increase its chance
of adoption.

Kasal et al. [36] survey the position of security in
model-driven development. The authors aim to find which
approaches are applicable to which development problems
and what specific features characterize each technique. The
authors compare six approaches, including UMLsec, using
a framework inspired by that of Khwaja and Urban [39].
The framework compares, among others, the formality, avail-
ability of tool support, and security mechanisms considered
by each approach. The authors conclude that no approaches
for analyzing implementations of modeled systems exist and
that each aspect-oriented approach considers only a single
security mechanism. On the contrary, our study includes
approaches that were not included by Kasal et al. [36], but
that do support implementation analysis (e.g., UMLS) and
aspects for multiple security mechanisms (e.g., FDAF). This
illustrates the advantage of using a broader overview such as
ours as the foundation for more detailed comparisons.

Khan andZulkernine [38] survey secure software develop-
ment mostly from the requirements engineering perspective.

123

A. van den Berghe et al.

Within this scope, the authors discuss 11 security specifica-
tion languages, including SecureUML andUMLsec, and five
security requirements engineering processes. The specifica-
tion languages are compared based on six desired qualities,
partially inspired by the mandatory requirements for security
specification languages outlined by Jürjens [30, chap.4]. Fur-
thermore, the authors note that most languages for specifying
security requirements can also be used for specifying the
design, because the low-level requirements modeled by the
requirements specification languages are very close to design
solutions. We agree with this point, and remark that we have
considered both SecureUML and UMLsec to be design nota-
tions in our study. The authors conclude that there is a need to
further develop security requirements and design specifica-
tion languages, although little guidance is given concerning
the goals that these specification languages should achieve.

Jürjens [32] shortly reports on a number of model-based
development approaches in the field of security and depend-
ability engineering. The approaches include Alam-SECTET,
Medina-DB, Ray-AC, SecureUML, UML AC, UMLS, and
UMLsec. The author concludes with four open problems.
First, security requirements should be traceable through-
out the different phases of the system life cycle. Second,
the verification of legacy implementations against high-level
security concerns is barely tackled. Third, little is known con-
cerning the preservation of security concerns when applying
techniques such as modular composition or decomposition
of system parts. Fourth, the interaction between security and
other nonfunctional requirements requires more attention.

Finally, Hussain et al. [27] provide a rough overview of
the state of the art, divided into four categories: model-
driven methodologies, methodologies having automated tool
support, methodologies having no tool support, and method-
ologies based on formal methods. These categories contain
a total of 24 methodologies, including SecureUML and
UMLsec. No more details concerning the coverage in terms
of security concerns are given, however. The development of
a methodology based on a lightweight application of formal
methods is presented as a direction for further research.

Comparative studies To the best of our knowledge, the only
detailed comparison of two specific notations is performed
in the study byMatulevičius and Dumas [46]. They compare
SecureUML and UMLsec with respect to their applicability
to role-based access control. For the comparison, the authors
use ameeting scheduler systemexample.The intentionof this
comparison is to help practitioners choose the most suitable
approach given their business constraints. The conclusion of
the comparison is that both SecureUML and UMLsec are
applicable for modeling RBAC policies and that they com-
plement each other by providing different viewpoints.

In contrast to such a comparative study, we aim to provide
a broader overview of the existing notations, capturing the

most important characteristics of the various notations, with-
out performing a detailed comparison (on a single case study,
for example). As such, our study is complementary to com-
parative studies, as it can provide a starting point to perform
more in-depth comparisons of the identified notations.

Summary While multiple surveys concerning notations for
secure software design exist, our study is only the third sys-
tematic literature review in this research domain, each of
which has a different focus. In contrast to the existing sys-
tematic reviews (which focus on generating code fromdesign
artifacts), we focus on the actual representation and analysis
of security concerns in software design. This difference in
focus yields limited overlap in surveyed papers by us and
other studies.

Nevertheless, the major findings of all studies (including
ours) are aligned. There exists a wide variety of design nota-
tions, but these notations are scattered, and as such, there is an
opportunity for integration. Also, most of the existing nota-
tions lack a thorough evaluation. Finally, better guidance is
needed onwhich notations to use inwhich concrete situation,
which can be obtained from in-depth comparative studies.

10 Conclusion

This paper has reported the results of a literature review
we conducted in the field of design notations for secure
software. We have systematically scanned the published,
peer-reviewed literature and studied an extensive set of 28
notations. This study plays the role of a field map for a
complex landscape, which is populated by numerous design
techniques. From a practical perspective, software architects
and design teams could use this work as a “buying guide”
when investigating which technique (or techniques) they
could use. However, the authors have the longer-term ambi-
tion to stimulate the research community to reorientate its
research efforts and join forces for the creation of a more
structured and thorough design notation for secure software
systems.

Acknowledgments This research is partially funded by the Research
FundKULeuven and by the EUFP7 project NESSoS, with the financial
support from the Prevention of and Fight against Crime Programme of
the European Union (B-CCENTRE).

References

1. Abramov, J., Anson, O., Dahan, M., Shoval, P., Sturm, A.: A
methodology for integrating access control policies within data-
base development. Comput. Secur. 31(3), 299–314 (2012)

2. Abramov, J., Sturm, A., Shoval, P.: Evaluation of the pattern-based
method for secure development (PbSD): a controlled experiment.
Inf. Softw. Technol. 54(9), 1029–1043 (2012)

123

Design notations for secure software: a systematic literature review

3. Ahn, G.-J., Hong, S.-P., Shin, M.E.: Reconstructing a formal secu-
rity model. Inf. Softw. Technol. 44(11), 649–657 (2002)

4. Alam,M., Breu, R., Hafner,M.:Model-driven security engineering
for trust management in SECTET. J. Softw. 2(1), 47–59 (2007)

5. Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic con-
cepts and taxonomy of dependable and secure computing. IEEE
Trans. Dependable Secure Comput. 1(1), 11–33 (2004)

6. Basin, D., Clavel, M., Doser, J., Egea, M.: Automated analysis of
security-designmodels. Inf. Softw.Technol.51(5), 815–831 (2009)

7. Basin, D., Doser, J., Lodderstedt, T.: Model driven security: from
UMLmodels to access control infrastructures. ACM Trans. Softw.
Eng. Methodol. 15(1), 39–91 (2006)

8. Best, B., Jürjens, J., Nuseibeh, B.: Model-Based Security Engi-
neering of Distributed Information Systems Using UMLsec. In:
Proceedings of the 29th International Conference on Software
Engineering, ICSE ’07, pp. 581–590. Washington, DC, USA
(2007). IEEE Computer Society

9. Buyens, K., Scandariato, R., Joosen, W.: Least privilege analysis
in software architectures. Softw. Syst. Model. 12(2), 1–18 (2011)

10. Dai, L., Cooper, K.: Modeling and performance analysis for secu-
rity aspects. Sci. Comput. Program. 61(1), 58–71 (2006)

11. Dai, L., Cooper, K.: A survey of modeling and analysis approaches
for architecting secure software systems. Int. J. Netw. Secur. 5(2),
187–198 (2007)

12. Dai, L., Cooper, K.: Using FDAF to bridge the gap between enter-
prise and software architectures for security. Sci.Comput. Program.
66(1), 87–102 (2007)

13. Dehlinger, J., Subramanian, N.: Architecting Secure Software Sys-
tems Using an Aspect-Oriented Approach: A Survey of Current
Research. In: Technical Report, Iowa State University (2006)

14. Deng, M., Wuyts, K., Scandariato, R., Preneel, B., Joosen, W.: A
privacy threat analysis framework: supporting the elicitation and
fulfillment of privacy requirements. Requir. Eng. 16(1), 187–198
(2012)

15. Díaz, P., Aedo, I., Montero, S.: Ariadne, a development method for
hypermedia. In:Mayr,H.C., Lazansky, J.,Quirchmayr,G.,Vogel, P.
(eds.) Database and Expert SystemsApplications. Lecture Notes in
Computer Science, vol. 2113, pp. 764–774. Springer, Berlin (2001)

16. Díaz, P., Aedo, I., Sanz, D.,Malizia, A.: AModel-DrivenApproach
for the Visual Specification of Role-Based Access Control Policies
in Web Systems. In: IEEE Symposium on Visual Languages and
Human-Centric Computing, 2008. VL/HCC 2008. pp. 203–210
(2008)

17. Fernández-Medina, E., Piattini, M.: Designing secure databases.
Inf. Softw. Technol. 47(7), 463–477 (2005)

18. Fernández-Medina, E., Trujillo, J., Villarroel, R., Piattini, M.:
Developing secure data warehouses with a UML extension. Inf.
Syst. 32(6), 826–856 (2007)

19. Georg, G., Ray, I., Anastasakis, K., Bordbar, B., Toahchoodee,
M., Houmb, S.H.: An aspect-oriented methodology for designing
secure applications. Inf. Softw. Technol. 51(5), 846–864 (2009)

20. Georg, G., Ray, I., France, R.: Using Aspects to Design a Secure
System. In: Proceedings of the Eighth International Conference on
Engineering of Complex Computer Systems, ICECCS ’02, p. 117.
IEEE Computer Society, Washington (2002)

21. Giordano, M., Polese, G., Scanniello, G., Tortora, G.: A system for
visual role-based policy modelling. J. Vis. Lang. Comput. 21(1),
41–64 (2010)

22. Gomaa, H., Eonsuk Shin, M.: Modelling Complex Systems by
Separating Application and Security Concerns. In: Proceedings
of Ninth IEEE International Conference on Engineering Complex
Computer Systems, pp. 19–28 (2004)

23. Hafner, M., Breu, M., Breu, R., Nowak, A.: Modelling Inter-
organizational Workflow Security in a Peer-to-Peer Environment.
In: Proceedings of 2005 IEEE International Conference on Web
Services, 2005. ICWS 2005. p. 540 (2005)

24. Heldal, R., Hultin, F.: Bridging Model-Based and Language-
Based Security. In: Snekkenes E., Gollmann D. (eds) Computer
Security ESORICS 2003, volume 2808 of Lecture Notes in Com-
puter Science, pp. 235–252. Springer, Berlin (2003). doi:10.1007/
978-3-540-39650-5_14

25. Hoisl, B., Sobernig, S., Strembeck, M.: Modeling and enforcing
secure object flows in process-driven SOAs: an integrated model-
driven approach. Softw. Syst. Model. 13(2), 513–548 (2014).
doi:10.1007/s10270-012-0263-y

26. Hu,H.,Ahn,G.-J.: Constructing authorization systems using assur-
ance management framework. IEEE Trans. Syst. Man Cybern. Part
C Appl. Rev. 40(4), 396–405 (2010)

27. Hussain, S., Rasool, G., Atef, M., Shahid, A.K.: A review of
approaches to model security into software systems. J. Basic Appl.
Sci. Res. 3(4), 642–647 (2013)

28. Jayaram, K.R., Mathur, A.P.: Software Engineering for Secure
Software—State of the Art: A Survey. In: Technical Report
CERIAS 2005-67, Purdue University (2005)

29. Jensen, J., Jaatun, M.G.: Security in Model Driven Development:
A Survey. In: 2011 Sixth International Conference on Availability,
Reliability and Security (ARES), pp. 704–709 (2011)

30. Jürjens, J.: Secure Systems Development with UML. Springer,
Berlin (2004)

31. Jürjens, J.: Sound Methods and Effective Tools for Model-Based
Security Engineering with UML. In: Proceedings of the 27th
International Conference on Software Engineering, ICSE ’05, pp.
322–331. ACM, New York (2005)

32. Jürjens, J.: Security and dependability engineering. In: Koko-
lakis, S., Gómez, A.M., Spanoudakis, G. (eds.) Security and
Dependability for Ambient Intelligence, Volume 45 of Advances
in Information Security, pp. 21–36. Springer, Berlin (2009)

33. Jürjens, J., Lehrhuber, M., Wimmel, G.: Model-Based Design and
Analysis of Permission-Based Security. In: Proceedings of 10th
IEEE International Conference on Engineering of Complex Com-
puter Systems, 2005. ICECCS 2005. pp. 224–233 (2005)

34. Jürjens, J., Schreck, J., Bartmann, P.:Model-Based SecurityAnaly-
sis for Mobile Communications. In: Proceedings of the 30th
International Conference on Software Engineering, ICSE ’08, pp.
683–692. ACM, New York (2008)

35. Jürjens, J., Shabalin, P.: Tools for secure systems development with
UML. Int. J. Softw. Tools Technol. Transf. 9, 527–544 (2007)

36. Kasal, K., Heurix, J., Neubauer, T.: Model-Driven Develop-
ment Meets Security: An Evaluation of Current Approaches. In:
2011 44th Hawaii International Conference on System Sciences
(HICSS), pp. 1–9 (2011)

37. Keller, F., Wendt, S.: FMC: An approach towards architecture-
centric system development. In: Proceedings of 10th IEEE Interna-
tional Conference andWorkshop on the Engineering of Computer-
Based Systems, 2003, pp. 173–182. IEEE (2003)

38. Khan, M.U.A., Zulkernine, M.: A Survey on Requirements and
Design Methods for Secure Software Development. In: Techni-
cal Report 2009-562, School of Computing, Queen’s University,
Kingston, Ontario, Canada (2009)

39. Khwaja, A.A., Urban, J.E.: A synthesis of evaluation criteria for
software specifications and specification techniques. Int. J. Softw.
Eng. Knowl. Eng. 12(5), 581–599 (2002)

40. Kim, S., Kim, D.-K., Lu, L., Kim, S., Park, S.: A feature-based
approach for modeling role-based access control systems. J. Syst.
Softw. 84(12), 2035–2052 (2011)

41. Kitchenham, B., Charters, S.: Guidelines for Performing System-
atic Literature Reviews in Software Engineering. In: Technical
Report EBSE 2007-001, Keele University and Durham University
Joint Report (2007)

42. Koch, M., Mancini, L.V., Parisi Presicce, F.: A graph-based for-
malism for RBAC. ACM Trans. Inf. Syst. Secur. 5(3), 332–365
(2002)

123

http://dx.doi.org/10.1007/978-3-540-39650-5_14
http://dx.doi.org/10.1007/978-3-540-39650-5_14
http://dx.doi.org/10.1007/s10270-012-0263-y

A. van den Berghe et al.

43. Koch, M., Parisi-Presicce, F.: UML specification of access control
policies and their formal verification. Softw. Syst. Model. 5(4),
429–447 (2006)

44. Kong, J., Xu, D., Zeng, X.: UML-based modeling and analysis of
security threats. Int. J. Softw. Eng. Knowl. Eng. 20(6), 875–897
(2010)

45. Lúcio, L., Zhang, Q., Nguyen, P.-H., Amrani, M., Klein, J.,
Vangheluwe,H., LeTraon,Y.:Advances inModel-DrivenSecurity.
Adv. Comput. 93, 103–152 (2013)

46. Matulevičius, R., Dumas, M.: A Comparison of SecureUML and
UMLsec for Role-Based Access Control. In: Databases and Infor-
mation Systems, pp. 171–185 (2010)

47. Mayer, P., Koch, N., Schroeder, A., Knapp, A.: The UML4SOA
Profile. In: Technical report, LMU Muenchen (2010)

48. Memon, M., Menghwar, G., Depar, M., Jalbani, A., Mashwani,
W.: Security modeling for service-oriented systems using security
pattern refinement approach. Softw. Syst. Model. 13(2), 549–572
(2014). doi:10.1007/s10270-012-0268-6

49. Menzel, M., Meinel, C.: A Security Meta-Model for Service-
Oriented Architectures. In: IEEE International Conference on
Services Computing, 2009. SCC ’09. , pp. 251–259 (2009)

50. Menzel, M., Meinel, C.: SecureSOA Modelling Security Require-
ments for Service-Oriented Architectures. In: 2010 IEEE Inter-
national Conference on Services Computing (SCC), pp. 146–153
(2010)

51. Nakamura, Y., Tatsubori, M., Imamura, T., Ono, K.: Model-Driven
Security Based on a Web Services Security Architecture. In: 2005
IEEE International Conference on Services Computing, vol. 1, pp.
7–15 (2005)

52. Nguyen, P.-H., Klein, J., Le Traon, Y., Kramer, M.E.: A System-
atic Review of Model-Driven Security. In: Software Engineering
Conference (APSEC, 2013 20th Asia-Pacific), vol. 1, pp. 432–441
(2013)

53. OMG. OMG Unified Modeling Language (OMG UML),
Infrastructure (2011). OMG. http://www.omg.org/spec/UML/2.4.
1/Infrastructure/PDF

54. OMG. OMG Unified Modeling Language (OMG UML), Super-
structure (2011). OMG. http://www.omg.org/spec/UML/2.4.1/
Superstructure/PDF

55. OMG. OMG Object Constraint Language (OCL) (2012). OMG.
http://www.omg.org/spec/OCL/2.3.1/PDF

56. OMG. ServiceOriented architectureModeling Language (SoaML)
Specification (2012). OMG. http://www.omg.org/spec/SoaML/1.
0.1/PDF

57. Pavlich-Mariscal, J.A., Demurjian, S.A., Michel, L.D.: A frame-
work of composable access control features: preserving separation
of access control concerns from models to code. Comput. Secur.
29(3), 350–379 (2010)

58. Ray, I., France, R., Li, N., Georg, G.: An aspect-based approach
to modeling access control concerns. Inf. Softw. Technol. 46(9),
575–587 (2004)

59. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-
based access control models. Computer 29(2), 38–47 (1996)

60. Satoh, F., Nakamura, Y., Ono, K.: Adding Authentication toModel
Driven Security. In: Proceedings of the IEEE International Confer-
ence on Web Services, ICWS ’06, pp. 585–594. IEEE Computer
Society, Washington (2006)

61. Shah, V., Hill, F.: An Aspect-Oriented Security Framework:
Lessons Learned. In: AOSD Technology for Application-level
Security (AOSDSEC) (2004)

62. Sohr, K., Ahn, G.-J., Gogolla, M., Migge, L.: Specification and
Validation of Authorisation Constraints Using UML and OCL. In:
de Capitani, S., di Vimercati, P., Syverson, D. Gollmann, (eds.)
Computer Security ESORICS 2005. Lecture Notes in Computer
Science, vol. 3679, pp. 64–79. Springer, Berlin Heidelberg (2005)

63. Standard. The Common Criteria: Security functional components.
https://www.commoncriteriaportal.org (2012)

64. Standard. WS-SecurityPolicy v1.3. OASIS Standard incor-
porating Approved Errata. http://docs.oasis-open.org/ws-sx/
ws-securitypolicy/v1.3/errata01/os/ws-securitypolicy-1.
3-errata01-os-complete.html (2012)

65. Standard. WS-Trust 1.4. OASIS Standard Incorporating Approved
Errata. http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/errata01/
os/ws-trust-1.4-errata01-os-complete.html (2012)

66. Talhi, C.,Mouheb,D., Lima,V., Debbabi,M.,Wang, L., Pourzandi,
M.: Usability of security specification approaches for UMLdesign:
a survey. J. Object Technol. 8(6), 103–122 (2009)

67. Trujillo, J., Soler, E., Fernández-Medina, E., Piattini, M.: An engi-
neering process for developing secure data warehouses. Inf. Softw.
Technol. 51(6), 1033–1051 (2009)

68. Uzunov, A.V., Fernandez, E.B., Falkner, K.: Engineering security
into distributed systems a survey of methodologies. J. Univ. Com-
put. Sci. 18(20), 2920–3006 (2012)

69. Vela, B., Blanco,C., Fernández-Medina, E.,Marcos, E.:A practical
application of our MDD approach for modeling secure XML data
warehouses. Decis. Support Syst. 52(4), 899–925 (2012)

70. Villarroel, R., Fernández-Medina, E., Piattini, M.: Secure infor-
mation systems development—a survey and comparison. Comput.
Secur. 24(4), 308–321 (2005)

71. Website. https://people.cs.kuleuven.be/alexander.vandenberghe/
review/overview.html

72. Xu, D., Nygard, K.E.: Threat-driven modeling and verification
of secure software using aspect-oriented petri nets. IEEE Trans.
Softw. Eng. 32(4), 265–278 (2006)

73. Yu, L., France, R., Ray, Indrakshi, Ghosh, S.: ARigorousApproach
toUncoveringSecurityPolicyViolations inUMLDesigns. In: 2009
14th IEEE International Conference on Engineering of Complex
Computer Systems, pp. 126–135 (2009)

Alexander van den Berghe is
a PhD student in the DistriNet
research group of the department
of Computer Science at KU Leu-
ven, Belgium. His main research
interests are in the area of secure
software engineering, focussing
on representing and analyzing
security concerns in the early
design phases.

123

http://dx.doi.org/10.1007/s10270-012-0268-6
http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF
http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF
http://www.omg.org/spec/OCL/2.3.1/PDF
http://www.omg.org/spec/SoaML/1.0.1/PDF
http://www.omg.org/spec/SoaML/1.0.1/PDF
https://www.commoncriteriaportal.org
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.3/errata01/os/ws-securitypolicy-1.3-errata01-os-complete.html
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.3/errata01/os/ws-securitypolicy-1.3-errata01-os-complete.html
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.3/errata01/os/ws-securitypolicy-1.3-errata01-os-complete.html
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/errata01/os/ws-trust-1.4-errata01-os-complete.html
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/errata01/os/ws-trust-1.4-errata01-os-complete.html
https://people.cs.kuleuven.be/alexander.vandenberghe/review/overview.html
https://people.cs.kuleuven.be/alexander.vandenberghe/review/overview.html

Design notations for secure software: a systematic literature review

Riccardo Scandariato received
his PhD in Computer Science in
2004 from Politecnico di Torino.
Since 2014, he is with the depart-
ment of Computer Science and
Engineering, which is shared
between theChalmersUniversity
of Technology and the Univer-
sity of Gothenburg. His main
research interests are in the area
of secure software engineering,
with a particular focus on (i)
empirical methods for security
and (ii) security&privacy in soft-
ware design. He has published

over 50 papers in the area of security and software engineering. He
is an Associate Editor of the International Journal of Secure Software
Engineering (IJSSE) and a member of the Review Editorial Board of
Frontiers in ICT. He regularly participates to the Program Committees
of several top-rated conferences in the area of security and software
engineering.

Koen Yskout is a postdoc-
toral researcher at the iMinds-
DistriNet group of the Depart-
ment of Computer Science at
the KU Leuven in Belgium.
He obtained a master degree in
engineering (computer science)
in 2005 and thereafter joined
the iMinds-DistriNet group as
a researcher. He obtained his
PhD on the use of patterns
for connecting software security
requirements and architectural
design. Since then, he continued
with research focusing on empir-

ical software engineering, secure software architecture and design,
patterns, security requirements, and model-driven development. He
has also been involved in several national and international research
projects.

Wouter Joosen is full profes-
sor at the Department of Com-
puter Science of the Katholieke
Universiteit Leuven in Bel-
gium, where he teaches courses
on software architecture and
component-based software engi-
neering, distributed systems, and
the engineering of secure service
platforms. His research interests
are in aspect-oriented software
development, focusing on soft-
ware architecture and middle-
ware, and in security aspects of
software, including security in

component frameworks and security architectures.

123

	Design notations for secure software: a systematic literature review
	Abstract
	1 Introduction
	2 Research questions
	3 Methodology
	3.1 Collection of the papers
	3.2 Analysis of the papers
	3.3 Quality control

	4 Applicability of the notations (RQ1)
	5 Coverage of security concerns (RQ2)
	5.1 Purpose of the design notations
	5.2 Representation support
	5.3 Security analysis support

	6 Validation of the notations (RQ3)
	7 Discussion
	8 Limitations of the study
	9 Related work
	10 Conclusion
	Acknowledgments
	References

