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Abstract

With the development of the Internet of Things (IoT), the massive data sharing between IoT devices improves the Quality of
Service (QoS) and user experience in various IoT applications. However, data sharing may cause serious privacy leakages to
data providers. To address this problem, in this study, data sharing is realized through model sharing, based on which a secure
data sharing mechanism, called BP2P-FL, is proposed using peer-to-peer federated learning with the privacy protection of data
providers. In addition, by introducing the blockchain to the data sharing, every training process is recorded to ensure that data
providers offer high-quality data. For further privacy protection, the differential privacy technology is used to disturb the global
data sharing model. The experimental results show that BP2P-FL has high accuracy and feasibility in the data sharing of various
IoT applications.
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1. Introduction

With the development of the Internet technology,
the Internet of Things (IoT) is widely used in various
industries [1]. Sensors are an important part of the IoT
and the most important data source for the IoT system.
The perception data collected by a single sensor of-
ten cannot meet users needs, and the real value of the
IoT lies in the comprehensive utilization and sharing
of various data and information [2, 3, 4]. For example,
in healthcare, data sharing can provide valuable health
records, including treatment and physical examination
information, and can offer more targeted treatments
for patients. In industry, by analyzing the collected
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data, data sharing can accurately understand the pref-
erences of tourists and predict future tourism hot spots
to improve the quality of service. However, data shar-
ing in IoT may face various problems. First, it is very
difficult for each pair of organizations to build mutual
trust. As a result, it is unlikely to share reliable local
data. Second, data privacy has become a big problem
that hinders data sharing because data owners suffer
from privacy leakage. Therefore, achieving effective
data sharing is a challenge, especially when these two
problems have not been solved.

Machine learning [5] technologies are widely used
in data sharing. Traditional machine learning tech-
nologies collect data first, and then focus on model
training. However, data collection is often difficult
because data owners are worried about privacy leak-
age. Federated learning is a distributed machine learn-
ing framework, which not only reduces the computing
burden of centralized devices by aggregating the local
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training model of data owners rather than the original
data, but also protects the data privacy of data own-
ers [6]. As a distributed shared ledger and database,
the blockchain [7][8] has the characteristics of decen-
tralization, non-tampering, tracing, collective mainte-
nance, openness, and transparency, which can provide
reliable technical supports for the privacy protection of
data sharing. For example, the blockchain can record
the sharing behavior of each participant who provides
a data model, thus forcing the participants to provide
a reliable data model.

According to abovementioned analysis, we propose
herein a secure data sharing mechanism, called BP2P-
FL, using peer-to-peer federated learning with the pri-
vacy protection of data providers. The contributions
of this paper are summarized as follows:

• A data sharing mechanism based on federated
learning is proposed.This mechanism transforms
the data sharing problem into a model sharing
problem and realizes team-based data sharing.
In addition, the reward and punishment mech-
anism is introduced. Specifically, the data re-
quester will reward and punish each team accord-
ing to the results of data sharing, such that team
members can complete the data sharing with high
quality and reliability. Moreover, the “mortgage-
penalty" mechanism is introduced to further pun-
ish members who provide unreliable data. Each
team can further manage and supervise members,
such that they can efficiently and reliably com-
plete the data sharing tasks.

• Differential privacy is applied to data sharing by
adding a Laplacian to the global data sharing
model, preventing the inference attack initiated
by data requesters and providing further privacy
protection to the data.

• The experiment results show that BP2P-FL
achieves high accuracy and feasibility for
privacy-enhanced data sharing in IoT.

The rest of this paper is organized as follows. Sec-
tion 2 presents the related work. Section 3 introduces
the system model. Section 4 elaborates the proposed
strategy BP2P-FL. Section 5 presents the experiment.
Section 6 concludes this paper.

2. Related Work

Secure data sharing in IoT has drawn an ever-
growing interest, and many data sharing mechanisms
have been proposed.

In [9], the author proposed a secure data sharing
framework using the blockchain and the proxy re-
encryption technology. To perform fine-grained con-
trol on visitors and prevent privacy leakage, [10] pro-
posed a new encryption algorithm based on hierarchi-
cal attributes, which assigns attributes to authorization

centers based on blockchain to realize data security
sharing. In [11], the authors embedded access control
rules into smart contracts to control user access to data
and divided the blockchain into multiple channels to
protect data privacy and security. To solve the problem
of insecure data sharing caused by an untrusted envi-
ronment, [12] proposed an efficient and secure data
sharing model based on the blockchain, which was
based on attribute encryption and can resist multiple
attacks.

Although the encryption and decryption technolo-
gies can effectively protect the privacy and security
of data sharing, they are inefficient in large-scale
computing environments, and federated learning [13]
methods bring new opportunities for data security
sharing. In [14], the authors proposed an efficient fed-
erated learning scheme to ensure data privacy. This
scheme can resist collusion attacks in a distributed en-
vironment and, at the same time, prevent personal data
privacy leakage. To solve the communication over-
head of model training, the authors in [15] proposed
a sparse compression framework suitable for broad-
band constrained environments. In [16], the authors
improved federated learning by evaluating the partici-
pant’s model feedback and the update method of par-
ticipant weights. In [17], the authors combined data
sharing, machine learning, blockchain, and federated
learning to solve the privacy protection problem in
data sharing. Meanwhile, to further optimize feder-
ated learning, the authors in [18] used deep reinforce-
ment learning to select the participating nodes of fed-
erated learning, thereby improving the efficiency of
the data sharing process. In [19], the authors com-
bined federated learning and cryptography to protect
the data privacy of data sharing participants in the so-
cial IoT, and used sparse differential gradient to im-
prove data transmission and storage efficiency. To
solve the security problem of resource sharing under
the Internet of Vehicles, the authors in [20] constructed
a safe and hierarchical federated learning scheme to
protect the privacy of the local data model. Although
the abovementioned work has made positive contribu-
tions to privacy protection, how to ensure the reliabil-
ity of the data sharing process still needs further re-
search. Therefore, this study proposes a data sharing
mechanism based on federated learning to realize the
safe and reliable sharing of data without trust.

3. System Model

We considered the collaborative data sharing sce-
nario in this study. That is, after the data requester
sends a data sharing request, multiple data providers
collaboratively train a data model to realize data shar-
ing. Therefore, two entities should be considered in
this scenario, namely task receivers and the task pub-
lisher. Specifically, a team of users receive data shar-
ing tasks, and each user will participate in the train-
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ing process of federated learning. In this paper, we
call these users data nodes, and they will complete
the blockchain consensus process. Each team has a
team leader who is responsible for receiving data shar-
ing tasks, supervising the federated learning process in
data sharing, and sending the global model combined
with differential privacy to the task publisher, to pre-
vent the task publisher from inferring the privacy in-
formation of data providers. A data requester is also
called the task publisher, that is, the party who needs
data, and usually publishes its own data sharing re-
quest tasks on the blockchain.

Data team

Data team Data team Data team

Data team Data team

Task 

publisher

Blockchain Data team

Data team

Data request task Data model Blockchain networkIcon description

❶

❸ 

❷

❹
 

❺
 

Fig. 1: System architecture.

The blockchain-based data sharing can trace each
data sharing node, ensuring the traceability of data
sharing. Therefore, we consider the alliance chain and
federated learning modules. The blockchain module
establishes a secure connection between all nodes, and
all transactions are packaged into blocks by miners.
Considering audibility, the alliance chain will record
all data sharing records to track the nodes participating
in the data request task and the data usage. The archi-
tecture of the scheme proposed in this article is shown
in Fig. 1. Our proposed architecture includes the fol-
lowing processes: the data requester issues the request
task; the team responds to the task; shared transaction
records are generated; the data nodes reach a consen-
sus; and the data requester issues credit rewards are
generated. The data requester specifically sends the
data request task to the nearby blockchain node. If
it is a new data request, the blockchain node broad-
casts it on the blockchain. The data nodes respond to
tasks in the form of teams. All shared records between
the data requester and the data node are packaged into
shared transactions by the transaction record node. Fi-
nally, the task publisher will give corresponding credit
rewards based on the work completion. The flowchart
of this process is shown in Fig. 2.

Data providers and requesters are not trusted, which
may lead them to act dishonestly. The proposed archi-
tecture is vulnerable to two threats. First, dishonest
data providers may provide false or malicious models,
resulting in unreliable training results. Unreliable data
providers may temporarily withdraw, which will ad-
versely affect the quality and efficiency of the global
model. Second, the data requester may attempt to infer

StartStart

The requester issues a data sharing 

request task

The requester issues a data sharing 

request task

Data team responds to tasksData team responds to tasks

The data team trains the corresponding 

data model

The data team trains the corresponding 

data model

Each training result of team members is 

recorded on the blockchain

Each training result of team members is 

recorded on the blockchain

Whether the training stop 

condition is reached

Whether the training stop 

condition is reached

The data team 

continues to train

The data team 

continues to train

Reach a consensus to package the 

transaction into blocks

Reach a consensus to package the 

transaction into blocks

Data requesters give credit rewards to 

the data team

Data requesters give credit rewards to 

the data team

Update the credit of the data team and 

team members on the blockchain

Update the credit of the data team and 

team members on the blockchain

EndEnd

No

Yes

Fig. 2: Architecture flow diagram.

the data providers’ privacy information from the data
model, resulting in privacy leakage.

4. BP2P-FL Implementation

4.1. Management of Team Members

The traditional blockchain allows individual nodes
that do not trust each other to register; however, but
this method is not suitable for tasks that require col-
laboration. In this article, to ensure the high-quality
completion of the data request task, we propose a new
registration method in which the mutual trust node is
registered as a team. When the data requester issues
the requested task, the team that meets the credit rating
requirements on the blockchain responds to the task.
In other words, the credit rating of each node in the
team meets the requirements.

It is an efficient and mutually beneficial way
for multi-data nodes to complete the assigned tasks
through collaboration. First, the team sponsor ini-
tiates member the recruitment information, and the
team leader S p sets the deadline for the recruitment
response, work tasks, and member requirements. The
member requirements are formulated according to the
specific tasks to be solved, such as quantity and ca-
pacity requirements. The data node registers for the
election according to its own abilities and sends the
work preference to the team sponsor. The team leader
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evaluates the capabilities of the data node and com-
prehensively selects the team members that meet the
requirements. The teaming algorithm is shown in Al-
gorithm 1.

Algorithm 1 Team Construction.

1: The team leader releases team aggregate informa-
tion;

2: Interested data nodes register;
3: Each data node evaluates its job preference Wp

and responds to the team leader;
4: The team leader evaluates the capabilities Ab of

each data node based on the registration materi-
als;

5: The team leader calculates the integrated value
IV = 0.5Wp + 0.5Ab;

6: The first N data nodes are comprehensively se-
lected;

In reality, it is easy to form a team when data nodes
have similar work preferences or complementary work
abilities. However, forming a team based on these
alone will be unreliable, because data nodes may be
selfish(e.g., temporary withdrawal or lazy behavior
in collaborative tasks), which affects the global work
quality and efficiency of the entire team. In response
to this problem, we designed an internal team manage-
ment mechanism based on “mortgage-punishment",
that is, a certain amount of mortgage must be provided
when forming a team, and nodes with the abovemen-
tioned bad behaviors must be “punished" to make up
for the losses of the other nodes. The mortgage is de-
termined by the team to ensure the honesty of each
team member. The mortgage will set the minimum
value, but not the maximum value. The greater the
mortgage of the team member, the higher the cost of
malicious behavior, and the better the honesty of the
team member. Rewards are provided by the task pub-
lisher after the task is completed and distributed based
on contributions. The penalty mechanism within the
team is presented as follows:

punish (Ni) = Nimortgage · k (1)

where, Nimortgage is the mortgage of the data node i,
and the penalty is executed by the team leader. In
a real scenario, the team leader may also be mali-
cious, because this situation will cause greater losses
to the team; therefore, the team leader should mort-
gage more. When the team sponsor has a malicious
behavior, the punishment process will be performed
by the other team members. k is the penalty coeffi-
cient defined as

k =
p + q

v
(2)

where, v is the total number of work rounds to com-
plete the collaborative task; p is the number of tempo-
rary exits; and q is the number of laziness. Thus, the

compensation that each other member can get is

C = punish (Ni) ·
1
N

(3)

Reasonable rewards and punishments are an im-
portant guarantee for team stability. The “mortgage-
punishment" mechanism plays an important role in
maintaining team stability.

4.2. Data Sharing Process

Most of the existing data sharing methods realize
the purpose of data security sharing by encrypting the
data. However, in actual data sharing scenarios, en-
cryption algorithms will reduce the data sharing effi-
ciency. With the increasing demand for data sharing
in a distributed environment, a safer and more efficient
method is to share the data model instead of the origi-
nal data, thereby protecting the data privacy of the data
provider.

After the data requester publishes the data sharing
task, the nodes that own the data will form a team to
respond to the task. Specifically, after a number of
nodes form a team, a member trains a data model lo-
cally selects another data node i from the team, and
sends the model parameters to this node. The data
node i then updates the model parameters according
to the local data and again selects a data node j from
the team and sends the model parameters that it has
trained to the data node j. This process will be re-
peated until the K data nodes jointly verify that the
model reaches the accuracy or maximum training time
required by the requester. The specific steps for data
sharing are as follows:

Step 1: Initiate a data sharing request task: The data
requester initiates a data sharing request. The task
contains the requester’s ID, requested task category,
timestamp, and task level and is signed by its private
key.

Step 2: Team response task: After the data re-
quester publishes the request task, the node connected
to it will first verify its identity, and then search the
blockchain for whether or not the request has been
processed before. The query result is directly returned
if there is a cache record. If it is a new request, the task
will be broadcast on the blockchain, and the data team
that meets the credit requirements will respond to the
task.

Step 3: Training data model: This is the data node
in the above team that responds to the requested task.
These nodes perform joint learning to train the global
model M. An initial data model is generated first. A
private key is then used to sign the model parameters.
Signed model parameters are randomly sent to the next
data node. The next data node updates the model pa-
rameters based on local data and randomly sends them
to the next node. Repeat this process.

Step 4: Generate shared transaction records: All
shared records between the data requester and the data
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node are regarded as shared transactions. These trans-
actions will be packaged into blocks by the transaction
record node. The process is shown in Fig. 3.

Step 5: Reaching consensus: The consensus pro-
cess is executed by the data nodes that perform data
sharing tasks. Each data node competes for the op-
portunity to write transaction records into the block
through the work contribution mechanism. Nodes
with accounting rights broadcast their blocks to other
data nodes for verification. After the verification is
passed, the block is added to the blockchain for fur-
ther audit.

The combination of blockchain and federated learn-
ing not only solves the privacy and security issues
of data sharing in distributed scenarios, but also im-
proves the quality of shared data. The shared records
of each participant can be tracked, making security au-
dits possible. However, a consensus mechanism based
on proof-of-work requires a large amount of resources.
In this study, we propose a consensus algorithm based
on the training model contribution to the improvement
of the computational efficiency in the consensus pro-
tocol.
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Fig. 3: Shared transaction storage model.

4.3. Consensus Mechanism: Proof of Model Contri-
bution (POC)

We transformed the shared data problem into the
shared model problem, which not only protects the
data privacy of the data providers, but also solves the
problem of new data requests. For the collaborative
tasks, we propose a consensus algorithm based on the
data node contribution. The POC can use the training
results of the data nodes to reach a consensus without
additional computing resources. Team members who
meet the level requirements form a consensus node set
responsible for promoting the consensus process and
training the data model to meet the corresponding re-
quirements of the task through cooperation. The pur-
pose of federated learning is to train a global model
as a response to the task requests. A completed model
training means a completed request task.

4.3.1. Inference Attack Prevention
For each data node in the team, the tasks should be

completed locally using the two following steps:
Step1: Use local data to update the received model

parameters and broadcast the results to the other par-
ticipants after the update.

Step2: If each data node has completed the itera-
tion, enter the verification phase. Each data node will
verify the received data (accuracy of the classifica-
tion task and average absolute error of the regression
task). If it does not meet the requirements of the re-
quested task, it will continue training, and the verifi-
cation phase will be recorded as a transaction.
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Fig. 4: Model training process.

Considering the inference attack launched by dis-
honest data requesters, the team leader should add in-
terference to the model because doing so to the local
training model of each team member will reduce the
efficiency of the entire training process. In addition,
because data providers have a certain degree of trust
among team members, adding noise mainly prevents
the inference attacks initiated by the data requesters.
A model protection method based on differential pri-
vacy is designed. Given a random algorithm G, O is
any subset of the set composed by all possible outputs
of G. For two adjacent datasets D and D′ with at most
one different record, G satisfies:

Pr[G(D) ∈ O] ≤ exp(ε) · Pr
[
G

(
D′

)
∈ O

]
(4)

where, E represents the privacy budget, which is usu-
ally a small constant. This suggests that we can apply
the Laplacian mechanism to the global model against
the inference attack by

G̃ = Gm + Lap(∆ f /ε) (5)

where, Gm is the global model of training, and ∆ f is
the sensitivity, as shown in the formula:

∆ f = max
D,D′

∥∥∥G(D) −G
(
G′

)∥∥∥ (6)

Algorithm 2 presents the federated learning algorithm
with differential privacy. Fig. 4 illustrates the process
of model training within the team.

4.3.2. Consensus based on Node Contribution
The consensus-reaching process is executed by the

data nodes participating in the model training, which
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is related to the contribution of each node to the
global model. The process of federated learning is
that each data node is trained on a data node model;
thus, the contribution of each node should be quanti-
fied to achieve fairness, that is, the greater the weight
of the training result in the global model, the greater
the contribution. In addition, after the local training,
we obtained the local and global models of each data
node. These shared transaction records are signed by
the data nodes with their own private keys and broad-
cast to other data nodes. The node contribution serves
as a proof of the node’s training workload.

Algorithm 2 DP-federated learning.

1: for each team member Dt ∈ Dτ do:
2: while Gm meet requirement accuracy or time
≤ train − time max do:

3: Randomly select a participant i within the
team to generate the initial model mi;

4: Participant i randomly select k from
{1, · · · , L}\{k} and send to k;

5: k update model mi to mk based on local
data and randomly send to the next member;

6: end while
7: end for
8: The leader of team disturbance the global model

M, obtain Gm;
9: Return Gm to the data requester

The correlation between the updated local gradient
and the global model gradient is used to measure the
contribution of each node. Specifically, the contribu-
tion of each data node is balanced based on the cosine
similarity defined as follows:

θk = arccos
〈∇Fk−c(w),∇F(w)〉
‖∇Fk−c(w)‖ · ‖∇F(w)‖

(7)

where, ∇Fk−c(w) = ∇Fk(w)−∇Fk−1(w), ∇Fk−c(w) rep-
resents the node, which is the actual update gradient of
k; ∇Fk(w) is the local update gradient of the kth node;
and ∇Fk−1(w) represents the data node k’s model gra-
dient before update; and ∇F(w) is the gradient of the
global model. According to the formula, a small an-
gle means that the actual update of the data node has a
similar direction to the global model and has a positive
impact on the global model, that is, the contribution to
the global model is greater.

Considering that the actual contribution of a node
can be measured by the above formula, to realize the
the reward fairness, the node that contributes more to
the global model can get more rewards. Therefore, we
propose a reward mechanism based on the contribu-
tion weight ratio. First, we give the mapping function,
which uses a similarity-based perspective, to measure
the actual contribution of the data nodes as follows:

f = 1 − e−e−θk (8)

After obtaining the contribution through the mapping
function, we use the soft-max function as follows to

calculate the weight ratio of the data node’s contribu-
tion to the global model:

Wk =
e f (θk)∑
k e f (θk) (9)

At the beginning of the consensus process, the data
node with the highest contribution percentage is se-
lected as the node that records the transaction by vot-
ing. The accounting node is responsible for packaging
all previous shared transactions and the global model
into a block and broadcasting the block to all data
nodes. The data node verifies the generated block.
After the verification of each data node, the node re-
sponsible for generating the block will broadcast the
block signed with its private key to all nodes and write
the block to the blockchain. Another advantage of
our proposed consensus mechanism is that it can pre-
vent the lazy behavior of nodes. In the process of
the multi-party cooperation training model, some lazy
nodes may directly copy the previous model parame-
ters to the next data node. We introduced a credit rat-
ing mechanism to reward or punish data nodes based
on their contributions to promote honest and effective
training of data nodes.

4.4. Credit Management
The original credit of the team leader or each mem-

ber is zero. They can get corresponding credit rewards
after completing related tasks. Considering that the re-
sponsibilities of the team leader and the team member
are different, their credit rewards should be different.
Specifically, the team leader should be rewarded more
than the team members. Similarly, if they are pun-
ished, the team leader will be punished more. A new
contribution-based reward algorithm that achieves fair
rewards and motivates participants to provide excel-
lent training models is designed. In general, the credit
rewards should be given according to the task comple-
tion. That is, for the team leader, the reward is given
by

Cleader
obtain =

1
N

Credit + Wk ·Credit (10)

The team leader guarantees the quality of the entire
data sharing process during the data sharing process
and prevents data requesters from launching inference
attacks; hence, they will obtain more than 1

N C redit re-
ward. Credit is the credit reward provided by the task
publisher, while Wk is the contribution of the weight
ratio data node to the global model. The reward for
each member of the team is given by:

Cobtain =

(
1 −

1
N

)
Wk ·Credit (11)

The credit of each data node is updated by

C = Cbase + Cobtain (12)

where, Cbase is the original credit accumulation of the
data node.

Jo
urn

al 
Pre-

pro
of



7

5. Experiments

5.1. Experimental setup

The simulation was completed on a computer
equipped with a Windows 7 system. The machine
was equipped with an Intel Core i7 processor with
6.4 GHZ CPU frequency. The Python programming
language was used to verify the effectiveness of the
proposed scheme. In this section, we perform an ex-
perimental verification on the proposed scheme. First,
we verified the effectiveness of the proposed data-
based team to complete shared tasks and conducted
experiments on the performance of running on the
blockchain.

5.2. Experimental results

We conducted an evaluation on the mnist dataset
containing 0−9 number categories. The size of each
picture was 28*28, which is widely used for the eval-
uation of the classification tasks. We used this data set
to simulate data fragments in the IoT. We randomly
divided the mnist dataset into multiple partial datasets
to simulate the situation that each data node has small-
scale data in reality. Each team member randomly
had 0−20, 20−40, 40−60, 60−80, 80−100, 100−120,
120−140, 140−160 and 160−180 different data sizes,
with the local batch size set to 128. We will evalu-
ate the proposed scheme from two aspects: different
numbers of team members and different local training
models. The first is to experiment from the perspective
of the number of team members. The experiment set
up three teams of different sizes with different num-
bers of members, each with 100, 150, and 200 peo-
ple. The size of the dataset and the quality of the team
member dataset are randomly distributed, but the team
leader will review and screen each team member be-
fore forming the team. We believe that the data quality
can be guaranteed to a certain extent.

Fig. 5: Training rounds.

Fig. 5 shows the communication rounds and steps
performed within each team. There are 83 steps in a
data group of 100 people, 123 steps in a data group
of 150 people, and 163 steps in a data group of 200
people.

Fig. 6 illustrates the network traffic of each team
during the model training period. The network load of

Fig. 6: Network traffic.

Fig. 7: Test accuracy.
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Fig. 8: Accuracy of adding disturbance.
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Fig. 9: Similarity test.

a 200-person team is not the largest, indicating that the
proposed solution is feasible, and completing the data
sharing tasks in the form of a team will not affect the
efficiency.

Fig. 7 shows the accuracy of the global model de-
livered by teams of different sizes. The classification
accuracy increases as the data scale increases. The red
curve in Fig. 7 depicts the training result of a 150-
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person team using a deeper neural network. At the
end of each team member’s iteration, its accuracy is
lower than the training result of a smaller neural net-
work layer. Therefore, in addition to considering the
data size, the team must also evaluate the models used
in the training.

We took ∆ f = 1 in formula (4), transform the value
of ε, and add disturbance to the global model trained
by a team of 200 people. The results are shown in
Fig. 8. The larger the value of ε, the larger the privacy
budget. The greater the usability, the higher the test
accuracy rate. When ε = 20, the test accuracy rate
can still reach 90%. Even if there is a certain amount
of interference, the model usability can be guaranteed.
The experiments proved that the solution to prevent
the data requester from launching inference attacks is
effective.

In addition, we selected eight data nodes and cal-
culated the cosine similarity with the global model.
As shown in Fig. 9, three of them had a negative im-
pact on the overall model training. In actual scenarios,
different effects on the global model training will be
observed because each person’s data quality and com-
puting ability are different.

We verified the proposed scheme on the Ethereum
platform and set the transaction volume of the
blockchain network to four transactions per second.
According to the strategy mentioned herein, we design
smart contracts such that the nodes that contribute the
most packaged transactions will receive correspond-
ing rewards. The block generation rate was one block
every 2 s. The system and blockchain performance
data were written into the influxdb database. As a
time series database, the influxdb database can record
the performance indicators that change over time. As
shown in Figs. 10 and 11, we obtained the read and
write rate of blockchain data in the database and sys-
tem network status. We also verified that the team
members who have contributed the most to the global
model were responsible for packaging the transaction
records of each shared process into blocks for teams
of 100, 150, and 200 people.

6. Conclusions

The data sharing between IoT devices helps to im-
prove the quality of service and user experience in var-
ious IoT applications; however data sharing may lead
to the privacy disclosure of data providers. To solve
this problem, a secure data sharing mechanism, called
BP2P-FL, was proposed herein using peer-to-peer fed-
erated learning, which can protect data providers’ pri-
vacy by realizing the model sharing instead. More-
over, the blockchain was introduced within the data
sharing, in which every training process is recorded to
ensure that the data providers offer high-quality data.
For further privacy protection, the differential privacy
technology was applied to the global data sharing

model. The experimental results showed that BP2P-
FL has an excellent performance in accuracy and fea-
sibility.
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