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Abstract

A q-ary maximum distance separable (MDS) code C with length
n, dimension k over an alphabet A of size q is a set of qk codewords
that are elements of An, such that the Hamming distance between two
distinct codewords in C is at least n− k+1. Sets of mutually orthog-
onal Latin squares of orders q ≤ 9, corresponding to two-dimensional
q-ary MDS codes, and q-ary one-error-correcting MDS codes for q ≤ 8
have been classified in earlier studies. These results are used here
to complete the classification of all 7-ary and 8-ary MDS codes with
d ≥ 3 using a computer search.

1 Introduction

A q-ary code C of length n, and size M is a set of M elements, called code-

words, of An, where A is an alphabet of size q. The minimum distance d of a
code is the smallest Hamming distance between any two distinct codewords.
A code with these parameters is called an (n,M, d)q code. If A is a finite
field and C is a vector subspace, then C is called linear. A code that is not
linear is called nonlinear. Codes that can be either linear or nonlinear are
called unrestricted.

In the unrestricted case, two codes are called equivalent if one can be
obtained from the other by a permutation of coordinates followed by permu-
tations of symbols at each coordinate separately. These operations preserve
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the Hamming distances between codewords. We say that an (n,M, d)q code
is unique if all codes with the same parameters are equivalent.

An upper bound for the size of an (n,M, d)q code is the Singleton bound,

M ≤ qn−d+1.

Codes meeting this bound are called maximum distance separable (MDS),
and k = n−d+1 is called the dimension of the MDS code. A q-ary MDS code
with length n and dimension k is called an (n, k)q MDS code. MDS codes
have the property that, given any k coordinates, each k-tuple of symbols
from A occurs in the given coordinates in exactly one codeword. It has been
conjectured (the MDS conjecture) that an MDS code with parameters n, k,
and prime power q with 1 < k < n − 1 exists if and only if n ≤ q + 1, with
the exception that when q is a power of two, MDS codes with n = q + 2,
and k = 3 or k = q − 1 exist [21]. The conjecture has been proved for linear
codes when q is a prime by Ball [4] and when q is a power of a prime p and
k < 2p− 2 by Ball and De Beule [5].

MDS codes with d = 1 or k = 1 are unique and they are called trivial ;
the first contains the whole space An and the latter is a repetition code. The
case k = 2 corresponds to sets of mutually orthogonal Latin squares, which
have been classified for q ≤ 9 [7]. MDS codes with d = 2, dimension k and
alphabet size q correspond to k-dimensional Latin hypercubes of order q. For
q = 2, 3, they are trivially unique. Potapov and Krotov [20] give a recursive
formula for the number of (k + 1, k)4 MDS codes but do not classify them
up to equivalence. With small k and q, (k + 1, k)q MDS codes have been
classified by McKay and Wanless [16].

For q = 2, nontrivial MDS codes with d > 2 do not exist. For q = 3,
the only nontrivial MDS code with d > 2 is the unique (4, 2)3 MDS code.
Alderson [1] showed that the (6, 3)4 and the (5, 3)4 MDS codes are unique.
The nonexistence of pairs of mutually orthogonal Latin squares of order 6
implies the nonexistence of nontrivial 6-ary MDS codes with d ≥ 3. For
q = 5, 7 all MDS codes with d ≥ 3, except the (4, 2)7 codes, are equivalent
to linear codes [10]. For q = 5, they are unique, which follows from the
uniqueness in terms of the notion of equivalence of linear codes [6]. For
q = 7, 8, the MDS codes with d = 3 were classified in [10, 11]. For q = 7,
some classification results exist for codes with d > 3 in terms of different
notions of equivalence for linear codes; see for example [9].

In this work, we classify all 7-ary 8-ary MDS codes with n > 3, d > 3
by a computer search to finish the classification of all 7-ary and 8-ary MDS
codes with d ≥ 3. In Section 2, we discuss basic properties of MDS codes
and computational tools used in this work. Section 3 explains the computer
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search used, and the results are given in Section 4. Finally, in Section 5, we
discuss the case d = 2 corresponding to Latin hypercubes for small q.

2 Preliminaries

2.1 MDS codes

The operations maintaining equivalence of unrestricted codes form a group
of order (q!)nn!, denoted by Gn, that acts on An. The stabilizer of a code C

under this action is called the automorphism group of the code, Aut(C).
Let C be an (n, k)q MDS code. For a symbol i ∈ A, we denote by Ci

the (n− 1, k − 1)q MDS code obtained by removing the last coordinate and
retaining the codewords that have symbol i in that coordinate,

Ci = {(c1, c2, . . . , cn−1) : c ∈ C, cn = i}.

Removing a symbol at a given position of each codeword of C yields
an (n − 1, k)q MDS code C ′. This operation is called puncturing. We say
that C is an extension of C ′. An (n, k)q MDS code C is extendable if there
exists an extension of C that is an (n+ 1, k)q MDS code. There is a one-to-
one correspondence between extensions of C (up to the position of the new
coordinate) and labeled partitions of C into (n, k−1)q MDS codes:

⋃

i∈A C ii,
where C ii denotes the code obtained by adding the symbol i at the end of
each codeword in C i, is an extension of C if and only if the sets C i form a
partition of C into (n, k − 1)q MDS codes.

It is known that if a linear code is extendable, it has an extension that is
linear [2]. For fixed q and d and sufficiently large n, an extension of a linear
MDS code is necessarily equivalent to a linear MDS code [3]. However, very
little is known about extending nonlinear codes.

2.2 Tools

We reduce the problem of detecting code equivalence to the graph isomor-
phism problem and use the software nauty [15] for solving the instances. For
an (n,M, d)q code C, we define a colored graph as follows: The graph con-
tains n copies of Kq, the complete graph of order q, named Γ1,Γ2, . . . ,Γn,
colored with color 1. For each i, the vertices in Γi correspond to the elements
in A. For each codeword c ∈ C, there is an additional vertex, colored with
color 2, which is adjacent to the vertex corresponding to the symbol ci in
Γi for each i ∈ {1, 2, . . . , n}. A graph isomorphism preserving the coloring
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permutes the copies of Kq and the vertices in each of them separately, cor-
responding to a permutation of coordinates and permutations of symbols in
each coordinate separately in the code, respectively. Two codes are equiva-
lent if and only if their corresponding graphs are isomorphic. Further, the
automorphism group of a code corresponds to the automorphism group of
the graph. The software nauty can be used to find the automorphism group
of a graph and all isomorphisms between two graphs. For large graphs, we
use nauty in the sparse mode with the random Schreier algorithm enabled.

For a finite set X and a family S of subsets of X , an exact cover is a
subset S ′ of S that partitions X . We use the library libexact [8] for finding
all exact covers, given X and S.

Finally, we use cliquer [17] to find all cliques of given size in a graph.

3 Generation

Given a set C of equivalence class representatives of (n, k)q MDS codes, every
(n+1, k)q MDS code is equivalent to a code that is an extension of a code in
C. This reduces the problem of generating equivalence class representatives
of (n+ 1, k)q MDS codes to the problem of finding all partitions of all codes
in C into (n, k − 1)q MDS codes. For k = 2, this is precisely the method of
extending a set of MOLS with a new Latin square by partitioning the Latin
squares in the set into common transversals, used for example in [7, 13, 14,
19]; for discussion of this and similar problems, see for example [18].

Consider a partition of an (n, k)q MDS code C into (n, k−1)q MDS codes
C i for i ∈ A,

C =
⋃

i∈A

C i.

We have
Cj =

⋃

i∈A

C i
j

and
C i =

⋃

j∈A

C i
jj.

Finding all possible partitions of C into (n, k − 1)q MDS codes can now
be reduced to finding all possible partitions {C i

j}i∈A of Cj for each j and
combining those partitions in all possible ways. Instead of solving the reduced
problem using recursion, our method for finding the partitions of (n, k)q MDS
codes uses the results from finding the partitions of (n−1, k−1)q MDS codes.
In this work, we generate all q-ary MDS codes with k ≥ 3, d ≥ 4 starting
from the MDS codes with k = 2, their partitions, and the codes with d = 3.
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3.1 Algorithm

As an initial step, we find all partitions of the equivalence class representa-
tives of (n, 2)q MDS codes into (n, 1)q MDS codes in the following way. Let
Cn be the set of representatives of (n, 2)q MDS codes. For a given n, we loop

over all Ĉ ∈ Cn+1 and over all n+ 1 punctured codes C ′ of Ĉ. Now, Ĉ is an
extension of C ′ so it induces a partition of C ′ into (n, 1)q MDS codes. We

find the equivalence class representative Ĉ ′ ∈ Cn for which Ĉ ′ ∼= C ′ and find
all g ∈ Gn for which gC ′ = Ĉ ′. Considering how the codewords are mapped
by g, we get partitions of Ĉ ′ into (n, 1)q MDS codes. All partitions of each
element in Cn are obtained in this way, as every such partition corresponds
to an (n+ 1, 2)q MDS code C that is equivalent to some Ĉ ∈ Cn+1.

The algorithm for finding all partitions of an (n, k)q MDS code C into
(n, k − 1)q MDS codes consists of three parts.

1. For each j ∈ A, find all (n− 1, k− 2)q MDS codes that occur as a part

in a partition of Cj into (n − 1, k − 2)q MDS codes. Because Cj
∼= Ĉ,

where Ĉ is a representative whose partitions into (n− 1, k − 2)q MDS
codes are known, this can be solved by finding a g ∈ Gn for which
Cj = gĈ and applying g directly to each partition of Ĉ. Denote the
set of (n− 1, k − 2)q MDS codes found in this step by Sj .

2. Find all subsets D of C that are (n, k − 1)q MDS codes for which
Dj ∈ Sj for each j. This is done by finding all q-cliques in the q-partite
graph where, for each j, each element of Sj corresponds to a vertex
in the jth part, and between two vertices in different parts there is an
edge if the minimum distance between them is at least n− k + 1.

3. Find all partitions of C into (n, k − 1)q MDS codes. This is done
by solving an exact cover problem, where q sets are selected from the
family created in the previous phase such that each codeword in C is
covered exactly once.

We run the algorithm for one representative C from each equivalence class
of (n, k)q MDS codes, and finally perform isomorph rejection for all (n+1, k)q
MDS codes corresponding to the obtained partitions.

3.2 Consistency check

We check the consistency of each phase of the generation by double counting.
The total number of (n + 1, k)q MDS codes is the sum of the sizes of the
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equivalence classes,
∑

C∈Cn+1

|Gn+1|

|Aut(C)|
,

where Cn+1 is the obtained set of equivalence class representatives of (n+1, k)q
MDS codes. On the other hand, the same count can be obtained as follows.
LetN(C) be the number of partitions of an (n, k)q MDS code C into (n, k−1)q
MDS codes. The number of (n+ 1, k)q MDS codes is

∑

C

N(C)q! =
∑

Ĉ∈Cn

|Gn|N(Ĉ)

|Aut(Ĉ)|
q!,

where the first sum is taken over all (n, k)q MDS codes, Cn is a set containing
exactly one representative from each equivalence class of (n, k)q MDS codes,

and N(Ĉ) is the number of partitions of Ĉ obtained by the algorithm.

4 Results

The algorithm was run for q = 7 and q = 8, for each k = 3, 4, . . . , q − 1,
and for each n starting from n = k+ 2 and increasing n until no more codes
were found. The numbers of inequivalent extendable codes are shown in
Tables 1 and 3, for q = 7, 8, respectively, and the numbers of equivalence
classes are shown in Tables 2 and 4. In the tables, the numbers marked
with * are obtained in this work using the method described above. The
previously known numbers are obtained from the classification of one-error-
correcting MDS codes and sets of MOLS, and in addition for q = 7 the MDS
conjecture gives an upper bound for n, and the nonexistence of (10, 3)8 MDS
codes follows form the nonexistence of (9, 2)8 MDS codes. The computations
lasted a few minutes for q = 7 and 21 hours for q = 8; 18 hours were needed
for extending the (9, 7)8 MDS codes.

By comparing the equivalence class representatives with known linear
codes, we see that all 8-ary MDS codes with d ≥ 5 or k ≥ 4, d = 4 are
equivalent to a linear code.

5 MDS codes with d = 2

The preceding part of this work completes the classification of all MDS codes
with minimum distance at least 3 for alphabet sizes at most 8. In this section,
we discuss the remaining case of minimum distance 2. We use a simple
construction to give a lower bound for the number of equivalence classes
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n \ k 2 3 4 5 6 7
3 6
4 2 1
5 1 *1 1
6 1 *1 *1 1
7 1 *1 *1 *1 1
8 0 0 0 0 0 0

Table 1: Number of inequivalent extendable nontrivial (n, k)7 MDS codes

n \ k 2 3 4 5 6 7
3 147
4 7
5 1 1
6 1 *3 1
7 1 *1 *1 1
8 1 *1 *1 *1 1
9 0 0 0 0 0 0

Table 2: Number of equivalence classes of nontrivial (n, k)7 MDS codes

n \ k 2 3 4 5 6 7
3 2 024
4 38 4 470
5 1 *44 36
6 1 *2 *1 12
7 1 *2 *1 *1 7
8 1 *2 *1 *1 *1 4
9 0 *2 *0 *0 *0 *1
10 0 *0

Table 3: Number of inequivalent extendable nontrivial (n, k)8 MDS codes

7



n \ k 2 3 4 5 6 7 8
3 283 657
4 2 165
5 39 12 484
6 1 *39 14
7 1 *2 *2 8
8 1 *2 *1 *2 4
9 1 *2 *1 *1 *2 4
10 0 *1 *0 *0 *0 *1 0
11 0 *0

Table 4: Number of equivalence classes of nontrivial (n, k)8 MDS codes

of (n, n − 1)q MDS codes, or equivalently the paratopy classes of (n − 1)-
dimensional Latin hypercubes of order q, for small q.

We denote by Nn the number of (n, n − 1)q MDS codes and by Mn the
number of equivalence classes of (n, n − 1)q MDS codes. Because each class
contains at most |Gn| = n!(q!)n elements, we get

Mn ≥
Nn

n!(q!)n
. (1)

For small values of n and q, we find lower bounds for Nn and Mn by the
following construction. This construction resembles Construction X4 given
in [12, Chapter 18.7]. We denote by CC ′ the direct sum of codes C and C ′

of lengths n and n′, respectively,

CD = {(c1, c2, . . . , cn, c
′
1, c

′
2, . . . , c

′
n′) : c ∈ C, c′ ∈ C ′}.

Theorem 1. Let C and C ′ be (n1, n1 − 1)q and (n2, n2 − 1)q MDS codes,

respectively. Then

C ′′ =
⋃

i∈A

CiC
′

i

is an (n1 + n2 − 2, n1 + n2 − 3)q MDS code.

Proof. The code C ′′ contains qqn1−2qn2−2 = qn1+n2−3 codewords of length
n1 + n2 − 2. Because the minimum distance of each Ci and C ′

i is 2, the
minimum distance of each CiC

′
i is at least 2. For distinct i, j, any codeword

in CiC
′
i differs from any codeword in CjC

′
j in at least one position in the first

n1− 1 coordinates and in at least one position in the last n2− 1 coordinates.
Therefore, C ′′ has minimum distance 2.
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n \ q 4 5 6 7 8
3 2 2 12 147 283 657
4 5 15 264 248 ≥ 4.8× 107 ≥ 4.6× 1015

5 26 86 ≥ 4.8× 107 ≥ 2.3× 1013 ≥ 6.2× 1025

6 4 785 3 102 ≥ 1.4× 1013 ≥ 9.5× 1018 ≥ 6.9× 1035

7 ≥ 3.5× 109 ≥ 1.5× 103 ≥ 3.1× 1015 ≥ 3.3× 1024 ≥ 6.6× 1045

Table 5: Number of equivalence classes of (n, n− 1)q MDS codes

Because the construction in Theorem 1 maps exactly q! pairs of (C,C ′)
to the same code, this yields a lower bound for the number of (n, n − 1)q
MDS codes,

Nn ≥ max
n′

Nn′Nn−n′+2

q!
. (2)

This lower bound along with the known numbers of (n, n − 1)q MDS codes
and (1) allows us to find lower bounds for the number of equivalence classes
of (n, n− 1)q MDS codes for small n.

Table 5 lists the known numbers of equivalence classes of (n, n−1)q MDS
codes for 4 ≤ q ≤ 8 given in [16] and lower bounds obtained by (1) and (2)
for small values of n. Since the lower bounds for the unknown values are
rather large, except for a few entries, obtaining further classification results
by explicitly constructing representatives from each equivalence class is not
feasible in general.

Finally, we note that [20] gives a double exponential lower bound for Nn

when q ≥ 4:

log2Nn ≥







(

q
2

)n−1
, for even q,

(

(q−3)(q−1)
4

)(n−1)/2

, for odd q.

From (1), it follows that that the number of equivalence classes Mn for q ≥ 4
also has a lower bound that is double exponential in n.
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[11] J. I. Kokkala and P. R. J. Österg̊ard, Classification of Graeco-Latin

cubes, J. Combin. Des., to appear.

[12] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting
Codes, North-Holland, Amsterdam, 1977.

[13] B. M. Maenhaut and I. M. Wanless, Atomic Latin squares of order

eleven, J. Combin. Des., 12 (2004), 12–34.

[14] B. D. McKay, A. Meynert and W. Myrvold, Small latin squares, quasi-

groups, and loops, J. Combin. Des., 15 (2007), 98–119.

[15] B. D. McKay and A. Piperno, Practical graph isomorphism, II, J. Sym-
bolic Comput., 60 (2014), 94–112.

[16] B. D. McKay and I. M. Wanless, A census of small Latin hypercubes,
SIAM J. Discrete Math., 22 (2008), 719–736.

10

http://arxiv.org/abs/1406.3681
http://arxiv.org/abs/1411.5822
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