
GDE3: The third Evolution Step of Generalized Differential Evolution

Saku Kukkonen

Kanpur Genetic Algorithms Laboratory (KanGAL)
Indian Institute of Technology Kanpur

Kanpur, PIN 208 016, India
saku@iitk.ac.in, saku.kukkonen@lut.fi

Jouni Lampinen

Department of Information Technology
Lappeenranta University of Technology

P.O. Box 20, FIN-53851 Lappeenranta, Finland
jouni.lampinen@lut.fi

KanGAL Report Number 2005013

Abstract

A developed version of Generalized Differential Evolu-
tion, GDE3, is proposed. GDE3 is an extension of Dif-
ferential Evolution (DE) for global optimization with
an arbitrary number of objectives and constraints. In
the case of a problem with a single objective and with-
out constraints GDE3 falls back to the original DE.
GDE3 improves earlier GDE versions in the case of
multi-objective problems by giving a better distributed
solution. Performance of GDE3 is demonstrated with
a set of test problems and the results are compared
with other methods.

1 Introduction

During the last 15 years, Evolutionary Algorithms
(EAs) have gained popularity in solving difficult multi-
objective optimization problems (MOOPs) since EAs
are capable of dealing with objective functions, which
are not mathematically well behaving, e.g., discontin-
uous, non-convex, multi-modal, and non-differentiable.
Multi-objective EAs (MOEAs) are also capable of pro-
viding multiple solution candidates in a single run,
which is desirable with MOOPs.

Differential Evolution (DE) is a relatively new EA
and it has been gaining popularity during previous
years. Several extensions of DE for multi-objective

optimization have already been proposed. Some ba-
sic approaches just convert MOOPs to single-objective
forms and use DE to solve these [3, 5, 36].

The first method extending DE for multi-objective
optimization using the Pareto approach was Pareto-
based DE approach [6]. Pareto Differential Evolu-
tion [4] was also mentioned about the same time, unfor-
tunately without an explicit description of the method.
After these, the Pareto(-frontier) Differential Evolu-
tion (PDE) algorithm [2] and a first version of Gen-
eralized Differential Evolution (GDE) [22] were intro-
duced. Later on, Self-adaptive PDE (SPDE) [1], the
Pareto DE Approach (PDEA) [26], Adaptive Pareto
DE (APDE) [37], Multi-Objective DE (MODE) [13],
and Vector Evaluated DE (VEDE) [29] have been
proposed. The latest proposals are a second version
of GDE [21] and DE for Multiobjective Optimiza-
tion (DEMO) [32]. Research demonstrating the per-
formance of PDEA over the elitist Non-Dominated
Sorting Genetic Algorithm (NSGA-II) [9] with rotated
MOOPs has also been reported [17].

Besides solving problems with multiple objectives,
DE has also been modified for handling problems with
constraints [7,23,25,27,33,35]. Most of these are based
on applying penalty functions.

Earlier GDE versions had already the ability to han-
dle any number of objectives and constraints. The lat-
est version, GDE3, introduced in this paper is an at-
tempt to improve earlier versions in the case of multiple
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objectives.

2 Multi-Objective Optimization

with Constraints

Many practical problems have multiple objectives and
several aspects cause multiple constraints to problems.
For example, mechanical design problems have several
objectives such as obtained performance and manufac-
turing costs, and available resources may cause lim-
itations. Constraints can be divided into boundary
constraints and constraint functions. Boundary con-
straints are used when the value of a decision variable is
limited to some range, and constraint functions repre-
sent more complicated constraints, which are expressed
as functions.

A mathematically constrained MOOP can be pre-
sented in the form:

minimize {f1(~x), f2(~x), . . . , fM (~x)}

subject to (g1(~x), g2(~x), . . . , gK(~x))
T
≤ ~0.

(1)

Thus, there are M functions to be optimized and K
constraint functions. Maximization problems can be
easily transformed to minimization problems and dif-
ferent constraints can be converted to form gj(~x) ≤ 0,
Thereby the formulation in Eq. 1 is without loss of
generality.

Typically, MOOPs are often converted to single-
objective optimization problems by predefining weight-
ing factors for different objectives, expressing the rel-
ative importance of each objective. Optimizing sev-
eral objectives simultaneously without articulating the
relative importance of each objective a priori, is of-
ten called Pareto-optimization. An obtained solution
is Pareto-optimal if none of the objectives can be im-
proved without impairing at least one other objec-
tive [28, p. 11]. If the obtained solution can be im-
proved in such a way that at least one objective im-
proves and the other objectives do not decline, then
the new solution dominates the original solution. The
objective of Pareto-optimization is to find a set of so-
lutions that are not dominated by any other solution.

A set of Pareto-optimal solutions form a Pareto
front, and an approximation of the Pareto front is
called a set of non-dominated solutions. From the set of
non-dominated solutions the decision-maker may pick
a solution, which provides a suitable compromise be-
tween the objectives. This can be viewed as a pos-

teriori articulation of the decision-makers preferences
concerning the relative importance of each objective.

Later on in this paper, the obtained non-dominated
set is referred to as a solution, and a member of a non-
dominated set or a population is referred to as a vector
to distinguish these.

Weak dominance relation � between two vectors is
defined such that ~x1 weakly dominates ~x2, i.e., ~x1 � ~x2

iff ∀i : fi(~x1) ≤ fi(~x2). Dominance relation ≺ between
two vectors is defined such that ~x1 dominates ~x2, i.e.,
~x1 ≺ ~x2 iff ~x1 � ~x2 ∧ ∃i : fi(~x1) < fi(~x2). The
dominance relationship can be extended to take into
consideration constraint values besides objective val-
ues. A constraint-domination ≺c is defined here so
that ~x1 constraint-dominates ~x2, i.e., ~x1 ≺c ~x2 iff any
of the following conditions is true [22]:

• ~x1 is feasible and ~x2 is not.

• ~x1 and ~x2 are infeasible and ~x1 dominates ~x2 in
constraint function violation space.

• ~x1 and ~x2 are feasible and ~x1 dominates ~x2 in ob-
jective function space.

The definition for weak constraint-domination �c is
analogous. This constraint-domination definition dif-
fers from the approach presented in [8, pp. 301–302]
in the case of two infeasible vectors and was developed
independently.

3 Differential Evolution

The DE algorithm [31,34] was introduced by Storn and
Price in 1995. Design principles in DE were simplic-
ity, efficiency, and the use of floating-point encoding
instead of binary numbers. Like a typical EA, DE
has some random initial population, which is then im-
proved using selection, mutation, and crossover opera-
tions. Several methods exist to determine a stopping
criterion for EAs but usually a predefined upper limit
for the number of generations or function evaluations
to be computed provides an appropriate stopping con-
dition.

In each generation DE goes through each decision
vector ~xi,G of the population and creates a correspond-
ing trial vector ~ui,G. Here, i is an index of the vector
in the population and G is a generation index. Cre-
ation of the trial vector is done as follows in the most
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common DE version, DE/rand/1/bin [30]:

r1, r2, r3 ∈ {1, 2, . . . , NP} , (randomly selected,
except mutually different and different from i)

jrand = floor (rand i[0, 1) · D) + 1
for(j = 1; j ≤ D; j = j + 1)
{

if(rand j [0, 1) < CR ∨ j = jrand)
uj,i,G = xj,r3,G + F · (xj,r1,G − xj,r2,G)

else
uj,i,G = xj,i,G

}
(2)

The scaled difference between two randomly chosen
vectors, F · (~xr1,G − ~xr2,G), defines magnitude and di-
rection of the mutation. When the difference is added
to a third randomly chosen vector ~xr3,G, this corre-
sponds to the mutation of the third vector.

Both CR and F are user defined control parame-
ters for the DE algorithm and they remain fixed dur-
ing the whole execution of the algorithm. Parameter
CR, controlling the crossover operation, represents the
probability that an element for the trial vector is cho-
sen from a linear combination of three randomly cho-
sen vectors instead of from the old vector ~xi,G. The
condition “j = jrand” is to make sure that at least
one element is different compared to elements of the
old vector. Parameter F is a scaling factor for muta-
tion and its value is typically (0, 1+]. In practice, CR
controls the rotational invariance of the search, and
its small value (e.g. 0.1) is practicable with separable
problems while larger values (e.g. 0.9) are for non-
separable problems. Control parameter F controls the
speed and robustness of the search, i.e., a lower value
for F increases the convergence rate but also the risk
of stacking into a local optimum.

The basic idea of DE is that the mutation is self-
adaptive to the objective function surface and to the
current population in the same way as in Covariance
Matrix Adaptation Evolutionary Strategies (CMA-
ES) [16] but without the computational burden of co-
variance matrix calculations that are scaling unfavor-
ably with the dimensionality of the problem. At the
beginning of generations the magnitude of the muta-
tion is large because vectors in the population are far
away in the search space. When evolution proceeds and
the population converges, the magnitude of the muta-
tion gets smaller. The self-adaptability of DE permits
a global search

A trial vector ~ui,G created by mutation and crossover

operations is compared to an old vector ~xi,G. If the
trial vector has an equal or better objective value, then
it replaces the old vector in the next generation. There-
fore, the average objective value of the population will
never worsen making DE an elitist method.

4 Generalized Differential Evo-

lution

The first version of a Generalized Differential Evolution
(GDE) extended DE for constrained multi-objective
optimization and was obtained by modifying the se-
lection rule of the basic DE [22]. The basic idea in
the selection rule was that the trial vector was selected
to replace the old vector in the next generation if it
weakly constraint-dominated the old vector. There was
no sorting of non-dominated vectors during the opti-
mization process or any mechanism for maintaining the
distribution and extent of the solution. Also, there was
no extra repository for non-dominated vectors. Still,
GDE was able to provide a surprisingly good solution
but was too sensitive for the selection of the control
parameters [20].

Later on GDE was modified to make a decision based
on the crowdedness when the trial and old vector were
feasible and non-dominating each other in the objec-
tive function space [21]. This improved the extent and
distribution of the solution but slowed down the con-
vergence of the overall population because it favored
isolated vectors far from the Pareto front before all the
vectors were converged near the Pareto front. This ver-
sion, GDE2, was still too sensitive for the selection of
the control parameters.

The third version of GDE proposed in this paper ex-
tending the DE/rand/1/bin method to problems with
M objectives and K constraint functions formally pre-
sented in Eq. 3. Notation CD means Crowding Dis-
tance [9], which approximates the crowdedness of a vec-
tor in its non-dominated set. Also, some other distance
measure for crowdedness could be used. The parts that
are new compared to previous GDE versions are framed
in Eq. 3. Without these parts, the algorithm is identi-
cal to the first GDE version. Later on in this paper the
proposed method given in Eq. 3 is called the General-
ized Differential Evolution 3 (GDE3). It handles any
number of M objectives and any number of K con-
straints, including the cases where M = 0 (constraint
satisfaction problem) and K = 0 (unconstrained prob-
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Input :D, Gmax, NP ≥ 4, F ∈ (0, 1+], CR ∈ [0, 1], and initial bounds: ~x(lo), ~x(hi)

Initialize :

{

∀i ≤ NP ∧ ∀j ≤ D : xj,i,G=0 = x
(lo)
j + rand j [0, 1] ·

(

x
(hi)
j − x

(lo)
j

)

i = {1, 2, . . . , NP} , j = {1, 2, . . . , D} , G = 0, m = 0, rand j [0, 1) ∈ [0, 1),
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Mutate and recombine:
r1, r2, r3 ∈ {1, 2, . . . , NP} , randomly selected,

except mutually different and different from i
jrand ∈ {1, 2, . . . , D} , randomly selected for each i

∀j ≤ D, uj,i,G =







xj,r3,G + F · (xj,r1,G − xj,r2,G)
if rand j [0, 1) < CR ∨ j = jrand

xj,i,G otherwise
Select :

~xi,G+1 =

{

~ui,G if ~ui,G �c ~xi,G

~xi,G otherwise

Set :

m = m + 1
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While m > 0

Select ~x ∈ {~x1,G+1, ~x2,G+1, . . . , ~xNP+m,G+1} :






∀i ~x ⊀c ~xi,G+1

∧
∀(~xi,G+1 : ~xi,G+1 ⊀c ~x) CD (~x) ≤ CD (~xi,G+1)

Remove ~x
m = m − 1

G = G + 1

(3)

lem), and the original DE is a special case of GDE3.
GDE3 can been seen as a combination of earlier GDE
versions and PDEA [26]. A similar approach was also
proposed in DEMO [32] without constraint handling,
and DEMO does not fall back to the original DE in the
case of single objective as GDE3 does.

Selection in GDE3 is based on the following rules:

• In the case of infeasible vectors, the trial vector
is selected if it weakly dominates the old vector in
constraint violation space, otherwise the old vector
is selected.

• In the case of the feasible and infeasible vectors,
the feasible vector is selected.

• If both vectors are feasible, then the trial is se-
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lected if it weakly dominates the old vector in the
objective function space. If the old vector dom-
inates the trial vector, then the old vector is se-
lected. If neither vector dominates each other in
the objective function space, then both vectors are
selected for the next generation.

After a generation, the size of the population may
have been increased. If this is the case it is then de-
creased back to the original size based on a similar se-
lection approach used in NSGA-II. Vectors are sorted
based on non-dominance and crowdedness. The worst
population members according to these measurements
are removed to decrease the size of the population to
the original size. Non-dominated sorting is modified to
take into consideration also constraints, and selection
based on Crowding Distance is improved over the origi-
nal method of NSGA-II to provide a better distributed
set of vectors [19].

When M = 1 and K = 0, there are no constraints
to be evaluated and the selection is simply

~xi,G+1 =

{

~ui,G if f(~ui,G) ≤ f(~xi,G)
~xi,G otherwise

, (4)

which is same as for the original DE. The population is
not increased because this requires that ~ui,G and ~xi,G

do not weakly dominate each other, which cannot be
true in the case of a single objective. Since the pop-
ulation is not increased, there is no need to remove
elements. Therefore, GDE3 is identical to the origi-
nal DE in this case. This makes it possible to change
DE/rand/1/bin strategy to any other DE strategy such
as presented in [14, 37] or, generally, to any method
where a child vector is compared against a parent vec-
tor and a better one is preserved.

In NSGA-II and PDEA, the size of the population
after a generation is 2NP , which is then decreased to
size NP . In GDE3 and DEMO, the size of the popu-
lation after a generation is between NP and 2NP be-
cause the size of the population is increased only if
the trial and the old vector are feasible and do not
dominate each other.1 Decreasing the size of the pop-
ulation at the end of a generation is the most complex
operation in the algorithm. This needs non-dominated
sorting, which in GDE3 uses the concept of constraint-
domination defined in 2. Non-dominated sorting can

1GDE3 could be modified to preserve the old and the trial
vector in the case of constrained-non-domination, but this would
increase number of function evaluations needed and slow down
convergence.

be implemented to run in time O
(

N logM−1 N
)

[18].

Also, niching is done for non-dominated members of
the population, which is a complex operation if clus-
tering techniques are applied. Instead of clustering,
niching is performed using an approximate distance
measure, Crowding Distance, which can be calculated
in time O (MN log N) [18]. Overall running time for

GDE3 in Eq. 3 is O
(

GmaxN logM−1 N
)

for large N .

GDE3 can be implemented in such a way that the
number of function evaluations is reduced because not
always all the constraints and objectives need to be
evaluated, e.g., inspecting constraint violations (even
one constraint) is often enough to determine, which
vector to select for the next generation [23, 31]. How-
ever, in the case of feasible vectors all the objectives
need to be evaluated.

5 Experiments

GDE3 was evaluated with a set of test problems avail-
able from the literature [8, 10, 11]. The idea was to
select known representative problems from different
problem type categories. In repeated tests, a standard
two-sample t-test was used to evaluate the significance
of the obtained numerical results. Suitable control pa-
rameter values of GDE3 for each problem were found
based on problem characteristics and by trying out a
couple of different control parameter values.

5.1 Singe-Objective Optimization

The performance of GDE3 in the case of single-
objective optimization is illustrated with two classical
multi-modal test problems, Rastrigin’s and Schwefel’s
functions with 20 variables. Since both problems are
separable, a low value for CR was used. The control
parameter value F was set as low as possible while still
obtaining a global optimum. The control parameters
were CR = 0.0, F = 0.5 for Rastrigin’s function and
CR = 0.2, F = 0.4 for Schwefel’s function.

The test functions, initialization ranges, used pop-
ulation sizes, desired target values, and a number of
needed function evaluations as shown in Table 1. A
minimum, mean, and maximum number of function
evaluations after 100 independent runs are reported.
The number of needed function evaluations were signif-
icantly smaller than with the Omni-Optimizer reported
in [12].
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Function f (~x) D Range N f∗ Min Mean Max

Rastrigin
∑D

i=1 xi
2 + 10 (1 − cos(2πxi)) 20 [-10, 10] 20 0.01 8029

(19260)
9085
(24660)

10184
(29120)

Schwefel 418.982887D−
∑D

i=1 xi sin
(

√

|xi|
)

20 [-500, 500] 50 0.01 14996
(54950)

16540
(69650)

18479
(103350)

Table 1: Single-objective optimization problems, initialization ranges, population size, desired target value, and
the needed number of function evaluations for GDE3. Results reported in [12] for the Omni-Optimizer are in
parenthesis.

5.2 Bi-Objective Test Problem

Improved selection based on the Crowding Distance is
demonstrated with a simple bi-objective optimization
problem, which is defined as [8, p. 176]:

Minimize f1(~x) = x1

Minimize f2(~x) = 1+x2

x1

subject to x1 ∈ [0.1, 1], x2 ∈ [0, 5]

(5)

This problem is relatively easy to solve for MOEAs,
and GDE3 finds a solution converged to the Pareto
front in about 20 generations. The problem was solved
with GDE3 and NSGA-II having a population size of
100 and 500 generations. Control parameters for GDE3
were CR = 0.2 and F = 0.2, and for NSGA-II pc = 0.9,
pm = 1/D, ηc = 20, and ηm = 20 [9]. A large number
of generations were used to make sure that the obtained
solution converged to the Pareto front and only the
diversity of the solution was measured. Results after
one run are shown in Figure 1. A better distribution
obtained for the solution for GDE3 than NSGA-II can
be observed with a careful view.

The problem was solved 100 times and diversity was
measured using spacing (S) [8, pp. 327–328], which
measures the standard deviation of the distances from
each vector to the nearest vector in the obtained non-
dominated set. A small value for S is better, and S = 0
for ideal distribution. Mean and standard deviations
for spacing are 0.0030 ± 0.0003 and 0.0074 ± 0.0007
for GDE3 and NSGA-II, respectively. GDE3 has more
than double the lower spacing value than NSGA-II has,
i.e., GDE3 obtains a better distributed solution than
NSGA-II in the case of this problem.

5.3 Bi-Objective Mechanical Design

Problem

A bi-objective spring design problem [8, pp. 453–455]
was selected to demonstrate the GDE3’s ability to han-

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

7

8

9

10

f
1

f 2

Min−Ex

GDE3
NSGA−II

Figure 1: A simple bi-objective optimization problem
solved with GDE3 and NSGA-II.

dle several constraints and different types of decision
variables. GDE3 uses real-coded variables as geno-
types, which are converted to corresponding pheno-
types before evaluation of the objective and constraint
functions [31].

The problem is to design a helical compression
spring, which has a minimum volume and minimal
stress. Objective functions are nonlinear and the prob-
lem has three variables: the number of spring coils
x1 (integer), the wire diameter x2 (discrete having 42
non-equispaced values), and the mean coil diameter x3

(real). Besides the boundary constraints, the problem
has eight inequality constraint functions from which
most are nonlinear.

Results for the different GDE versions and NSGA-II
after a single run are shown in Figure 2. The size of
the population and the number of generations were 100
for the methods. Control parameter values for GDEs

6



were CR = 0.9 and F = 0.5. The control parameters
for NSGA-II were pc = 1.0, pm = 1/D, ηc = 10, and
ηm = 500 used in [8, pp. 450]. The number of needed
function evaluations for the GDEs are reported in Ta-
ble 2. NSGA-II needed 10000 function evaluations for
each objective and constraint function.

In preliminary tests GDE3 was found to be more sta-
ble than earlier GDE versions for the selection of the
control parameters. In these tests, GDE and GDE2
also performed poorer compared to GDE3 and there-
fore they were excluded from further comparison in this
paper.

0 5 10 15 20 25 30
0.5

1

1.5

2
x 10

5

Volume (in3)

S
tr

es
s 

(p
si

)

Spring Design

GDE
GDE2
GDE3
NSGA−II

Figure 2: The spring design problem solved with GDE,
GDE2, GDE3 and NSGA-II.

5.4 Constrained Bi-Objective Test

Problems

Constrained bi-objective test problems CTP1 and
CTP2 [10] having D = 6, xi ∈ [0, 1], and function

g (~x) = 1 +
∑D

j=2 xj
2 controlling difficulty to converge

to the Pareto front were used. These problems were
solved 100 times. The size of the population was 100
and the number of generations was 50. Control param-
eters for GDE3 were CR = 0.9 and F = 0.1, and for
NSGA-II pc = 0.9, pm = 1/D, ηc = 20, and ηm = 20
used in [10].

Results were compared using spacing and binary
metrics set coverage C metric [8, pp. 325–326] and
a V measure [15, 24]. The C(A, B) metric measures

the fraction of members of B that are dominated by
members of A. The V(A, B) measures the fraction of
the volume of the minimal hypercube containing both
fronts that is dominated by the members of A but is
not dominated by the members of B. Greater values
for C and the V metrics are desirable.

The results shown in Table 3. With CTP1, spacing
(S) shows strongly and V metric slightly that GDE3
performs better but C metric shows strongly opposite
implying that NSGA-II has converged closer to the
Pareto front. With CTP2, there is no significant dif-
ference between obtained S values and the binary met-
rics show contradicting results. Contradicting results
for binary metrics are due to the fact that the C metric
emphasizes convergence over diversity whereas the V
metric considers both issues.

5.5 Tri-Objective Test Problems

Finally, GDE3 was used to solve problems with more
than two objectives. Tri-objective test problems
DTLZ1 and DTLZ4 [11] were selected for this pur-
pose. The size of the population was 500 and the
number of generations was 150 for DTLZ1 and 50 for
DTLZ4. Control parameters for GDE3 were CR = 0.2
and F = 0.2, and for NSGA-II pc = 1.0, pm = 1/D,
ηc = 15, and ηm = 20 used in [11]. Results after a
single run are shown in Figures 3–5. Tests were re-
peated 100 times and the same metrics were measured
as for the CTP problems earlier.2 Obtained values are
reported in Table 3. GDE3 outperforms NSGA-II with
these problems according to metrics.
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Figure 3: Two projections of the result for the DTLZ1
problem solved with GDE3.

2Even thought spacing might not give reliable result when the
number of objectives is greater that two [11].
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g1 g2 g3 g4 g5 g6 g7 g8 f1 f2

GDE 10100 8990 8901 8778 8115 8115 5704 5529 5515 2920
GDE2 10100 8504 8419 8008 7741 7741 6348 5874 5846 5846
GDE3 10100 8961 8879 8548 8319 8317 4885 4587 4566 4566

Table 2: Number of needed constraint (gj) and objective (fi) function evaluations needed by GDE, GDE2, and
GDE3 for the spring design problem.

S(G) S(N) C(G, N) C(N, G) V(G, N) V(N, G)
CTP1 0.0048±

0.0039

0.0075 ±
0.0026

0.1303 ±
0.0415

0.2023±
0.0904

0.0034±
0.0015

0.0027 ±
0.0016

CTP2 0.0092±
0.0073

0.0113 ±
0.0085

0.2655 ±
0.0742

0.3588±
0.0685

0.0031±
0.0011

0.0022 ±
0.0006

DTLZ1 0.0179±
0.0007

0.0274 ±
0.0171

0.3842±
0.1449

0.0021 ±
0.0100

0.0046±
0.0033

0.0012 ±
0.0011

DTLZ4 0.0214±
0.0010

0.0238 ±
0.0009

0.0948±
0.0240

0.0123 ±
0.0066

0.0085±
0.0007

0.0059 ±
0.0008

Table 3: Spacing (S), C, and V metrics for the CTP and DTLZ problems (G = GDE3 and N = NSGA-II).
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Figure 4: Two projections of the result for the DTLZ1
problem solved with NSGA-II.

6 Conclusions and Future Re-

search

The third evolution version of Generalized Differential
Evolution, GDE3, is proposed. GDE3 is designed for
any number of objectives and constraints without in-
troducing any extra control parameters to the original
DE. In the case of unconstrained single-objective op-
timization problems, GDE3 is exactly the same as the
original DE.

GDE3 modifies earlier GDE versions using a grow-
ing population and non-dominated sorting with prun-
ing of non-dominated solutions to decrease the popula-
tion size at the end of each generation. This improves

Figure 5: The DTLZ4 problem solved with GDE3 and
NSGA-II.
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obtained diversity and makes the method more sta-
ble for the selection of control parameter values. The
constraint handling method used in GDEs reduces the
number of needed function evaluations.

GDE3 was tested with a set of different types of test
problems and results show an improved diversity of the
solution over the NSGA-II method as well as demon-
strating a reduction in the number of needed function
evaluations. In some test problems, GDE3 found also a
better converged solution. However, results are based
on limited tests with a limited number of test problems
and they are mainly indicative.

A more extensive comparison of GDE3 with other
multi-objective DE methods, latest multi-objective
evolutionary algorithms and test problems, paralleliza-
tion of the algorithm, and applying GDE3 for practical
constrained multi-objective problems remains as future
work.
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