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a b s t r a c t 

Visual attributes, from simple objects (e.g., backpacks, hats) to soft-biometrics (e.g., gender, height, cloth- 

ing) have proven to be a powerful representational approach for many applications such as image de- 

scription and human identification. In this paper, we introduce a novel method to combine the advan- 

tages of both multi-task and curriculum learning in a visual attribute classification framework. Individ- 

ual tasks are grouped after performing hierarchical clustering based on their correlation. The clusters of 

tasks are learned in a curriculum learning setup by transferring knowledge between clusters. The learning 

process within each cluster is performed in a multi-task classification setup. By leveraging the acquired 

knowledge, we speed-up the process and improve performance. We demonstrate the effectiveness of our 

method via ablation studies and a detailed analysis of the covariates, on a variety of publicly available 

datasets of humans standing with their full-body visible. Extensive experimentation has proven that the 

proposed approach boosts the performance by 4%–10%. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Vision as reception. Vision as reflection. Vision as projection.

–Bill Viola, note 1986

When we are interested in providing a description of an object

or a human, we tend to use visual attributes to accomplish this

task. For example, a laptop can have a wide screen, a silver color,

and a brand logo, whereas a human can be tall, female, wearing a

blue t-shirt and carrying a backpack. Visual attributes in computer

vision are equivalent to the adjectives in our speech. We rely on

visual attributes since (i) they enhance our understanding by cre-

ating an image in our head of what this object or human looks

like; (ii) they narrow down the possible related results when we

want to search for a product online or when we want to provide

a suspect description; (iii) they can be composed in different ways

to create descriptions; (iv) they generalize well as with some fine-

tuning they can be applied to recognize objects for different tasks;

and (v) they are a meaningful semantic representation of objects

or humans that can be understood by both computers and humans.

However, effectively predicting the corresponding visual attributes
∗ Corresponding author. 
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f a human given an image remains a challenging task [1] . In real-

ife scenarios, images might be of low-resolution, humans might be

artially occluded in cluttered scenes, or there might be significant

ose variations. 

Estimating the visual attributes of humans is an important com-

uter vision problem with applications ranging from finding miss-

ng children to virtual reality. When a child goes missing or the

olice is looking for a suspect, a short description is usually pro-

ided that comprises such attributes (for example, tall white male,

ith a black shirt wearing a hat and carrying a backpack). Thus,

f we could efficiently identify which images or videos contain im-

ges of humans with such characteristics we could potentially re-

uce dramatically the labor and the time required to identify them

2] . Another interesting application is the 3D reconstruction of the

uman body in virtual reality [3] . If we have such attribute infor-

ation we can facilitate the reconstruction by providing the nec-

ssary priors. For example it is easier to reconstruct accurately the

ody shape of a human if we already know that it is a tall male

ith shorts and sunglasses than if no information is provided. 

In this work, we introduce CILICIA (CurrIculum Learning mul-

Itask ClassIfication Attributes) to address the problem of visual

ttribute classification from images of standing humans. Instead

f using low-level representations, which would require extract-

ng hand-crafted features, we propose a deep learning method to

https://doi.org/10.1016/j.patcog.2018.02.028
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2018.02.028&domain=pdf
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olve multiple binary classification tasks. CILICIA differentiates it-

elf from the literature as: (i) it performs end-to-end learning by

eeding a single ConvNet with the entire image of a human with-

ut making any assumptions about predefined connection between

ody parts and image regions; and (ii) it exploits the advantages

f both multi-task and curriculum learning. Tasks are split into

roups based on their labels’ cross-correlation using hierarchical

gglomerative clustering. The groups of tasks are learned in a cur-

iculum learning scenario, starting with the one with the highest

ithin-group cross-correlation and moving to the less correlated

nes by transferring knowledge from the former to the latter. The

asks in each group are learned in a typical multi-task classifica-

ion setup. Parts of this publication appear in our previous work

4] . However, in this work we have: 

• Proposed an effective method to obtain the groups of tasks us-

ing hierarchical agglomerative clustering, which can be of any

number and not just two groups (strongly/weakly correlated). 
• Conducted additional experiments to analyze the covariates of

the proposed approach. 
• Benchmarked our method in an additional dataset. 
• Demonstrated the efficacy and robustness of our method by

performing ablation studies in Section 5 . 

When Vapnik and Vashist introduced the learning using privi-

eged information (LUPI) paradigm [5] , they drew inspiration from

uman learning. They observed how significant the role of an in-

elligent teacher was in the learning process of a student, and pro-

osed a machine learning framework to imitate this process. Em-

loying privileged information from an intelligent teacher at train-

ng time has recently received significant attention from the sci-

ntific community with remarkable results in areas ranging from

bject recognition [6–9] to biometrics [10–12] . 

Our work also draws inspiration from the way students learn

n class. First, students find it difficult to learn all tasks at once. It

s usually easier for them to acquire some basic knowledge first,

nd then build on top of that, by learning more complicated con-

epts. This can be achieved by learning in a hierarchical manner,

hich is commonly employed in the literature [13–15] , or with a

urriculum strategy. Curriculum learning [16–18] (presenting easier

xamples before more complicated and learning tasks sequentially,

nstead of all at the same time) imitates this learning process. It

as the advantage of exploiting prior knowledge to improve subse-

uent classification tasks but it cannot scale up to many tasks since

ach subsequent task has to be learned individually. However, to

aximize students’ understanding a curriculum might not be suf-

cient by itself. Students also need a teaching paradigm that can

uide their learning process, especially when the task to be learned

s challenging. The teaching paradigm in our method is the split

f visual attribute classification tasks that need to be learned by

erforming hierarchical agglomerative clustering. In that way, we

xploit the advantages of both multi-task and curriculum learning.

irst, the ConvNet learns the group of tasks with the strongest intra

ross-correlation in a multi-task learning setup, and once this pro-

ess is completed, the weights of the respective tasks are used as

n initialization for the more diverse tasks. During the training of

he more diverse tasks, the prior knowledge obtained is leveraged

o improve the classification performance. An illustrative example

f our method is depicted in Fig. 1 . Note that the proposed learn-

ng paradigm is not tied visual attribute classification domain and

an be extended to other applications such as object recognition or

19] and domain adaptation [20] . 

In summary, this paper has the following contributions. First,

e introduce CILICIA, a novel method of exploiting the advantages

f both multi-task and curriculum learning by splitting tasks into

roups by performing hierarchical agglomerative clustering. The

asks of each subgroup are learned in a joint manner. Thus, the
roposed method learns better than learning all the tasks in a typ-

cal multi-task learning setup and converges faster than learning

asks one at a time. Second, we propose a scheme of transfer-

ing knowledge between the groups of tasks which speeds up the

onvergence and increases the performance. We performed exten-

ive evaluations in three datasets of humans standing and achieved

tate-of-the-art results in all three of them. 

The remainder of the paper is organized as follows: in

ection 2 , a review of the related work in visual attributes, curricu-

um learning, and transfer learning is presented. Section 3 presents

ILICIA, the proposed curriculum learning approach for multi-task

lassification of clusters of visual attributes. In Section 4 , experi-

ental results are reported, a detailed analysis of covariates is pro-

ided, and a discussion about the performance and the limitations

f the proposed approach is offered. Finally, conclusions are drawn

n Section 6 . 

. Related work 

Visual attributes classification : The first to investigate the

ower of visual attributes were Ferrari and Zisserman [21] . They

sed low-level features and a probabilistic generative model to

earn attributes of different types (e.g., appearance, shape, pat-

erns) and segment them in an image. Kumar et al. [22] pro-

osed an automatic method to perform face verification and im-

ge search. They first extracted and compared “high-level” visual

eatures, or traits, of a face image that are insensitive to pose,

llumination, expression, and other imaging conditions, and then

rained classifiers for describable facial visual attributes (e.g., gen-

er, race, and eyewear). A verification classifier on these outputs is

nally trained to perform face verification. In the work of Scheirer

t al. [23] , raw attribute scores are calibrated to a multi-attribute

pace where each normalized value approximates the probability

f that attribute appearing in the input image. This normalized

ulti-attribute space allows a uniform interpretation of the at-

ributes to perform tasks such as face retrieval or attribute-based

imilarity search. Finally, attribute selection approaches have been

ntroduced [24–26] which select attributes based on specific crite-

ia (e.g., entropy). Zheng et al. [26] formulated attribute selection

s a submodular optimization problem [27] and defined a novel

ubmodular objective function. 

Following the deep learning renaissance in 2012, several papers

28–32] have addressed the visual attribute classification problem

sing ConvNets. Part-based methods decompose the image to parts

nd train separate networks which are then combined at a feature

evel before the classification step. They tend to perform well since

hey take advantage of spatial information (e.g., patches that cor-

espond to the upper body can better predict the t-shirt color than

thers that correspond to other body parts). Zhang et al. [33] pro-

osed an attribute classification method which combines part-

ased models in the form of poselets [34] , and deep learning by

raining pose-normalized ConvNets. Gkioxari et al. [35] proposed a

eep version of poselets to detect human body parts which were

hen employed to perform action and attribute classification. Zhu

t al. [36] introduced a method for pedestrian attribute classifica-

ion. They proposed a ConvNet architecture comprising 15 separate

ubnetworks (i.e., one for each task) which are fed with images

f different body parts to learn jointly the visual attributes. How-

ver, their method assumes that there is a pre-defined connection

etween parts and attributes and that all tasks depend on each

ther and thus, learning them jointly will be beneficial. Addition-

lly, they trained the whole ConvNet end-to-end despite the fact

hat the size of the training dataset used was only 632 images.

ased on our experiments, the only way to avoid heavy overfit-

ing in datasets of that size is by employing a pre-trained network

long with fine-tuning of some layers. Recycling pre-trained deep
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Fig. 1. Curriculum learning for multi-task classification of visual attributes. Tasks are split into groups by performing hierarchical clustering which are then learned sequen- 

tially based on the cross-correlation of the attributes within each group. Flickr photo by Jeffery Scism is licensed under CC BY . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

i  

l  

n  

p  

o  

b  

l  

Z  

t  

o  

b  

L  

t  

p

 

r  

A  

p  

s  

T  

l  

f  

t

a  

a  

t  

d  

t

3

 

w  

t  

a  

l

 

y  
learning models with transfer learning (i.e., exploiting the discrim-

inative power of a network trained for a specific task for a differ-

ent problem or domain) is commonly used in the literature with

great success [37,38] . Finally, visual attributes have been employed

recently for re-identification [39,40] , pose estimation [41,42] , 3D

pose tracking [43] , attribute mining and retrieval for clothing ap-

plications [44,45] , zero-shot visual object categorization and recog-

nition [46] and image annotation and segmentation [47] . 

Curriculum learning : Solving all tasks jointly is commonly em-

ployed in the literature [48–50] as it is fast, easy to scale, and

achieves good generalization. For an overview of deep multi-task

learning techniques, the interested reader is encouraged to refer to

the work of Ruder [51] . However, some tasks are easier than oth-

ers and also not all tasks are equally related to each other [52] .

Curriculum Learning was initially proposed by Bengio et al. [16] .

They argued that instead of employing samples at random it is

better to present samples organized in a meaningful way so that

less complex examples are presented first. Pentina et al. [52] in-

troduced a curriculum learning-based approach to process multi-

ple tasks in a sequence and developed a method to find the best

order in which the tasks need to be learned. They proposed a data-

dependent solution by introducing an upper-bound of the average

expected error and employing an Adaptive SVM [53,54] . Such a

learning process has the advantage of exploiting prior knowledge

to improve subsequent classification tasks but it cannot scale up

to many tasks since each subsequent task has to be learned indi-

vidually. Curriculum learning has also been employed with success

on performing data regularization on models trained on corrupted

labels [55] , long short-term memory (LSTM) networks [56,57] , re-

inforcement learning [58,59] , robot learning policies [60] as well as

object detection [61] . In parallel with our work, Dong et al. [20] also

proposed a multi-task curriculum transfer technique to classify

clothes based on their attributes. They approached the problem

in a domain adaptation setup in which a classifier is first learned

on easy clean samples (source domain) and then it is adapted to

harder samples (cross-domain). However, the curriculum they uti-

lize (which images correspond to the source domain and which

to the cross-domain) is selected manually based on the dataset

whereas in our proposed framework it is done automatically based

on the label-cross correlation before training starts. 

a  
Transfer learning : Deep transfer learning techniques learn fea-

ure representations, which are transferable to other domains, by

ncorporating the adaptation to a new domain in the end-to-end

earning process [62,63] . The idea of distilling knowledge in neural

etworks was initially introduced by Hinton et al. [64] . The authors

roposed a method to distill the knowledge of a complex ensemble

f models into a smaller model. The softmax output of the ensem-

le is divided by a temperature parameter and the smaller model

earns directly from that “softened” output. Following that idea,

hang et al. [65] suggested a technique to perform action recogni-

ion in real-time. They transferred knowledge from the teacher (an

ptical flow ConvNet) to the student (a motion vector ConvNet) by

ackpropagating the teacher’s loss in the students’ network. Finally,

opez-Paz et al. [66] introduced generalized distillation; a method

hat unifies the LUPI framework with the knowledge distillation

aradigm. 

Finally, a very interesting prior work which focuses on the cor-

elation of visual attributes is the method of Jayaraman et al. [67] .

iming to decorrelate attributes at learning time, the authors pro-

osed a multi-task learning framework with the property of re-

isting the urge of sharing image features of correlated attributes.

heir approach disambiguates attributes by isolating distinct low-

evel features for distinct properties (e.g., color for “brown”, texture

or “furry”). They also leveraged side information for properties

hat are closely related and should share features (e.g., “brown”

nd “red” are likely to share the same features). While our work

lso leverages information from correlated attributes in a multi-

ask classification framework, it models co-occurrence between

ifferent clusters of visual attributes instead of trying to seman-

ically decorrelate them. 

. Methodology 

In this section, we describe the proposed network architecture

hich given images of humans as an input, outputs visual at-

ribute predictions. We then introduce our approach for splitting

ttributes into clusters. Finally, the proposed multi-task curriculum

earning framework is introduced. 

In our supervised learning paradigm, we are given tuples ( x i ,

 i ) where x i corresponds to images and y i to the respective visual

ttribute labels. The total number of tasks will be denoted by T ,

https://creativecommons.org/licenses/by/2.0/
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Fig. 2. Architecture of the ConvNet used in our framework for several groups of tasks. The VGG-16 pre-trained part is kept frozen during training and only the weights of 

the last layers are learned. The different groups of tasks are learned sequentially using a curriculum learning paradigm. However, when the latter groups of tasks are trained, 

the tasks which have already been learned, contribute to the total cost function. 
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nd thus the size of y i for one image will be 1 × T . Finally, we will

efer to the part of the network that solves the i th group of tasks

s C i . 

.1. Multi-label convnet architecture 

To mitigate the lack of training data we employ the pre-trained

GG-16 [68] network. VGG-16, is the network from Simonyan and

isserman which was one of the first methods to demonstrate that

he depth of the network is a critical component for good per-

ormance. We selected VGG instead of a more modern network

or the reason that it is a simple and homogeneous architecture,

hich despite its inefficiencies (e.g., large number of parameters),

s sufficient for solving multiple binary image classification tasks.

GG-16 is trained on ImageNet [69] , the scale of which enables

s to perform transfer learning between ImageNet and our tasks

f interest. The architecture of the network we use is depicted in

ig. 2 . We used the first seven convolutional layers of the VGG-

6 network and dropped the rest of the convolutional and fully-

onnected layers. The reason behind this is that the representa-

ions learned in the last layers of the network are very task de-

endent [38] and thus, not transferable. Following that, for ev-

ry task we added a batch-normalized [70] fully-connected layer

ith 512 units and a ReLU activation function. We employed batch-

ormalization since it enabled higher learning rates, faster conver-

ence, and reduced overfitting. Although shuffling and normaliz-

ng each batch has proven to reduce the need of dropout, we ob-

erved that adding a dropout layer [71] was beneficial as it further

educed overfitting. The dropout probability was 75% for datasets

ith less than 10 0 0 training samples and 50% for the rest. For ev-

ry task, an output layer is added with a softmax activation func-

ion using the categorical cross entropy. 

Furthermore, we observed that the random initialization of

he parameters of the last two layers backpropagated large er-

ors in the whole network even if we used different learning

ates throughout our network. To address this behavior of the net-

ork, which is thoroughly discussed in the method of Sutskever

t al. [72] , we “freeze” the weights of the pre-trained part and

rain only the last two layers for each task in order to learn the

ayer weights and the parameters of the batch-normalization. 
After we ensured that we can always overfit on the training set,

hich means that our network is deep enough and discriminative

nough for the tasks of interest, our primary goal was to reduce

verfitting. Towards this direction, we (i) selected 512 units for the

ully connected layer to prevent the network from learning several

eights; (ii) employed a small weight decay of 10 −4 for the layers

hat are trained; (iii) initialized the learning rate at 10 −3 and re-

uced it by a factor of 5 every 100 epochs and up to five times in

otal; and (iv) augmented the data by performing random scaling

p to 150% of the initial image followed by random crops, horizon-

al flips and adding noise by applying PCA to the RGB pixel values

s proposed by Krizhevsky et al. [73] . At test time, we averaged

he predictions at three different scales (100%, 125%, and 150%) of

ve fixed crops and their horizontal flips (30 in total) to obtain the

redicted class label. This technique, which was also adopted in

he ResNet method of He et al. [74] , proved to be very effective as

t reduced the variation on the predictions. 

.2. Group split with hierarchical clustering 

Finding the order in which tasks need to be learned so as to

chieve the best performance is difficult and computationally ex-

ensive. Given some tasks t i , i = 1 . . . T that need to be performed,

e seek to find the best order in which the tasks should be per-

ormed so the average error of the tasks is minimized: 

inimize 
S(t i ) 

1 

T 

T ∑ 

j=1 

E( ̂  y t j , y t j ) , (1) 

here S ( t i ) is the function that finds the sequence of the tasks,

ˆ  t j , y t j are the prediction and target vectors for the j th task, and E
s the prediction error. 

However, the fact that a task can be easily performed does

ot imply that it is positively correlated with another and that by

ransferring knowledge the performance of the latter will increase.

djeroh et al. [76] studied the correlation between various anthro-

ometric features and demonstrated that some correlation clusters

an be derived in human metrology, whereby measurements in a

luster tend to be highly correlated with each other but not with

he measurements in other clusters. 
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Fig. 3. Dendrogram illustrating the arrangement of clusters (left) and the pairwise correlation matrix, which is fed to the clustering algorithm (right) of the visual attributes 

from the SoBiR dataset [75] . The sequence in which the clusters of attributes are learned, is obtained by computing the total dependency of each task with the rest within 

its cluster using Eq. (3) . The curriculum learning of the clusters of visual attributes is then performed in a descending order as described in Section 3.3 . (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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In this work, we seek to find: (i) which tasks (i.e., attributes)

should be grouped together so as to be learned jointly, and (ii)

which is the best sequence in which the groups of tasks should

be learned. We use the training labels Y of size N × M where N the

number of samples, and M the number of attributes (i.e., ground

truth labels) to compute the Pearson correlation coefficient matrix

which is of size M × M . Each element in this matrix, represents to

what extent these two attributes are correlated (e.g., the “gender”

with the “hair length” will have a higher value compared to “gen-

der” with “age”). 

We then employ the computed Pearson correlation coefficient

matrix to perform hierarchical agglomerative clustering using the

Ward variance minimization algorithm. Ward’s method is biased

towards generating clusters of the same size and analyzes all pos-

sible pairs of joined clusters, identifying which joint produces

the smallest within cluster sum of squared (WCSS) errors. It is a

variance-minimizing approach and which resembles the k-means

algorithm but tackled with an agglomerative hierarchical approach.

Assume that at an intermediate step, clusters s and t are to be

merged to form cluster u = s ∪ t . Then, the new distance d ( u, v )

between cluster u and an already existing (but yet unused) cluster

v is defined as: 

d(u, v ) = 

√ 

| v | + | s | 
T 

d(v , s ) 2 + 

| v | + | t| 
T 

d( v , t) 2 + 

| v | 
T 

d( s, t) 2 , (2)

where s, t are the clusters which are joined into cluster u , and T =
| v | + | s | + | t| . Ward [77] , points out that this procedure facilitates

the identification of that union which has an objective function

value “equal or better than” any of the n (n − 1) / 2 possible unions.

An illustrative hierarchical clustering of the visual attributes from

the SoBiR dataset [75] in the form of a dendrogram is depicted in

Fig. 3 . We observe that the proposed method for task split yields

clusters of visual attributes which cohere with our semantic un-

derstanding and intuition about which attributes might be related

to each other (e.g., gender with hair length, weight with muscle

build). In addition to the pairwise correlation matrix, which also

provides an insight into the relation of attributes, the proposed ap-

proach exploits this correlation between the attributes during the

learning process. 

By splitting the attributes into clusters using a WCSS threshold

τ to cut the dendrogram horizontally, we have identified which

tasks should be grouped together so as to be learned jointly. Fol-

lowing that, we now seek to obtain the sequence in which the

clusters of visual attributes will be learned. To address this prob-

lem, we propose to find the total dependency p i, c of task t i, c with

the rest within the cluster c , by computing the respective Pearson

correlation coefficients but this time only within the cluster as fol-
ows: 

p i,c = 

T ∑ 

j =1 , j � = i 

cov (y t i,c , y t j,c ) 

σ (y t i,c ) σ (y t j,c ) 
, i = 1 , . . . , T (3)

here σ (y t i,c ) is the standard deviation of the labels y of the task

 i, c . After we compute the total dependencies for all the clusters

ormed, we start the curriculum learning process in a descending

rder. 

The process of computing the learning sequence of attribute

lusters, which is described in detail in Algorithm. 1 , is performed

Algorithm 1: Finding the learning sequence of attribute clus- 

ters. 

Input : Training labels Y , WCSS threshold τ
1 P ← compute Pearson correlation coefficient matrix split 

based on labels Y 

2 G ← split into clusters using Eq. (2) along with P , labels Y , 

and τ
3 for group g i in G do 

4 S i ← compute average of cross-correlation within g i using 

Eq. (3) 

5 end 

6 S(g i ) ← compute learning sequence of clusters by sorting S i ’s 

in a descending order 

Output : Learning sequence of clusters of visual attributes 

S(g i ) 

nce before the training starts. Since it only requires the training

abels of the tasks to compute the cross-correlations and perform

he clustering, it is not computationally intensive. Finally, note that

he group split depends on the training set and it is possible that

ifferent train-test splits might yield different groups of tasks. 

.3. Multi-task curriculum learning 

In the scenario we are investigating, we solve multiple binary

nbalanced classification tasks simultaneously. Throughout the pa-

er, we use the terms multi-label [78] and multi-task interchange-

bly. This is because we solve multiple classification tasks at the

ame time (multi-task), and at the same time for each given image

e predict multiple binary labels which are not mutually exclusive

multi-label). 

The proposed learning paradigm is described in Algorithm 2 .

imilar to Zhu et al. [79] , we employ the categorical cross-entropy
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Algorithm 2: Multi-task curriculum learning training. 

Input : Training set X , training labels Y , learning sequence 

of clusters S(g i ) from Algorithm 1 

1 for group g i in S(g i ) do 

2 Initialize C i from rest of already trained groups of tasks (if 

any) 

3 C i ← train model using (X, Y i ) by minimizing the loss in 

Eq. (5) 

4 end 

Output : Parameters of network containing all groups of tasks 
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unction between predictions and targets, which for a single at-

ribute t is defined as follows: 

 t = − 1 

N 

N ∑ 

i =1 

M ∑ 

j=1 

(
1 / M j ∑ M 

n =1 1 / M n 

)
· 1 [ y i = j] · log (p i, j ) , (4)

here 1 [ y i = j] is equal to one when the ground truth of sample

 belongs to class j , and zero otherwise, p i, j is the respective pre-

iction, which is the output of the softmax nonlinearity of sam-

le i for class j , and the term inside the parenthesis is a balancing

arameter required due to imbalanced data. The total number of

amples belonging to class j is denoted by M j , N is the number

f samples and M the number of classes. The total loss over all

ttributes is defined as 
∑ T 

t=1 λt · L t , where λt is the contribution

eight of each parameter. For simplicity, it is set to λt = 1 /T . By

etting λt in this way, there is an underlying assumption that all

asks contribute equally to the multi-task classification problem. To

vercome this limitation, a fully-connected layer with T units could

e added with an identity activation function after each separate

oss L t is computed. In that way, the respective weight for each

ttribute in the total loss function could be learned. However, we

bserved that for groups of tasks that consist of a few attributes

here was no difference in the performance, and thus we did not

nvestigate this any further. 

Once the classification of the visual-attribute tasks that demon-

trated the strongest intra correlation is performed, we use the

earned parameters (i.e., weights, biases, and batch normalization

arameters) to initialize the network for the less diverse groups of

ttributes. The architecture of the network remains the same, with

he parameters of VGG-16 being kept “frozen”. The weights of the

asks of previous groups of clusters continue to be learned with

 very small learning rate of 10 −6 ). Furthermore, by adopting the

supervision transfer” technique of Zhang et al. [65] we leverage

he knowledge learned by backpropagating the following loss: 

 j = λ · L t + (1 − λ) · L f 
j 
, (5)

here L 
f 
j 

is the total loss computed during the forward pass us-

ng Eq. (4) over only the current group of correlated tasks and λ
s a parameter that controls the amount of knowledge transferred.

ince the parameters of the network that correspond to already

rained groups of tasks keep being updated, the loss L t changes

uring training of the tasks of interest each time. This enables us

o transfer the knowledge from groups of tasks with stronger intra

ross-correlation to groups which demonstrated less intra cross-

orrelation. This technique proved to be very effective, as it en-

anced the performance of the parts of the network which are re-

ponsible for the prediction of less correlated groups of tasks, and

ontributed to faster convergence during training. 
. Experiments 

.1. Datasets 

To verify the effectiveness of the proposed method, we con-

ucted evaluations in three challenging datasets containing stand-

ng humans, and thus tested our method in almost all the possible

ariations that can be found in the datasets used in the literature.

e used the SoBiR [75] , VIPeR [80] and PETA [81] datasets. The

elected datasets are of varying difficulty and contain different vi-

ual attributes and training set sizes. In each dataset we follow the

ame evaluation protocol with the rest of the literature. Some rep-

esentative images are depicted in Fig. 4 . 

SoBiR dataset : The recently introduced SoBiR dataset [75] con-

ains 800 images of 100 people. The dimensions of each image are

56 × 256. The SoBiR dataset comprises 12 soft biometric labels

e.g., gender, weight, age, height) and four forms of comprehensive

uman annotation (absolute versus relative and categorical versus

inary). In our experimental investigation, we used the compar-

tive binary ground-truth annotations (e.g., taller/shorter instead

f tall/short) instead of absolute binary. The main reasons for this

hoice are: (i) relative binary annotations have been shown to out-

erform categorical annotations [75,82] ; and (ii) class labels were

alanced for all soft biometrics. A 80/10/10 train/validation/test

plit based on human IDs is performed (so that only new subjects

ppear at testing) and average classification results are reported

ver five random splits. 

VIPeR dataset : The VIPeR dataset [80] contains 1264 low-

esolution (128 × 48) pedestrian images. Each individual is cap-

ured in just a pair of images from a different camera, under differ-

nt viewpoint, pose and lighting conditions. Layne et al. [83] pro-

ided 21 visual-attribute annotations which are used in our evalu-

tion. We randomly split VIPeR into non-overlapping training and

esting sets of equal sizes based on the human IDs. Following the

iterature, we repeated this process six times (one split for param-

ter tuning and the rest for evaluation of our method) and average

lassification results are reported. 

PETA dataset : The PETA dataset [81] consists of 19,0 0 0 images

athered from 10 different smaller datasets. Parameters such as the

amera angle, viewpoint, illumination, and resolution are highly

ariant, which makes it a valuable dataset for visual-attribute clas-

ification evaluation. It is divided in 9,50 0, 1,90 0, and 760 0 images

or training, validation, and testing, respectively. Similar to [79] ,

ighly imbalanced attributes are discarded and the remaining 45

inary visual attributes are employed. 

.2. Results on SoBiR 

Implementation details : For the SoBiR dataset, the batch size

as set to 160. We split it into four clusters containing 2, 5, 2, and

 attributes by thresholding at within cluster sum of squares τ =
 . 9 ( Fig. 3 ), trained our models for 50 0 0 epochs, and set λ = 0 . 25 . 

Evaluation results : Since the SoBiR dataset does not have a

aseline on attribute classification we reported results using hand-

rafted features and an SVM classifier as well as three different

nd-to-end learning frameworks using our ConvNet architecture. In

ll cases, images were resized to 128 × 128. The features used for

raining the SVMs consisted of: (i) edge-based features, (ii) local bi-

ary patterns (LBPs), (iii) color histograms, and (iv) histograms of

riented gradients (HOGs). To preserve local information, we com-

uted the aforementioned features in four blocks for every image

esulting in 540 features in total. In addition, we performed SVM

ith features extracted from the last fully-connected layer of the

re-trained VGG-16 network and the obtained results are provided

n the third column of Table 1 . Feature vectors 4, 096 × 1 were ex-

racted for each image, and an SVM was trained using the optimal
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Fig. 4. Example images of pedestrians captured from different viewpoints. Attributes comprise backpacks, hats, clothing color or patterns and soft-biometrics such as gender 

or age. 

Table 1 

Classification accuracy of different learning paradigms on the SoBiR dataset. In individual learning, each attribute is learned separately. In 

multi-task learning, the average loss of all attributes is backpropagated in the network. In CILICIA, four clusters were formed and attributes 

are in descending order based on their intra cross-correlation. Results highlighted with bold italic indicate statistically significant improve- 

ment using the paired-sample t -test. 

Soft Label SVM with Handcrafted Features SVM with Deep Features Individual Learning Multi-Task Learning CILICIA 

Gender 72.1 74.5 80.4 79.6 85.2 

Height 64.7 61.8 73.9 72.0 77.0 

Age 58.5 55.3 62.6 61.9 64.5 

Weight 57.7 65.3 67.7 71.0 74.1 

Figure 57.8 64.3 68.7 67.1 67.3 

Chest size 58.7 54.5 64.9 68.9 67.5 

Arm thickness 60.1 70.5 72.0 73.1 73.7 

Leg thickness 56.7 65.5 68.9 71.0 72.6 

Skin color 59.2 54.3 66.8 67.6 68.7 

Hair color 67.5 59.5 74.2 76.1 77.9 

Hair length 71.8 72.5 78.9 79.2 85.9 

Muscle build 58.5 66.3 73.3 74.5 75.8 

Average 61.9 63.6 71.0 71.3 74.2 
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parameters obtained from the validation set. Furthermore, we in-

vestigated the classification performance when tasks are learned

individually (i.e., by backpropagating only their own loss in the

network), jointly in a typical multi-task classification setup (i.e.,

by backpropagating the average of the total loss in the network),

and using the proposed approach. We report the classification ac-

curacy (%) for all 12 soft biometrics in Table 1 . CILICIA is superior

in both groups of tasks to the rest of the learning frameworks. De-

spite the small size of the dataset, ConvNet-based methods per-

form better in all tasks compared to an SVM with handcrafted

features. Multi-task learning methods (i.e., multi-task and CILICIA)

outperform the learning frameworks when tasks are learned in-

dependently since they leverage information from other attributes.

By taking advantage of the correlation between attributes, CILI-

CIA demonstrated higher classification performance than a typical

multi-task learning scenario. However, estimating the “age” proved

to be the most challenging task in all cases as its classification ac-

curacy ranges from 58.5% to 64.5% when it is learned individually

using our ConvNet architecture. This poor performance can be at-

tributed to the fact that age estimation from images without facial

traits is a largely unsolved problem [84,85] . In Fig. 5 , the conver-

gence plots for all four CILICIA groups are depicted and the fol-

lowing observations are made: (i) the first group (comprises only

two attributes) after epoch 3,0 0 0, demonstrates strong overfitting

which proved to be inevitable even when we experimented with

smaller learning rates; (ii) Multi-Task learning demonstrated the

highest loss compared to the groups of the proposed method; and

(iii) as we move from the groups of attributes that are strongly cor-

related to the rest by transferring knowledge each time, the train-

ing loss becomes smaller and there is less overfitting (if any). Note

that the depicted losses for the corresponding groups are averaged

over the tasks that belong to the cluster and thus, they can be
ompared although the number of tasks in each group is not the

ame. 

Impact of color information : In this experiment, we investi-

ated to what extent the color information affects the classifica-

ion accuracy of the visual attributes. Since we employed a net-

ork pre-trained on RGB images, we fed each of the three color

hannels with the same grayscale images. Fig. 6 (left) summarizes

he obtained results. Visual attributes such as hair and skin color

ere expected to have a drop in performance when color informa-

ion was absent. However, we observed that weight and age were

lso affected as their accuracy dropped by 8% and 11% respectively.

Impact of image resolution : The objective of this experiment

s to assess the impact of image resolution on the classification

erformance. One of the major advantages of ConvNets (due to pa-

ameter sharing) is that they do not need to have a fixed-size input

nd pre-trained networks can be utilized with images of different

patial size. This still holds for fully-connected layers since they

re equivalent to convolution layers with 1 × 1 kernel. Our Con-

Net architecture was fed with images of varying resolutions start-

ng from 32 × 32 up to 128 × 128 and average classification accu-

acies over all attributes are reported. From the obtained results

n Fig. 6 (right), we draw the following observations. First, images

f higher resolution tend to perform better than lower since they

rovide more spatial space for the convolutional operations. Sec-

nd, when we experimented with images of size 32 × 32, we ob-

erved that the norm of the gradient started taking very high val-

es which is a common phenomenon during training ConvNets and

s referred to as the exploding gradients problem [86] . In our case,

he reasons for the explosion of gradients were the small image

ize in a network pre-trained on images of almost 10-times larger

nd the existence of dropout with a high probability before the

utput layer. 
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Fig. 5. Convergence plot for all the groups of CILICIA as well as Multi-Task learning on the SoBiR dataset. Note that the numbering starts from the most correlated to the 

least correlated cluster. 

Fig. 6. Impact of image color information in the classification accuracy of the attributes of the SoBiR dataset (left) and classification accuracy for different image resolutions 

(right). The standard deviation is high because we averaged over all attributes of the SoBiR dataset. Outliers depicted with a red cross correspond to “age”. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Table 2 

Performance comparison on the VIPeR dataset. Five clusters were formed and 

attributes are in descending order based on their intra cross-correlation. Re- 

sults highlighted with bold italic indicate statistically significant improvement 

using the z-test. 

Visual Attribute Multi-Task Learning Zhu et al. [36] CILICIA 

barelegs 79.6 ± 0.8 84.1 ± 1.1 88.6 ± 0.4 

shorts 76.8 ± 1.1 81.7 ± 1.3 89.6 ± 0.6 

lightshirt 79.5 ± 0.9 83.0 ± 1.2 84.6 ± 0.6 

nocoats 74.3 ± 1.3 71.3 ± 0.8 75.0 ± 0.3 

blueshirt 69.9 ± 1.7 69.1 ± 3.3 90.2 ± 1.2 

midhair 74.3 ± 1.3 76.1 ± 1.8 77.7 ± 0.6 

lightbottoms 79.0 ± 1.0 76.4 ± 1.2 75.1 ± 1.2 

redshirt 79.2 ± 1.9 91.9 ± 1.0 93.6 ± 0.4 

nolightdarkjeans 87.1 ± 1.6 90.7 ± 2.0 96.0 ± 0.5 

greenshirt 70.3 ± 2.4 75.9 ± 5.9 95.1 ± 0.4 

hashandbag 66.9 ± 3.1 42.0 ± 6.5 90.8 ± 0.6 

hassatchel 72.5 ± 0.8 57.8 ± 2.7 72.8 ± 0.4 

skirt 67.2 ± 3.7 78.1 ± 3.5 94.8 ± 0.6 

darkbottoms 68.1 ± 0.9 78.4 ± 0.7 76.3 ± 0.9 

male 71.5 ± 1.9 69.6 ± 2.6 81.0 ± 1.9 

patterned 67.4 ± 3.5 57.9 ± 9.2 92.2 ± 0.7 

darkshirt 71.0 ± 1.4 82.3 ± 1.4 84.3 ± 0.5 

jeans 74.9 ± 0.7 77.5 ± 0.6 76.2 ± 0.6 

darkhair 70.1 ± 2.0 73.1 ± 2.1 71.8 ± 1.3 

hasbackpack 68.4 ± 1.4 64.9 ± 1.2 76.1 ± 1.6 

Total Av. 73.4 ± 1.2 74.1 ± 1.0 84.0 ± 0.8 

g  

T  

d  
.3. Results on VIPeR 

Implementation details : For the VIPeR dataset, the batch size

as set to 158. We split it into five clusters containing 2, 4, 7, 3,

nd 4 attributes by thresholding at within cluster sum of squares

= 1 . 8 , trained our models for 50 0 0 epochs, and set λ = 0 . 25 . 

Evaluation results : To demonstrate the superiority of the pro-

osed approach over normal multi-task learning approaches, we

valuate in Table 2 its performance in comparison with the method

f Zhu et al. [36] and a typical multi-task learning framework. To

est for statistical significance between CILICIA and the method of

hu et al. [36] we employed the z-test ( p < 0.05) since the mean

nd the standard deviation results were available from their tech-

ique. Employing the proposed multi-task curriculum learning ap-

roach is beneficial for the classification of visual attributes, as it

utperformed the previous state-of-the-art by improving the to-

al results by 9.9%. CILICIA achieved significantly better results in

ost of the tasks, which demonstrates the efficacy of our method

ver traditional multi-task learning approaches. The reason for this

s that when some tasks are completely unrelated then multi-task

earning has a negative effect as it forces the network to learn rep-

esentations that explain everything, which is not possible. Addi-

ionally, we observed that color attributes tend to achieve higher

erformance compared to other attributes. The reason for this is

hat such attributes are highly imbalanced (sometimes more than

ne to nine) due to the way annotation is provided (e.g., is the hu-

an wearing a red t-shirt or not). Note that, since in both the So-

iR and the VIPeR datasets, the training set is not fixed and train-

est splits are performed each time, the sequence in which the

t

roups of tasks are learned is not necessarily the same each time.

he reason for this is that the hierarchical agglomerative clustering

epends on the pairwise correlation matrix between the labels of

he training set which vary between different splits. 
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Fig. 7. Classification performance for the low-correlated attributes under different viewpoints. For visualization purposes, we group attributes (e.g., “darkhair” and “midhair”

correspond to “hair”). 

Table 3 

Performance comparison of the weakly correlated visual attributes 

when the face exists and it is absent in the input image. Attributes 

are grouped based on where they correspond to the human body. 

Upper body Lower body Hair Gender 

Entire Image 85.3 84.8 74.7 81.0 

No Face 83.2 85.4 68.7 75.7 
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Impact of facial information : To investigate the impact of fa-

cial information in the classification, we trained the proposed ar-

chitecture with images of humans after removing the upper part

of the image containing the face (top 20% of the image). From the

results in Table 3 , we observed that the performance of the vi-

sual attributes related to clothes or objects of the upper body was

not affected by the absence of facial information. On the contrary,

the impact on the hair-related attributes was significant since their

performance dropped by 6%. Finally, facial information plays a vital

role in recognizing the gender of humans even in low-resolution

images as a 5.3% performance drop was observed in the absence

of the face. 

Impact of viewpoint : Aiming to investigate to what extent the

camera viewpoint affects the classification performance, we report

classification results over the weakly-correlated attributes depend-

ing on the camera angle. VIPeR images are captured from 0 °, 45 °,
90 °, 135 °, and 180 ° degrees and the obtained results are depicted

in Fig. 7 . It can be observed that visual attributes related to shirt

color are viewpoint-invariant, whereas others such as “jeans” per-

form better from a frontal angle. Two interesting observations arise

from the hair and backpack attributes. First, classifying attributes

pertaining to hair (length and color) can be done with higher ac-

curacy when the viewpoint is at 90 °. Second, finding whether the

human has a backpack or not becomes an easier task for camera

angles of 135 ° and 180 ° which is compatible with the way humans

would perform on this task. 

4.4. Results on PETA 

Implementation details : For the PETA dataset, the batch size

was set to 190. We split it into five clusters containing 2, 11, 4, 10,

and 18 attributes by thresholding at within cluster sum of squares

τ = 3 , trained our models for 50 0 0 epochs, and set λ = 0 . 2 . 

Evaluation results : Since the training size of the PETA dataset

is significantly higher than the rest (almost 10,0 0 0) and the anno-

tations provided are 45 instead of 20, some very interesting obser-

vations can be made from the clusters of visual attributes depicted

in Fig. 8 . The turquoise cluster comprises attributes related to up-
er and lower body formal clothes along with black and leather

ootwear, and thus it is beneficial if we learn these attributes at

he same time. Other examples that follow to our intuition and se-

antic understanding are the fact that being male is very strongly

onnected with having short hair and not carrying any type of

ag, or that carrying a backpack is linked with being less than 30

ears old. The proposed learning approach employs this informa-

ion from attributes strongly connected on the PETA dataset and

utperformed the recent method of Zhu et al. [79] . 

Since many attributes are highly imbalanced and the classifi-

ation accuracy as an evaluation metric is not sufficient by itself

hey also reported recall rate results when the false positive rate

s equal to 10% as well as the area under the ROC curve (AUC).

ollowing the same evaluation protocol, we tested the proposed

ulti-task curriculum learning method on the PETA dataset and

eport our results in comparison with those of Zhu et al. [79] af-

er grouping the attributes in Table 4 . Although our method is

ot part-based, as it does not split the human image into parts

hich are then learned individually, it outperforms the part-based

ethod of Zhu et al. [79] in all types of visual attributes under all

valuation metrics. Due to highly imbalanced data (the imbalance

atio in most of the categories is relatively high), the improvement

n the classification accuracy is minor. However, for the rest of the

valuation metrics, our method improved the average recall rate by

.93% and the AUC by 1.94%. In Fig. 9 the ROC curves of some tasks

n which our method performed really well (e.g., “blue shirt”), rea-

onably well (e.g.,“gender”), and adequately (e.g.,“has backpack”)

re depicted. The complete results on the PETA dataset are pro-

ided in Table 5 . 

. Ablation studies and performance analysis 

.1. Is hierarchical clustering beneficial? 

An important question that arises while analyzing the perfor-

ance of CILICIA on attribute classification is, what is the im-

act of the group split using hierarchical clustering along with the

roposed learning paradigm which guides the training process?

o what extent can the obtained results be accustomed to using

 deep-learning multi-task classification scheme? To answer such

uestions, we conducted a detailed experimental evaluation on the

IPeR dataset [80] for a different number of groups that were split

ith two different methods. The first group split is performed after

orting the total cross-correlations for each attribute using Eq. (3) ,

n descending order, and splitting the attributes to a fixed num-

er of groups. For example, for the VIPeR dataset, we compute for

ach attribute the sum of cross-correlations with the rest, which
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Table 4 

Performance comparison on the PETA dataset for different types of attributes. The imbalance ratio is defined as the ratio of the 

number of instances in the majority class to the number of examples in the minority class in the training set. 

Visual Attribute Imbalance Ratio Accuracy (%) Recall rate (%) @FPR = 10% AUC (%) 

Zhu et al. [79] CILICIA Zhu et al. [79] CILICIA Zhu et al. [79] CILICIA 

Accessories 7.63 93.11 93.48 75.68 76.66 91.06 92.13 

Carrying Bags 5.01 83.68 84.78 57.21 62.73 82.79 85.63 

Footwear 4.69 83.41 83.74 59.09 60.88 84.44 85.18 

Hair 4.57 89.54 89.96 75.89 80.43 90.95 93.18 

Lower Body 3.54 85.05 85.66 64.92 66.95 87.37 88.26 

Upper Body 8.06 89.60 90.48 69.88 76.12 88.66 91.68 

Age 7.05 87.84 87.90 71.03 72.49 88.93 90.24 

Gender 1.22 84.34 87.59 74.80 82.04 91.74 93.84 

Total Av. 6.07 87.23 87.91 67.29 71.22 87.66 89.60 

Table 5 

Performance comparison on the PETA dataset for different types of attributes. The imbalance ratio is defined as the ratio of the number 

of instances in the majority class to the number of examples in the minority class in the training set. An asterisk next to an attribute 

denotes that it belongs to the strongly correlated group of tasks. 

Visual Attribute Imbalance Ratio Accuracy (%) Recall rate (%) @FPR = 10% AUC (%) 

Zhu et al. [79] CILICIA Zhu et al. [79] CILICIA Zhu et al. [79] CILICIA 

accessoryHat ∗ 8.78 96.05 96.56 86.06 85.23 92.62 92.28 

accessoryMuffler ∗ 11.06 97.17 97.04 88.42 91.23 94.47 95.62 

accessoryNothing 3.03 86.11 86.45 52.57 51.93 86.09 86.75 

carryingBackpack 4.01 84.30 84.82 58.40 64.20 85.19 89.62 

carryingMessengerBag 2.37 79.58 80.59 58.30 60.13 82.01 83.35 

carryingNothing 2.68 80.14 81.12 55.15 61.11 83.08 85.30 

carryingOther 4.11 80.91 81.69 46.90 50.68 77.68 78.16 

carryingPlasticBags ∗ 11.87 93.45 94.72 67.30 76.11 86.01 90.77 

footwearBlack 1.26 75.97 75.33 57.24 55.59 84.07 83.42 

footwearBrown ∗ 13.64 92.14 92.65 65.77 62.73 85.26 85.28 

footwearGrey 5.40 87.07 88.07 50.80 60.54 80.92 84.54 

footwearLeatherShoes 2.39 85.26 86.16 72.28 76.79 89.84 90.96 

footwearShoes 1.75 75.78 76.95 52.80 55.52 81.63 81.73 

footwearSneakers ∗ 3.67 81.78 81.08 52.04 50.63 83.19 83.43 

footwearWhite ∗ 4.73 85.89 85.73 62.72 60.44 86.16 85.26 

hairBlack 1.55 87.83 87.97 81.03 82.46 93.61 94.13 

hairBrown 3.86 89.58 89.07 77.36 81.22 91.33 92.48 

hairGrey ∗ 11.36 95.25 95.09 74.91 80.65 89.42 91.65 

hairLong 3.23 88.12 88.21 76.49 78.93 90.55 92.15 

hairShort ∗ 2.84 86.93 87.03 69.68 69.28 89.84 90.38 

lowerBodyBlack 1.08 83.86 85.41 71.21 79.42 90.84 92.83 

lowerBodyBlue ∗ 4.51 88.64 89.53 77.26 80.16 90.81 92.06 

lowerBodyCasual 6.33 90.54 89.58 56.23 58.76 87.49 88.19 

lowerBodyFormal 6.45 90.86 90.87 72.52 72.94 87.79 88.94 

lowerBodyGrey ∗ 3.10 82.07 81.85 53.43 51.73 82.77 83.33 

lowerBodyJeans ∗ 2.28 83.13 82.57 67.59 64.85 87.71 86.46 

lowerBodyTrousers ∗ 1.06 76.26 75.90 56.19 54.77 84.16 83.34 

personalLarger60 ∗ 16.21 97.58 97.24 90.71 90.33 94.94 95.96 

personalLess30 1.00 81.05 81.84 63.75 67.34 88.50 89.42 

personalLess45 2.03 79.87 79.39 59.42 58.64 84.62 85.25 

personalLess60 ∗ 8.96 92.84 93.21 70.22 71.94 87.66 88.03 

personalMale ∗ 1.22 84.34 86.03 74.80 77.87 91.74 92.85 

upperBodyBlack 1.25 86.21 86.86 80.11 82.07 93.06 94.07 

upperBodyBlue ∗ 12.05 94.53 95.74 76.19 84.64 90.92 94.51 

upperBodyBrown ∗ 12.59 93.25 94.20 68.60 79.80 87.58 92.54 

upperBodyCasual ∗ 5.98 89.25 80.00 62.14 61.45 87.17 85.08 

upperBodyFormal 6.66 91.12 90.33 70.48 74.47 87.57 89.60 

upperBodyGrey 4.56 84.39 84.46 55.33 63.38 82.99 87.44 

upperBodyJacket ∗ 13.20 92.34 93.04 53.37 63.10 80.98 85.27 

upperBodyLongSleeve 4.98 87.88 87.96 74.29 80.69 89.97 92.72 

upperBodyOther ∗ 1.22 81.97 81.58 73.19 71.83 88.50 88.14 

upperBodyRed ∗ 17.66 96.33 96.64 86.77 90.82 94.69 96.16 

upperBodyShortSleeve 5.98 88.09 88.79 69.22 75.88 89.21 92.10 

upperBodyTshirt ∗ 10.53 90.59 90.80 63.51 68.65 88.73 90.55 

upperBodyWhite 18.87 88.84 90.37 75.25 84.18 91.24 94.65 

Strongly Cor. Av. 8.12 89.63 89.87 70.04 72.19 88.42 89.50 

Weakly Cor. Av. 4.12 84.93 85.32 64.66 68.56 86.93 88.60 

Total Av. 6.07 87.23 87.54 67.29 70.34 87.66 89.04 
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Fig. 8. Dendrogram of the visual attributes of the PETA training set. For WCSS equal to 3, five clusters are formed. The learning sequence of the clusters is green, left purple, 

red, right purple and turquoise. (Lb. - Lower Body, Ub. - Upper Body, Car. - Carrying, Ac. - Accessory, Fw. Footwear, Hr. - Hair, and A. - Age). (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. ROC curves for the visual attributes of “gender”, “blue shirt”, and “has back- 

pack”. The x -axis is in semi-logarithmic scale and the depicted values correspond 

to the recall rate (%) when the false positive rate is 10%. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version 

of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6 

Ablation experiments to assess the effectiveness of knowl- 

edge transfer and correlation-based split. In the random 

split column, the strongly and weakly groups refer only 

to the learning sequence as the split is not based on 

the correlation. CILICIA (w/o kt) corresponds to learning in 

correlation-split groups but without knowledge transfer. 

Group Random Split CILICIA (w/o kt) CILICIA 

Strongly 65.36 76.01 76.01 

Weakly 63.08 69.91 71.80 

Total 64.22 72.95 73.91 

l  

t  

o  

w  

r  

W  

p  

t  

r  

w  

t

5

 

g  

t  

t  

i  

t  

c  

t  

r  

c  

w  
results in a 20 × 1 vector. After sorting this vector, we split it into

N number of groups depending on the number of groups that we

are interested in investigating. The second way to split the visual

attributes into groups is by employing the proposed approach (de-

scribed in Section 3.2 ). In Fig. 10 , we demonstrate the average clas-

sification accuracy over all visual attributes of the VIPeR dataset

[80] for a different number of groups, using the two methods de-

scribed. We observe that splitting into groups using a hierarchi-

cal bottom-up method yields better results in all groups over the

cross-correlation bases split and that for the VIPeR dataset, five

clusters are the optimal number of groups. The reason it works

better than simply grouping the attributes based on the cross-

correlation, is because attributes are assigned to clusters by iden-

tifying which joint produces the smallest WCSS of errors. 

5.2. Why is knowledge transfer important? 

To assess the impact of transferring knowledge from groups of

tasks which have already converged to ones that have not been
earned yet we conducted an ablation experiment. We selected

he four most correlated and the four least correlated attributes

f the PETA dataset so as to form the two groups of strongly and

eakly correlated attributes. We compare the classification accu-

acy of the selected tasks with and without knowledge transfer.

hen no knowledge is transferred to the latter group, we are sim-

ly training two multi-task classification frameworks. We report

he obtained results in the last two columns of Table 6 . Transfer-

ing knowledge from a strongly correlated group of tasks to the

eakly improves the performance of the latter by 1.89% compared

o a typical multi-task classification learning framework. 

.3. Why use correlation as a criterion for group split? 

To demonstrate the effectiveness of clustering attributes into

roups based on their cross correlation we conducted an abla-

ion study using the same eight attributes (as in Section 5.2 ) from

he PETA dataset. However, in this experiment, instead of group-

ng them based on their cross-correlation, we randomly assign

hem to two groups. We follow exactly the same two-stage pro-

ess (i.e., learning one group first and transferring knowledge to

he second which is learned right after) and report the obtained

esults in the first column of Table 6 . We observe that learning in

orrelation-based groups of tasks is beneficial as CILICIA with and

ithout knowledge transfer performs better than learning at ran-
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Fig. 10. Average classification accuracy over all visual attributes of the VIPeR dataset, for different number of group splits. The cross-correlation based split refers to grouping 

the tasks based on their total cross-correlation with the rest after arranging them in a descending order. The hierarchical clustering based split corresponds to the proposed 

approach described in Algorithm 1 . 
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om. Additionally, transferring knowledge between attributes that

o not co-occur (or they are semantically completely different) has

n adverse effect on the performance. The obtained results are in

ine with previous methods that can be found in the literature

87,88] that have exploited label correlations to improve multi-task

earning. 

.4. Why is the proposed curriculum the right one? 

We argue that task similarity and thus the curriculum is not

inary, but resides on a spectrum. In the same way that humans

earn with different curricula depending on the task, the pro-

ess of finding a curriculum that is beneficial for all tasks can-

ot have an optimal single solution. Learning in correlation-split

roups showed promising results ( Tables 1 and 6 ) which led us to

tart considering how can we improve the performance. Transfer-

ing knowledge between related tasks is not beneficial as during

he joint multi-task learning training the parameter sharing plays

hat role. Transferring knowledge from randomly-split groups also

roved to be ineffective ( Table 6 ). We then investigated whether

he work of Bengio et al. [16] , which proposed a curriculum based

n what is easier to learn first, would add value. We believe that

he knowledge transfer from the strongly to the weakly correlated

roup of tasks is a reasonable easy-to-hard curriculum which re-

embles to the definition of Bengio et al. [16] . In addition, note

hat when Bengio et al. [16] introduced curriculum learning af-

er they defined an entropy-based curriculum they demonstrated

hat introducing gradually more difficult examples speeds-up on-

ine training. In our paper, this can be observed in the convergence

lot ( Fig. 5 ) in which the subgroups converge faster and with a

maller loss (average among tasks). 

.5. Performance analysis and limitations 

The proposed approach outperformed the state-of-the-art in all

atasets and demonstrated better results over the rest of the learn-

ng paradigms on the SoBiR dataset. The main reasons for this are:

i) we exploited the correlation between different attributes and

plit them into clusters using hierarchical clustering; (ii) we pro-

osed a learning paradigm to learn the group of attributes in a cur-

iculum learning framework and classify them in a multi-task clas-

ification setup; and (iii) we leveraged the already learned clusters

f visual attributes which had converged to transfer knowledge to
roups that were about to be learned to improve the performance

nd enhance the stability of our method. 

Despite its success and good performance, the proposed ap-

roach has a few limitations and inefficiencies. First, the existence

f a fully-connected layer after the last convolutional layer in-

reases significantly the number of parameters that need to be

earned for each task. We partially addressed this by freezing most

f the network and employed a small number of units in the fully-

onnected layer. This inefficiency is known for the VGG network

nd was addressed by more recent networks that such as the

oogLeNet [89] , the ResNet [74] or the Highway Networks [90] .

o investigate to what extent this inefficiency affects the overall

erformance we evaluated the performance of the ResNet-18 net-

ork against VGG-16 by fine-tuning both networks end-to-end on

he VIPeR dataset. Following a multi-task classification setup us-

ng all 20 attributes we observed that using the ResNet-18 results

n 77.93% classification accuracy which is 4% higher than the cor-

esponding accuracy of VGG. This result demonstrates the impor-

ance of residual connections that prevent gradients from vanish-

ng while training deep neural networks. Second, the proposed ap-

roach contains two additional parameters that need to be cross-

alidated thoroughly. The first parameter is λ, which controls the

ontribution of the already learned groups of clusters and is found

n several methods that perform transfer learning or knowledge

istillation [65,66] . For this parameter, we experimented on the

alidation set with different parameters (namely 0.25, 0.5, 0.75 and

) and observed that a 25% contribution of the already learned

lusters of visual attributes was the most effective. The second pa-

ameter is the within-cluster sum of squares threshold which con-

rols the number of clusters formed. Finally, the goal of the pro-

osed approach was to classify the visual attributes of humans,

he full body of whom was always fully-visible. Thus, it was tested

n re-identification datasets, which contain pairs of images of hu-

ans standing or walking, and outperformed the state-of-the-art

ithout even following a part-based approach. For datasets such as

he Berkeley Attributes of People dataset [34] , which comprises hu-

ans of varying poses with parts of their body either not visible or

ccluded, part-based (or poselet-based) approaches [28,29,35] have

roven to be very effective recently. To address these challenges,

ILICIA would have to be adapted to work with poselets or body-

arts (i.e., in which order the body parts need to be learned so as

o transfer information between groups of tasks) which was out-

ide the scope of this paper. 
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6. Conclusion 

Given a set of tasks that need to be learned we sought to find

an answer to how we can learn them effectively and what would

be the optimal way in terms of performance, speed, and simplic-

ity. Learning each task separately, although very simple, lacks in

terms of performance since it does not exploit the information

from other tasks. Learning all tasks at the same time in a multi-

task classification scenario is relatively fast, easy to implement,

and employs knowledge from other tasks to boost the classification

performance. Curriculum learning is a learning scheme in which

samples or tasks are not treated as equally easy or hard, but are

instead presented to the model in a meaningful way so as to in-

crease generalization and performance. Since learning a large num-

ber of tasks one at a time is computationally expensive, we opted

for learning clusters of tasks in a curriculum. In each cluster of vi-

sual attributes, we proposed to learn the corresponding tasks in a

multi-task classification setup. 

Our proposed method, CILICIA, finds the sequence in which

clusters of visual attributes are learned very efficiently, and clas-

sifies them with high performance. Given images of standing hu-

mans as an input, we performed end-to-end learning by solv-

ing multiple binary classification problems simultaneously. Tasks

were grouped into clusters by employing hierarchical agglomera-

tive clustering based on their correlation. The sequence (i.e., cur-

riculum) in which clusters were learned was found by computing

the average cross-correlation within each cluster and sorting the

obtained values in a descending order. During training of weakly

correlated clusters of tasks, we leveraged the knowledge already

learned from clusters which demonstrated stronger correlation. By

these means, we combined the advantages of both multi-task and

curriculum learning paradigms; since our method converges fast,

it is effective and employs prior knowledge. We evaluated our

method in three datasets and outperformed the state-of-the-art

by 9.9% on the VIPeR dataset and by a recall rate of almost 4%

(when the false positive rate is fixed and equal to 10%) on the

PETA dataset despite the fact that no body part-specific informa-

tion was employed. The obtained results demonstrate the effec-

tiveness and, at the same time, the great potential of multi-task

curriculum learning. 
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