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The Internet of Things (IoT) is emerging as a new technology for the development of various critical
applications. However, these applications are still working on centralized storage architecture and
have various key challenges like privacy, security, and single point of failure. Recently, the blockchain
technology has emerged as a backbone for the IoT-based application development. The blockchain can
be leveraged to solve privacy, security, and single point of failure (third-part dependency) issues of IoT
applications. The integration of blockchain with IoT can benefit both individual and society. However,
2017 Distributed Denial of Service (DDoS) attack on mining pool exposed the critical fault-lines among
blockchain-enabled IoT network. Moreover, this application generates huge amount of data. Machine
Learning (ML) gives complete autonomy in big data analysis, capabilities of decision making and therefore
is used as an analytical tool. Thus, in order to address above challenges, this paper proposes a novel
distributed Intrusion Detection System (IDS) using fog computing to detect DDoS attacks against mining
pool in blockchain-enabled IoT Network. The performance is evaluated by training Random Forest (RF)
and an optimized gradient tree boosting system (XGBoost) on distributed fog nodes. The proposed model
effectiveness is assessed using an actual IoT-based dataset i.e., BoT-IoT, which includes most recent
attacks found in blockchain-enabled IoT network. The results indicate, for binary attack-detection XGBoost
outperforms whereas for multi-attack detection Random Forest outperforms. Overall on distributed fog
nodes RF takes less time for training and testing compared to XGBoost.

© 2022 Elsevier Inc. All rights reserved.
1. Introduction

Internet of Things (IoT) has emerged as a new technology that 
has merged with our daily lives as the Internet has progressed. The 
IoT-based applications such as supply chain management, health-
care, RFID based identity management system is directly empow-
ering the individual and society [14]. The underlying technology is 
becoming promising for data analysis, and modeling by combin-
ing cloud computing and machine learning [34]. The advancement 
in the IoT-based development is causing growth in various sec-
tors. However, the application built with IoT system mostly works 
on centralized storage and computing architecture [22,6]. The cen-
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tralized storage model lacks various security and privacy breaches. 
The underlying working model has constraints to facilitate the ex-
pansion of IoT based system in near future [37]. Hence, there is 
a need of decentralized or distributed storage model that can ad-
dress these issues. One of the emerging decentralize-based archi-
tecture is blockchain technology [24].

The blockchain is decentralized and immutable storage model 
that consists of all transactions details that have been initiated by 
the peer node in the network. The concept of decentralized storage 
is called distributed ledger [33]. Any transaction that is processed 
in the ledger is verified by the consent of the majority of network 
participants. Bitcoin is the most popular real time implementation 
of blockchain technology [21]. Blockchain and IoT integration can 
provide many benefits such as, decentralized blockchain storage 
model have the ability to synchronize the IoT devices and can pro-
vide real-time data to each IoT nodes. This underlying integrated 
model eliminates the third-party dependency and single point of 
failure [15]. In addition, IoT integration with blockchain can enable 
peer-to-peer messaging, real-time data and file sharing, and au-
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tonomous communication between IoT nodes without the need of 
a centralized client-server model [16].

Although blockchain is verifiable and immutable, yet it is vul-
nerable to different attacks [12]. The IoT and blockchain integration 
has experienced massive growth in revolutionizing the stand-alone 
IoT applications [27]. However, the number of attacks has also 
increased accordingly. DDoS attacks often caused by flooding on 
mempool/memory pool in blockchain network has severe conse-
quences to legitimate users [20], [30].

In existing blockchain networks, DDoS attacks are aimed mostly 
on miners (mempool), users and their communication medium 
[29]. In the peer-to-peer system DDoS may be performed in dif-
ferent form like bootstrapping of blockchain network, users and 
miners towards a fake or counterfeit networks by denying of ac-
cess to real network. This process can be performed by hacker by 
hijacking few (<100) Border Gateway Protocol (BGP) prefixes [2]. 
Another way to target the DDoS attack on the blockchain network 
is flood attack on memory pool (mempool) with spam transactions 
by the attacker in the network. In blockchain, the mempool work 
as a transaction repository where all shared transactions by a peers 
are initially logged and waits for the confirmations [17]. Once IoT 
node generates the transactions, it gets disseminated among all 
the synchronized IoT peer nodes. The raised transactions waits for 
the confirmation in the mempool. In November 11, 2017, the size 
of mempool exceeded by 115K spam transactions that causes loss 
of 700 million USD [18,23]. As the mempool size grows with un-
confirmed transactions then real users have to pay further more 
mining fees to prioritize his/her unconfirmed transactions and this 
situation becomes opportunities for the attackers [41]. Thus in or-
der to detect DDoS attacks, a secure and robust security mecha-
nism is required.

On the other hand data generated by these applications are 
huge, causing big data related issue. Thus, to address this issue Ar-
tificial Intelligence (AI) works as an analytical tool and provides 
useful information to decision making, classification, prediction 
and detection of future actions in blockchain-enabled IoT network 
[25], [28]. Moreover, existing blockchain-based architecture uses 
cloud server for analysis. However, centralized server has various 
constraints such as low latency, less computational storage, low 
accuracy, low speed [19]. In order to fulfill these demands a new 
distributed paradigm, fog computing should get thoroughly inves-
tigated.

Fog computing is a decentralized architecture coined by Cisco 
in 2012, is an extension of cloud to the network edge [31]. The 
principle of fog computing such as support for heterogeneity, low 
latency, location awareness, geo-distribution, support for mobility 
presents a wide range support to blockchain-based applications 
[26]. Fog computing can also be used for load balancing, data col-
lection in distributed manner [9]. Thus this paper integrates fog 
computing with AI to design a distributed security mechanism, 
that can detect DDoS attacks against mining pools in blockchain-
enabled IoT network. Fig. 1 shows, secure detection model with 
blockchain, IoT, AI, and fog computing integration.

IDS is a tool that combines software and hardware to monitor 
network traffic or systems to identify malicious activities [3]. Ac-
cording to detection techniques IDS can be broadly categorized into 
two types. Signature-based IDS and anomaly-based IDS. In SIDS, a 
database of predefined rules or patterns with existing attacks are 
kept and the new traffic is matched against this pattern. When 
a suspicious activity is detected, administrator is alerted. On the 
other hand in AIDS, a typical normal user behavior is modeled. 
Any deviation between normal and incoming traffic is treated as 
malicious (intrusion) [10].

In the context of blockchain-enabled IoT network, SIDS gets 
confined as IoT systems are heterogeneous and diverse in nature 
[39]. In this paper, the proposed detection system is anomaly-
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Fig. 1. Secure detection model with the integration og Blockchain, IoT, AI, and Fog
computing.

based. Further, the effectiveness of the proposed model is eval-
uated by a benchmark dataset i.e., BoT-IoT [13]. This dataset is 
generated in a realistic IoT environment using a lightweight Mes-
sage Queuing Telemetry Transport (MQTT) protocol and contains 
recent Botnet related attacks such as Dos, DDoS, Theft. Thus, BoT-
IoT dataset is best suited for this research.

In order to detect DDoS attacks, this paper proposes a fog com-
puting based distributed IDS for mining pool in blockchain-enabled 
IoT network. The proposed IDS is trained using RF and XGBoost al-
gorithm. Fig. 2, shows the overview of the proposed distributed 
model. The detection system consists of sensing nodes that are re-
sponsible to identify moving objects within their vicinity. All IoT 
sensors are identical and have same detection radius rd based on 
which they are clustered into different groups. The data generated 
by this cluster group is send to local fog nodes. As fog node pro-
vides services such as gateway, access point to IoT devices, thus 
the security mechanism, IDS is integrated with every fog node. The 
incoming traffic is evaluated by IDS and respective measures are 
taken accordingly. If the incoming traffic (transactions) is normal 
then the transaction gets disseminated in the memory pool (mem 
pool) for the mining. The miners select the transactions for mining 
and block creation is done in blockchain network situated at cloud. 
If transactions are malicious or invalid then the IDS generates the 
alarm for administrator to take necessary actions.

1.1. Motivation

According to the literature, numerous security problems and 
challenges occur in the mining pool of blockchain-enabled IoT net-
work. The growing DDoS attack in the blockchain-IoT ecosystem 
renders all blockchain-enabled IoT network vulnerable. The key 
challenges are listed below:

• Ensuring distributed security framework for blockchain-based
IoT network is a challenging task.

• Ensuring a security mechanism uses appropriate analytical tool
in a distributed working architecture and is capable of han-
dling huge data generated by IoT devices in a distributed man-
ner.

• Building an effective IDS that can differentiate normal and
attack transactions is challenging task. There is not much re-
search visible for security mechanism of mitigating DDoS at-
tack against mining pools in blockchain-enabled IoT network
after model deployment.
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Fig. 2. Proposed IDS framework for blockchain based IoT Network.
1.2. Contribution

To address the aforementioned challenges and issues, this pa-
per aims to construct a distributed IDS based on AI-enabled fog 
computing with integration of mining-pool to detect DDoS attack 
with blockchain-enabled IoT network. We are the first to design a 
framework for the deployment of a anomaly-based IDS for mining 
pool in blockchain-IoT environment. The main contributions of our 
research are as follows:

• The devices and sensors in blockchain-enabled IoT network
produce a lot of data, so AI is applied as analytical tool to
provide consistent results in decision-making.

• Fog computing paradigm is used to decentralize cloud based
centralized security mechanism, thus data analysis and secu-
rity related concerns are handled at edge of networks.

• A distributed IDS is designed using fog computing to detect
DDoS attacks against memory pool in blockchain-enabled IoT
network.

• To evaluate the proposed detection system two well known
machine learning algorithms, random forest and XGBoost are
used in distributed architecture.

• An actual IoT based BoT-IoT dataset is used to analyze the per-
formance of the model. As it contains various recent Botnet
related attacks such as DoS, DDoS, theft.

• Different evaluation metrics such as accuracy, detection rate,
false alarm rate, and precision are used to thoroughly investi-
gate performance of the proposed IDS.

2. Related work

In this section, we review the various attacks on blockchain 
based network including mining attack, transaction attack, and 
DDoS attack. The DDoS attack is centerpiece of our study. The work 
in [7,38] discusses about the selfish mining problem, where miners 
do not publish their block after mining computation, hoping to get 
more reward by mining subsequent blocks. Eyal et al. [7] proposed 
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strategy to prevent selfish mining problem in blockchain network. 
Rosenfeld et al. [35] explored the withholding attack, where min-
ers submit partial proof-of-work rather than full proof-of-work, 
as a result miners gets rewarded for the mining participation al-
though mining pool suffers from partial solutions. Similarly Yujin 
et al. [32] introduces new attack called fork attack after with-
holding attack. In this attack rewards are always higher than the 
withholding attacks.

The 51% attack can be initiated, if an attacker gains more than 
50% of the network hashing power. With more than 50% of the 
hashing power attacker can prevent from transactions verifica-
tions and mining a block in the blockchain network. To address 
this attack, Eyal et al. [8] proposed the Two-Phase Proof-of-Work 
(2P-PoW) and examined by Bastiaan et al. [5]. The transaction at-
tack in blockchain includes double spending attack, when a peer 
nodes generates two transactions and disseminate with two recip-
ient [11]. To address this problem one-time signatures technique is 
approached [36].

The Distributed Denial-of-Service (DDoS) have been quite pre-
vailing attack in blockchain network [40]. The information ex-
change between two peers in the blockchain network has been
frequently targeted by attackers reported in the various studies 
[25]. However, none of these studies have given the mitigation pro-
cedures for proposed attacks. Another form of distributed denial of 
service attack on blockchain network includes generating low price 
transactions in the mempool [27]. This attack is known as penny-
flooding attack. Kumar et al. [15] discusses the blockchain stress 
by analyzing the blockchain networks and how the respective at-
tackers can exploit them.

Kumar et al. [20] designed an IDS for smart contract-based 
blockchain IoT system. Mothukuri et al. [34] proposed a federated 
learning-based attack detection in IoT environment. This approach 
was implemented using PySyft library. However, important evalu-
ation metrics such as false alarm rate was not used in this work. 
Bakhsh et al. [4] suggested an adaptive IDS for IoT devices that 
uses agent technology to support portability, rigidity, and self-
starting characteristics. This was a hybrid system that used both 
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Fig. 3. The scenario of DDoS attacks by miners in a blockchain-enabled IoT network.
host-based and network-based capability to identify both misuse 
and anomalies. However, there were no performance measure-
ments for the IDS or its running platforms available in this study. 
Anthi et al. [1] suggested a network-based IDS system that is pre-
dictive and adaptable for IoT ecosystems based on signature and 
anomaly-based detection. However, the model specifics were un-
clear in the study, which yielded moderate attack detection out-
comes.

From the literature we conclude the expected threat model and 
attack objective in blockchain-enabled IoT network.

2.1. Threat model

In this work, we consider two different notions in terms of 
attack on blockchain-based IoT network. First, the attacker can gen-
erate large volume of transactions by Bot-IoT devices with spend-
ing minimum mining fee. Second, the attacker can generate group 
of Sybil accounts which consists of multiple public addresses. Both 
the attackers and Sybil account works mutually in the network 
with the knowledge of their respective public addresses. The at-
tackers and Sybil accounts execute client side scripting, which 
facilitate them to generate flood of raw transactions by Bot-IoT de-
vices in short period of time.

2.2. Attack objective

While generating the flood of raw transactions in mempool, the 
attacker objective is to maximize the size of mempool and reduce 
the cost of the attack. The attack cost is the fee paid to the min-
ers which includes relaying and mining fees. If the transactions 
get mined with minimal fee then by making higher fees of trans-
actions increases priority and the chances of transactions to be 
mined in the blockchain network. To produce flood attack in the 
mempool, the attackers initiate low fee transactions that are less 
likely to be prioritized and stay in the mempool as long as possi-
ble.

In this article we analyze and mempool flooding attack by the 
different counters measures. Moreover, we explored the mempool 
flooding attack in terms of blockchain-enabled IoT network. We 
also discussed that how to detect IoT devices that has became BoT 
devices and generating spam transactions with the supervision of 
attackers. To identify the flooding attack, we deployed the IDS on 
mempool. The IDS is completely tested and trained on the real 
time IoT datasets namely BoT-IoT. We are the first to design the AI 
enabled IDS in mempool for prevention of DDoS attack.

2.3. DDoS attack scenario on miners in a blockchain-enabled IoT 
network

The miners in blockchain-enabled IoT network are responsible
to verify the transaction by validating the signatures contained 
within the transaction. Miner appends the verified transaction to 
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a blockchain network. In a blockchain network robustness is main-
tained by having multiple miners processing a single transaction. 
However, mining same transaction by multiple miners increases 
delay in the network. For example, to perform DDoS attacks with 
in smart home application, a bot-master can perform malicious ac-
tivities in the entire system such as verification of identity, data 
storage model between smart thermostat with cloud and local fog 
nodes.

Fig. 3 shows the DDoS attack scenario on miners with block-
chain based IoT applications. The bot-master(controls and com-
mand the server) injects malicious code within IoT sensors through 
Internet, making them botnet sensors. The malicious activities aim 
to interrupt the normal miners working and further it leads to 
fog nodes utilization for unusual resources and activities. As a 
result, miner stuck with large numbers of illegal transaction re-
quests. Therefore, to reduce the DDoS attacks against mining pool 
in blockchain-IoT application, this paper proposes a robust and ef-
fective distributed IDS that integrates AI and fog computing.

3. Our proposed model

This section discusses an IDS integration with mining pool
along with working of distributed IDS, to detect the DDoS attack 
on AI-enabled fog computing. The steps describe the preprocessing 
of data, and also the detailed about AI-enabled ML techniques for 
blockchain-based IoT networks deployments.

3.1. IDS integration at mining pool in IoT environment

Mining pool is combined with the IDS to detect suspicious 
transactions at blockchain-based IoT systems. Fig. 4, demonstrates 
an IDS integration with the mining pool. Our aim is to protect 
miners in mining pool from the DDoS attacks, once they are suc-
cessfully deployed with IoT ecosystems. The incorporation of the 
IDS within mining pool works as a final defense line. Incoming 
traffic is analyzed by the IDS in the proposed method. If packet 
arrives normal, the transaction packets are mined by miners and 
appended to chain of the blockchain network. In comparison, if 
the new traffic or transactions contains unusual behavior, admin-
istrator gets alerted and permitted to perform necessary action. In 
addition, for generating false alarm the proposed detection system, 
administrator has the authority to forward the transaction in the 
mining pool, where the miner mines it, and adds the transaction 
to the blockchain network. As a consequence, the IDS will alerts 
administrators a second chance to take action and target their ad-
versary.

3.2. Working of distributed IDS in blockchain-enabled IoT network by 
integrating ML and fog computing for mining pool

The proposed detection system has decentralized the current 
centralized security and data storage close to the network edge. 
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Fig. 4. Proposed IDS integration with mining pool.

Fig. 5. Proposed distributed IDS working structure model for mining pool in blockchain-enabled IoT network using fog computing.
Fig. 5, demonstrates the working of distributed IDS. The proposed 
detection system consists of three main engines:
59
(i) Traffic Processing Engine: In this phase, fog nodes are applied 
to process traffic of network, and to deploy intrusion detec-
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tion system at fog network edge, as it gets closer to the sys-
tems (IoT devices). This step involves the pre-processing of the 
training dataset. StandardScaler technique is used to normal-
ize the dataset. Next, AI-based two different machine learning 
(ML) techniques are applied in the distributed structure i.e., 
random forest and XGBoost. The master node coordinates with 
a place for both the strategies for sharing and optimizing mu-
tual parameters. The benefit of this approach is that it allows 
local attack detection power by local training and parame-
ter optimization by speeding up data training near the source 
and acquiring modified parameter values from neighbors. The 
master node gives update to every cooperative (worker) node’s 
with certain parameters and corrects the updated values with 
worker nodes. It plays an prominent role while the storage of-
floading as well as computing on costs with IoT models, for 
quick response of actual data with various parameters.

(ii) Intrusion Detection Engine: A predictive model is created, that 
is used to evaluate the efficiency of the detection system. IoT 
sensors in blockchain-enabled IoT network are responsible for 
generating large volumes of data. This incoming traffic follows 
pre-processing step and finally it is analyzed against the pre-
dictive model.

(iii) Transaction Handling Engine: Depending on the behavior of 
traffic, transaction gets categorized into normal and malicious 
type. If the transaction is normal or legitimate, the miner 
would execute the transaction in the mining pool and add 
the transaction to the blockchain network stored in the cloud. 
On the other hand, the administrator is alerted to suspicious 
transactions and is allowed to take the appropriate intrusion 
protection steps. Log details of these transactions are submit-
ted to the cloud on the basis of which the global status are 
maintained successfully of IoT devices. In addition, the extra 
benefits are offered to the administrator, if the IDS generates 
a false alarm, an administrator can transfer the transactions 
to miner for further addition into the blockchain network. The 
next sub-section discusses data preprocessing steps in detail.

3.3. Preprocessing of data

The IoT network traffic consists of variant magnitude values. 
Data preprocessing helps in transforming raw data into more suit-
able form for modeling purpose. This technique assists in reducing 
the detection system’s training and testing time. It leverages the 
entire detection system’s efficiency by identifying attack observa-
tions in an IoT environment.

3.3.1. Data normalization
The extent of blockchain-based IoT network traffic varies. This 

model uses the StandardScaler normalization approach for scaling 
the feature values. This technique transforms observations of fea-
ture such as distribution of incoming traffic with mean value 0 
and standard deviation as value 1 [20]. This method incorporates 
the feasibility of the proposed detection system as it eliminates in-
coming traffic bias without changing its mathematical properties. 
The Eq. (1) shows transformation.

sk = valk − μk

σk
(1)

where sk , denotes features standard score within the detection sys-
tem, k ∈ {k1,k2,k3..,kn}. The valk denotes the IoT traffic features. 
μk and σk denotes mean and standard deviation of features that is 
evaluated with following expression below:

μk =
∑K

k=1 valk
N

and σk =
√√√√ 1

N

N∑
(valk − μk)

2

k=1
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3.3.2. AI methods deployed for classifying attack instances
The processing of big-data within a blockchain-based IoT sys-

tems is a major challenge. The volume of data sent by the various 
sensor nodes that continues to rise. Sensors are usually limited in 
terms of length, memory, and processing power. One of the major 
problems and pitfalls of this rapidly expanding field is data storage 
and privacy. To monitor and analyze traffic and predict potential 
attacks, an IoT-based IDS is required. To overcome the aforemen-
tioned challenges, the proposed IDS includes AI technologies such 
as machine learning (ML). To distinguish regular and attack obser-
vations, two machine learning methods, Random Forest and XG-
Boost, are used. From large data sets of training sensors, machine 
learning techniques can automatically differentiate between natu-
ral and malicious patterns. The identification of accurate threats is 
needed due to the high volume of traffic and the need for real-
time response. This section briefly explains why two classification 
algorithms were selected and how they operate in a blockchain-
based IoT infrastructure.

In order to justify why these classification methods are selected 
in the proposed detection system, IoT network constraints such as 
capability of generating huge data in distributed and parallel man-
ner, datasets include both numerical and categorical values, and 
the sparse nature of IoT traffic is a key factor in their selection. 
This has intensified the need to assess which classification tech-
niques can be used in a distributed detection scheme based on 
potential procedures for developing techniques that can manage 
massive, traffic and sparse input with in IoT environment and can 
be used with distributed and parallel context. Thus, RF and XG-
Boost gets selected because they can easily distinguish these IoT 
network traffic. Further, big data and sparse data can be easily 
managed owing to the supports of parallel and distributed com-
puting. The working of both the techniques are explained below:

1. Random Forest (RF) [27]: RF is a technique of machine learn-
ing that employs ensemble bagging to create a big number of
unrelated decision trees from a collection of random features.
When building decision trees, a random list of u individual
characteristics is selected according to split candidates sub-
sets from the entire set of independent attributes when split
is used within tree (in parallel). As a result, each split pro-
duces a unique set u with new and independent features; typ-
ically, u = sqrtL is used, meaning that each split u is roughly
equal to the total number of independent features. As a con-
sequence, weakly coupled classifiers are combined to form a
strong classifier. Since it is sensitive with outlier, missing val-
ues, over-fitting, and has the capacity to handle a huge volume
of incoming traffic, random forest is ideal for anomaly de-
tection in blockchain-based IoT architecture. The training and
testing for parallel distributed near fog nodes for random trees
is managed by algorithms 1 and 2.

2. XGBoost [20]: Extreme Gradient Boosting is an ML Ensemble
technique based on boosting. It is a part of boosting algorithm
that transforms weak student to strong one. This approach
is sequential that expands the tree one after another, with
each repetition attempting to minimize the misclassification
rate. It is accomplished by higher weight assignments to the
previous trees point of misclassification. Further, it is more ef-
fectively accommodate different forms of sparsity patterns in
input data, as well as regularization terms to prevent over-
fitting. Regularization is a compensation word that penalizes
abstract models while rewarding simpler ones. Least Absolute
Shrinkage & Selection Operator(L1) and Ridge Regression are
two regularization parameters available in XGBoost (L2). The
aim is to create a paradigm that is less complex in order to
reduce bias and possible overfitting. In the sth estimation, XG-
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Algorithm 1: Random Forest based distributed parallel 
training.

1 Input:
2 f : Parallel system fog nodes
3 tr : Random forest (RF) with total number of trees
4 Ds : D is the datasets of training and s denotes size
5 A : training datasets independent features
6 Output:
7 Tree of RF (R)
8 if (tr > f ) then
9 kt = tr /f //where each node is capable of generating kt trees

10 else
11 f=1 //t<=f
12 end
13 // parallel environment with iteration of each fog nodes
14 for j ← 1 to K do
15 Generate bootstrap by computing d j of s size for dataset
16 Perform Random sampling using substitutions from Ds

17 OOB j = Ds – d j //calculating the error (out of bag)

18 z= 
√

A
19 z denotes set of attributes from A with initial attribute Aj=

{a1, a2, a3, . . . , az}
20 Dt =build_decision_tree(d j , Aj )
21 end

Algorithm 2: Random Forest-based Distributed Parallel 
Testing.

1 Input:
2 f : Fog nodes on Parallel system
3 t : Random Forest (RF) tree
4 kt : Each node consisting number of tree
5 Dst : Dataset (D) with size st
6 Cl : Dataset Dst classes
7 Output:
8 distinguish the normal(0) and attack(1) class
9 for j ← 1 to st do

10 for i ← 1 to kt do
11 for each record j traavers tree Ti

12 local copy j is classified as {c1, c2, c3, . . . , Ccl}
13 // each classified local copy maintains notation of 2D array i.e., [ti ,

c j ], the ti denotes objects and c j denoted as class. if an instance
is obtained successfully within class, 2D array will be filled with 1,
else it will be filled with 0. The obtained local copy gets
disseminated to every node at every iteration.//

14 end
15 end
16 Finally, master copy will be updated by obtained result of local copy of

indivisual with attack (1) and normal (0)

Boost uses exponential learning methods, which combine the 
optimal model with the existing classification model.

vs
k = v(s−1)

k + f sr(k) (2)

As shown in Eq. (2), fsr(k) denotes the best tree prediction 
in the sth prediction vk(s−1) denotes the current classification 
model, and the next prediction is vks new classification model.

W s =
N∑

k=1

L XG Boost(vk, ps
k) +

s∑
k

�( fk) (3)

To measure the loss value in XGBoost algorithm, we use XG-
Boost L XG Boost(vk, vks). The �( f k) is the regularization that 
avoids overfitting. From the Eq. (2) and Eq. (3), we obtained 
again a form of XGBoost algorithm objective functions as

W s =
N∑

L XG Boost(vk, vs−1
k + f sr(k)) + �( f s) + C (4)
k=1
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As shown in Eq. (4), the �( f s) is a term of regularization 
which states complexity f s tree and constant term C. The ex-
pansion of Taylor series can be seen in Eq. (5)

f (r + �r) ∼= f (r) + f ′r�r + 1

2
f ′′r�r2 (5)

Next, objective function is represented by Taylor expansion 
that is shown in Eq. (6)

W s ∼=
N∑

k=1

[L XG Boost(vk, vs−1
k ) + ai fsr(k)

+1

2
bi f 2

s (rk)] + �( f s) + C

s.t ak = ∂v(s−1)

k L XG Boost(vk, v(s−1)

k ),

bi = ∂2 v(s−1)

k L XG Boost(vk, v(s−1)

k )

(6)

The loss function is defined by second level derivatives us-
ing bk . The process of scoring computation is evaluated using 
XGBoost functions ak and bk . The new representation of the 
objective function is evaluated by removal C (constant term). 
Further, Eq. (7) shows objective function.

N∑
k=1

[ak fsr(k) + 1

2
bk f 2

s (rk)] + �( f s)

s.t ak = ∂v(s−1)

k L XG Boost(vk, v(s−1)

k ),

bk = ∂2 v(s−1)

k L XG Boost(vk, v(s−1)

k )

(7)

Each tree is redefined as f s(r) = θq(r) , where θ ∈ �S , q:�d →
(1,2,3, . . . , S). The term q(r) indicates the leaf node. The θq(r)
defines score of leaf nodes and also the value prediction of 
current model. The �( f s) is denoted as

�( f s) = β S + 1

2
γ

N∑
k=1

θ2
l (8)

The Eq. (8) is divided in two parts, first part (L1) denotes the 
selection of leaf nodes and the second part (L2) evaluates the 
normalization value to avoid the overfitting. Each node of leaf 
nodes is further defined as Il = k | q(rk)= l. Thus, new objective 
function is shown in Eq. (9).

W s ∼=
N∑

k=1

[ak fsr(k) + 1

2
bi f 2

s (rk)] + �( f s)

=
N∑

k=1

[akθq(rk) + 1

2
bkθ

2
q(rk)

] + β S + 1

2
β

S∑
l=1

θ2
l

=
S∑

l=1

⎡
⎣(

∑
k∈Il

ak)θl + 1

2
(
∑
k∈Il

bk + γ )θ2
l

⎤
⎦ + β S

(9)

The term θ∗
l is used for optimal value computation of XGBoost 

algorithm

θ∗
l = −

∑
k∈Il

ak

∑
k∈Il

bk + γ
(10)

Further, XGBoost objective function is represented as Eq. (10)
and Eq. (11)
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W (s) = −1

2

S∑
l=1

(
∑
k∈Il

ak)
2

∑
k∈Il

bk + γ
+ β S (11)

we set Al= 
∑
k∈Il

ak and Bl= 
∑
k∈Il

bk , and the objective function 

can be rewritten as shown in Eq. (12)

W (s) =
S∑

k=1

[
Alθl + 1

2
(Bl + γ ) + θ2

l

]
+ β S (12)

We set θ∗
l = - Al

Bl+γ , and the objective is rewritten as mentioned 
in Eq. (13)

W (s) = −1

2

S∑
l=1

A2
l

Bl + γ
+ β S (13)

The greedy algorithm is applied to find split in XGBoost algo-
rithm. The value of ε= 0.1 is set to the parameters, to avoid 
the overfitting. This predefined parameter value makes degra-
dation in value of prediction. The final model is represented 
as:

v(s)
k = v(s−1)

k + ε f s(rk) (14)

Both the Algorithm 3 and Algorithm 4 show, parallel training 
and testing approach in local fog nodes. The working of pro-
posed model of detection is discussed in next section.

Algorithm 3: XGBoost-based Parallel training in distributed 
model.
1 Input:
2 f : Parallel system fog nodes
3 tr : Number of trees produced in XGBoost
4 Ds : Dataset (D) and the training sample size s
5 Output:
6 Generated Tree in XGBoost
7 // iteration evaluated at each parallel nodes
8 for i ← 1 to f do
9 if (tr > f) then

10 initiate with sth tree f s(rk)

11 Compute ak= ∂
v(s−1)

k
L XG Boost (vk, v(s−1)

k )

12 Compute bk= ∂2
v(s−1)

k

L XG Boost (vk, v(s−1)

k )

13 New tree ( f s(rk)) formation using statistics to greedy grow

14 W (s) = − 1
2

∑S
l=1

A2
l

Bl+γ + β S

15 As shown in Eq. (14), add the best tree f s(ri) to the present model
16 The dataset with size s is distributed by round robin where master

node uses dataset firstly and the first worker nodes used in
secondly, and so on. The identical dataset is used at individual fog
nodes.

17 else
18 f=1 //tr <= f

19 initialize the sth tree f s(rk)

20 Compute ak= ∂
v(s−1)

k
L XG Boost (vk, v(s−1)

k )

21 Compute bk= ∂2
v(s−1)

k

L XG Boost (vk, v(s−1)

k )

22 Apply the statistics with greedy grow approach for a new tree
f s(rk):

23 W (s) = − 1
2

∑S
l=1

A2
l

Bl+γ + β S

24 The Eq. (14) shows the best tree f s(ri) of the local fog nodes
25 The distributed datasets is disseminated first at master node, first

worker node and so on using round robin fashion. Each fog nodes
uses same instances and assignment of the datasets.

26 end
27 end
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Algorithm 4: XGBoost parallel testing algorithm in dis-
tributed model.
1 Input:
2 Dst :used dataset(D) for testing with size st
3 Cl : dataset Dst and the number of classes
4 Output:
5 classification of normal(0) and attack(1)

1. extract the required features from dataset (Dst )
2. the required feature (f1,f2,f3, . . . ,fm ) is obtained dataset (Dst )
3. features are combined with set {f1,f2,f3, . . . ,fd}, where d <= features in

dataset (Dst )
4. Repeat
5. Evaluate the probability ki, j for the features of dataset (Dst ) using XGBoost
6. Until each required features is being evaluated from dataset (Dst )
7. Evaluate the weight of dataset (Dst ) features and probability is computed

of ki, j by Eq. (15)

Llog(Y , P (y|z)) = − 1

N

N∑
i=1

C∑
j=1

yi, j log ki, j (15)

where N denotes the number of actual features whereas C signifies the at-
tack or normal classes. When it belongs to class 1 (attack), the yi, j shows
the ith features; otherwise, it is 0. (normal).

4. Experimental results and discussion

The fog computing and distributed IDS is applied, to reduce
DDoS attacks against mining pools in blockchain-enabled IoT net-
work is the subject of this section’s experimental research. The 
experiment is carried out using the Python programming language. 
The performance of our proposed model is assessed using the BoT-
dataset. Experiments are carried out on Tyrone PC run by Intel(R) 
Xeon(R) Silver 4114 CPU @ 2.20 GHz (2 processors), 128 GB RAM 
and 2 TB hard disk.

4.1. Description of BoT-IoT dataset

A particular-dataset is used to validate the proposed distributed 
detection method. The BoT-dataset [13] was developed at the 
UNSW Canberra Cyber Range Center by developing a realistic 
network environment. The Message Queuing Telemetry Transport 
(MQTT) protocol is used to create this data collection that con-
nects device-to-device communications used as an alternative for 
blockchain-based IoT solutions. The numerous features are shown 
in the Table 1 of BoT-IoT dataset. The various attacks are briefly 
discussed below:

1. DoS Attacks [14]: Denial-of-Service (DoS) attacks arise as ma-
licious cyber threat devices prevent authenticated IoT devices
from accessing information systems, servers, or other network
services. A DoS attack gets created by flooding the target par-
ticular host or a entire network as sending traffic until it be-
comes unresponsive or crashes, blocking valid IoT devices from
accessing it.

2. DDoS Attacks [20]: When multiple IoT sensor devices perform
working together to reach an attack a single target, it’s called a
Distributed Denial-of-Service (DDoS) attack. For large-scale at-
tacks, botnet is a way through attackers apply DDoS attack sce-
narios, to compromise the network of IoT devices connected
with internet. By controlling the devices using several com-
mands to hack IoT machines, attackers profit from security
vulnerabilities or system deficiencies. When more and more
IoT devices come online, DDoS attacks are becoming more se-
rious. IoT systems often use default keys that aren’t protected
through tone, that makes the system vulnerable and chances
of attacks and exploitation. IoT system penetration often goes
unnoticed by consumers, and an attacker can potentially hack
hundreds of thousands of these networks to launch a large-
scale attack without the knowledge of network owners.



R. Kumar, P. Kumar, R. Tripathi et al. Journal of Parallel and Distributed Computing 164 (2022) 55–68
Table 1
BoT-IoT dataset features description.

Feature number Features Description

F1 pkSeqID rows Identification
F2 proto protocols of Transaction shows

network flow
F3 saddr Source IP address
F4 sport port number of source
F5 daddr Destination IP address
F6 dport port number of destination
F7 seq Record total duration
F8 stddev aggregated records with its

standard deviation
F9 N_IN_Conn_P_SrcIP source ip inbound connection
F10 min minimum time duration for

aggregate transactions
F11 state_number numerical state features

selection
F12 mean aggregate record average time

duration
F13 N_IN_Conn_P_DstIP destination ip inboudn

connection
F14 drate per second time for destination

to source packet
F15 srate per second time for source to

destination packets
F16 max aggregated record maximum

duration time
F17 attack level 1 is for attack and level 0

for normal
F18 category it represent traffic types
F19 subcategory It shows traffic sub types

Table 2
BoT-IoT dataset distribution for normal and attack instances in training set.

Class wise division No. of occurrences Class frequency (in %)

DDoS 15,41,315 52.5183%
DoS 13,20,148 44.9823%
Recon 72,919 2.4846%
Normal 370 0.0126%
Theft 65 0.0022%
Total 29,34,817 100%

Table 3
BoT-IoT dataset distribution for normal and attack instances in testing set.

Class-wise division No. of occurrences Class frequency (in %)

DDoS 3,85,309 52.5155%
DoS 3,30,112 44.9925%
Recon 18,163 2.4755%
Normal 107 0.0146%
Theft 14 0.0019%
Total 7,33,705 100%

3. Reconnaissance Attacks [20]:Reconnaissance (Recon) is the
process of gathering or probing knowledge in order to assess
a network’s vulnerabilities, and is then used to initiate an ef-
fective assault. Traffic analysis, packet sniffers, network port
inspection, and IP address queries are examples of reconnais-
sance attacks.

4. Theft Attacks [20]: This is a type of attack in which the hacker
attempts to make control over the IoT system’s protection in
order to obtain access to confidential data. Data leakage and
keylogging are examples of theft attacks. During data steal-
ing attacks, an attacker attempts to hack a remote IoT device,
obtaining unauthorized access to data that can be sent to
a remote attack computer. During keylogging operations, the
attacker takes advantage of the remote host to record user
keystrokes and extract confidential data.

The distribution, cumulative facts of attack, and typical attributes 
present in the training and testing sets of the BoT-IoT dataset are 
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seen in Tables 2 and 3. There are a total of 29,34,817 instances in 
the training dataset. There are 15,41,315 DDoS instances, 13,20,148 
DoS instances, 72,919 Recon instances, 370 regular instances, and 
65 instances of Theft attacks. After that, there are 7,33,705 in-
stances in the Testing dataset. There are 3,85,309 DDoS attacks, 
3,30,112 DoS attacks, 18,163 Recon attacks, 107 regular attacks, 
and 14 theft attacks among them. The measurement metrics used 
in the proposed model are defined in the following sub-section.

4.2. Description of evaluation metrics

The identification performance of the proposed model was as-
sessed using a variety of measurement criteria. Accuracy, Detection 
Rate, False Alarm Rate, Precision, True Negative Rate, and F1 score 
are the most specific assessment metrics. These metrics are based 
on the four criteria mentioned below [27]:

• True Positive (TP): The graph shows that correct classification
of malicious behavior with number of malicious observational
activities in datasets.

• True Negative (TN): The graph shows normal classification of
behavior in the model with number of normal activities within
the datasets.

• False Positive (FP): This graph depicts how much the detec-
tion model incorrectly classifies normal IoT network traffic and
findings as suspicious behavior.

• False Negative (FN): This graph depicts how many malicious
instances of IoT network traffic the identity model wrongly
classifies as common operation.

The above parameters are used to compute the evaluation metrics 
which is discussed below:

(a) Accuracy (AC): It measures how many times the model cor-
rectly identified out of the total number of findings in the 
research samples. When calculating the precision of the model, 
it takes into account both TP and mathbbmT N [27].

AC= TP+TN
FN+TP+FP+TN (16)

(b) Detection Rate (DR): By splitting the cumulative number of 
attacks in the research sets, it reflects the observations of the 
model’s number of detected attacks. Recall [27] is the name 
given to it.

DR= TP

FN+TP (17)

(c) Precision (PR): In the model [27], it reflects the number of 
observed attacks and their observations detected by dividing 
the total numbers of classified attack observation.

PR= TP

TP+FP (18)

(d) False Alarm Rate (FAR): The total number of normal obser-
vations in the dataset [27] is divided by the total numbers of 
normal observation to reflect with normal observations speci-
fied as an attack.

FAR= FP

FP+TN (19)

(e) F1 Score: The PR and DR weighted average is calculated. 
It is mostly used when class distribution is skewed, and it 
is more valuable than precision since it accounts for FP and 
FN when calculating [27].

F1= 2 ∗ RC ∗PR
(20)
RC+PR
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Table 4
Binary classification confusion matrix for BoT-
IoT dataset using Random Forest algorithm.

Actual class
Predicted class

Attack Normal

Attack 732196 1402
Normal 0 107

Table 5
Binary classification confusion matrix for BoT-
IoT dataset using XGBoost algorithm.

Actual class
Predicted class

Attack Normal

Attack 733589 9
Normal 0 107

(f) True Negative Rate (TNR): It specifies the amount of real 
normal instances in the detection model [27] that is predicted 
as normal.

TNR= TN

TN+FP (21)

4.3. Experimental environment

We used binary and multi-class classification categories to in-
vestigate the detection model’s results. In the blockchain-based IoT 
setting, unknowing test datasets are taken to reflect botnets in 
output evaluation. The experiment is carried out by spreading ma-
chine learning techniques to several coordinated nodes in order 
to detect DDoS attacks. We have taken different number of de-
vices used for testing the network, to measure the reliability of 
parallelism and dissemination. The following hyper-parameter op-
timization is used in the ML technique for random forest: the Gini 
index for estimation of impurity, the maximum tree depth is set 
to 200, the lowest samples number at the leaf node is set to 1, the 
lowest samples number are used to divide the inner leaf nodes and 
set to 6, and the forest is set to 50 for number of trees generation. 
The learning rate for XGBoost is also set to 0.1, the maximum tree 
depth is 200, the L1 regularization alpha is 0, and the L2 regular-
ization alpha is 1. The following section investigates and responds 
to classification results using a variety of assessment techniques.

4.4. Evaluation and discussion of results

In this part, various performance assessment criteria are used 
to measure the outcomes. In the evaluation process, a Confusion 
matrix and class-prediction results are used. The confusion matrix, 
also known as an error matrix, is created and used to assess the 
efficacy of the machine learning technique. The binary classifica-
tion results are shown in Table 4 and Table 5. The mathematical 
parameter true positive is shown around the uncertainty matrix’s 
main diagonal, while the others are determined using the formula 
stated earlier. The confusion matrix for Random forest is shown 
in Table 4. The actual classes are represented by rows in the un-
certainty matrix, while the predicted classes are represented by 
columns in the classification algorithm predictions. True Positive 
samples are 7,32,196 for attack and 107 for normal cases, accord-
ing to the main diagonal. False negatives (FN) of a given class can 
be computed from the preceding row without taking into account 
the true positive of that class, for example: attack class false neg-
atives (FN) is 1402 when true positive is removed. Table 5 shows 
the confusion matrix for XGBoost in binary classification. The pre-
dicted model has detected attack instances 7,33,589 and has FN of 
9 observations.

In Table 6 and 7 multi-class classification confusion matrix (CM) 
for BoT-IoT dataset is shown. Table 6, shows results of CM for ran-
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Table 6
Multi-class classification confusion matrix for BoT-IoT dataset using Random Forest
algorithm.

Actual class
Predicted class

DDoS DoS Recon Normal Theft

DDoS 385251 58 0 0 0
DoS 0 330112 0 0 0
Recon 0 0 107 0 0
Normal 0 0 0 18163 0
Theft 0 0 0 0 14

Table 7
Multi-class classification confusion matrix for BoT-IoT dataset using XGBoost algo-
rithm.

Actual class
Predicted class

DDoS DoS Recon Normal Theft

DDoS 385251 58 0 0 0
DoS 0 330112 0 0 0
Recon 0 0 77 30 0
Normal 0 0 0 18141 22
Theft 0 0 0 0 14

Table 8
Multi-class wise prediction results for BoT-IoT dataset using Random Forest algo-
rithm.

Attack
Performance metrics

AC PR DR TNR FAR

DDoS 0.99992095 1.00 0.99984947 1.00 0.0
DoS 0.99992095 0.99982433 1.00 0.99985629 0.014371
Recon 1.00 1.00 1.00 1.00 0.0
Normal 1.00 1.00 1.00 1.00 0.0
Theft 1.00 1.00 1.00 1.00 0.0

Table 9
Multi-class wise prediction results for BoT-IoT dataset using XGBoost algorithm.

Attack
Performance metrics

AC PR DR TNR FAR

DDoS 0.99992095 1.00 0.99984947 1.00 0.0
DoS 0.99992095 0.99982433 1.00 0.99985629 0.014371
Recon 0.99995911 1.00 0.71962617 1.00 0.0
Normal 0.99992913 0.99834902 0.99878875 0.99995807 0.004193
Theft 0.99997002 0.38888889 1.00 0.99997001 0.002999

dom forest. It is worth noting that, true positive (TP) for DDoS 
attack is 3,85,251 and it has overall 58 instances of FN. In Ta-
ble 7 performance result of XGboost algorithm is shown through 
CM. It can be seen that the diagonal shows less TP instances com-
pared to random forest. However, the detection system has FN of 
58 for DDoS, 30 for Recon and 22 instances of normal. Further, 
we have compared class wise prediction results for random forest 
and XGBoost algorithm. Table 8 and 9, shows class wise prediction 
results for multi-class classification of BoT-IoT dataset. It is worth 
noting that, the detection system using random forest for DDoS at-
tack has 0.99992095% ACcuracy (AC) and 0.99984947% Detection 
Rate (DR). Similarly for DDoS attack using XGBoost the IDS has AC 
of 0.99992095% and DR of 0.99984947%. False alarm rate (FAR) is 
also, a important parameter to evaluate the performance. In Ta-
bles 8 and 9, it can be seen that the model has 0.014371% FAR 
for DoS attack, 0% for other attack and normal instances using ran-
dom forest. Whereas FAR with XGBoost for DDoS has 0%, DoS has 
0.014371%, Recon attack has 0%, normal observation has 0.004193% 
and Theft attack has 0.002999%.

The overall performance evaluation of RF and XGBoost in terms 
of AC, PR, DR, F1 score and processing time is discussed using 
BoT-IoT dataset as demonstrated in Fig. 6 and Fig. 7. In the case 
of binary classification, the proposed detection system using RF 
has achieved 99.8089% AC, DR of 99.8088%, PR of 100% and F1 of 
99.9043%. Similarly for XGBoost the model has AC of 99.9987%, PR 
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Fig. 6. Overall performance of RF and XGBoost for binary classification.
Fig. 7. Overall performance of RF and XGBoost for multi-class classification.

Fig. 8. Training and Testing Time comparison for RF and XGBoost.

of 100%, DR of 99.9993% and F1 of 99.9993%. On the other hand, 
for multi-class classification the proposed detection system using 
RF has achieved 99.985% AC, DR of 99.997%, PR of 99.996% and F1 
of 99.997%. Finally, the XGBoost the model has AC of 99.985%, PR 
of 87.741%, DR of 94.365% and F1 of 87.907%.

Processing time is an important factor in the design of IDS. 
In real time IoT network generates huge data at regular intervals. 
Therefore, detection system with less processing time is needed in 
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such environments. In this experiment, we have compared training 
(TRT) and testing (TST) time for binary vs multi-class classification 
used by the distributed IDS. Fig. 8, shows TRT and TST in seconds 
for both algorithms. In the case of binary classification using RF, it 
can be seen that the TRT is 34.3932 and TST is 1.0747 seconds. On 
the other hand, for XGBoost TRT is 424.7336 and TST is 0.8157 sec-
onds. However, for multi-class classification, the proposed model 
using RF, takes TRT of 42.4008 and TST of 1.879 seconds. Similarly 
using XGBoost, the detection system takes TRT of 282.6953 and 
TST of 0.9172 seconds.

We have trained the proposed distributed detection method on 
a variety of fog nodes ranging from one to twenty. TRT in sec-
onds for random forest(RF) and XGboost, for binary and multi-class 
grouping, as shown in Figs. 9 and 10. It can be noticed that, while 
RF has no effect with TRT after 12 fog nodes, XGBoost’s TRT stays 
the similar behavior after 13 fog nodes when complete features 
are used. On the other hand, for multi-class grouping, there is no 
significant effect on TRT after 14 fog nodes for RF, but after 13 fog 
nodes for XGBoost. It’s worth noting that the dispersed IDS trains 
quicker in binary grouping, as the TRT for RF steadily decreases 
from 340 to 155 seconds using two fog nodes, 155 to 110 seconds, 
and so on. Similarly, when using two fog nodes, the TRT is reduced 
from 470 to 250 seconds, and when using three fog nodes, the TRT 
is reduced from 250 to 190 seconds, and so on. Multi-class group-
ing, on the other hand, cuts RF TRT from 360 to 190 seconds when 
using two fog nodes, 190 to 130 seconds when using three fog 
nodes, and so on. Finally, TRT for XGBoost for two fog nodes is re-
duced from 1480 to 920 seconds, 920 to 530 seconds for three fog 
nodes, and so on. In binary classification, AI-based all ML strate-
gies require less time to learn than multi-class classification using 
distributed fog nodes.

4.5. Overview of two classifiers and discussion of performance

Overall, the experimental results indicate high accuracy in both 
binary and multi-class classifications. Training time for binary clas-
sification is less compared to multi-class classification. Addition-
ally, the overall performance of XGboost in binary and random 
forest in multi- class shows significant performance. This also 
indicates that ML techniques have enormous potential to trans-
form the cybersecurity direction as attack detection in distributed 
blockchain-IoT/Fog environment.

5. Conclusion

This paper illustrates the numerous limitations and vulnerabili-
ties of stand-alone IoT systems and how blockchain can provide a 
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Fig. 9. Distributed Training time for Binary Classification on multiple fog nodes.

Fig. 10. Distributed Training time for multi-class Classification on multiple fog nodes.
decentralized network to fulfill these requirements. In this paper, 
we proposed a distributed IDS that integrates AI and fog com-
puting. In order to detect DDoS attacks, the detection system was 
integrated with mining pool in a blockchain-enabled IoT network. 
The proposed distributed detection system works on three main 
engines. The first, traffic processing engine, includes fog nodes 
for preprocessing of network traffic by normalizing features us-
ing StandardScaler, that scale features to a specific scale. Two AI-
based ML techniques, random forest and XGBoost are deployed in 
distributed blockchain-IoT environment. The second, intrusion de-
tection engine that follows data preprocessing step and finally IoT 
incoming traffic was analyzed for the detection of normal and ab-
normal transactions. The third, transaction handling engine, based 
on detection results transactions are categorized into normal and 
malicious instances. Normal transactions are executed by miners in 
mining pool and then gets added to blockchain network. The re-
sults using BoT-IoT dataset indicate that the proposed model was 
effective in detecting IoT-based attacks and has high performance 
by taking less processing time on multiple fog nodes. In future, we 
plan to extend this work by applying different deep learning tech-
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niques, which could improve the performance of the distributed 
detection system.
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