
Information Systems Frontiers 7:4/5, 371–389, 2005
C© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

e-coupons: An Efficient, Secure and Delegable
Micro-Payment System∗

Vishwas Patil and R.K. Shyamasundar
School of Technology and Computer Science, Tata Institute
of Fundamental Research, Colaba,
Mumbai - 400005, India
E-mail: vtp@tifr.res.in
E-mail: shyam@acm.org

Abstract. In this paper, we propose a new efficient and secure
micro-payment scheme, named e-coupons, which can provide the
users the facility of delegating their spending capability to other
users or their own devices like Laptop, PDA, Mobile Phone, and
such service access points. The scheme has the promise of be-
coming an enabler for various Internet-based services involving
unit-wise payment. It gives flexibility to the users to manage their
spending capability across various access points for a particu-
lar service without obtaining an authorization for each and every
access point from a facilitating bank. This flexibility which is not
present in the existing micro-payment schemes is essential for
accessing ubiquitous e-services and other Internet-based appli-
cations. The facility of delegation introduces a slight overhead
in respect of the proof or verification of the delegated authoriza-
tion and security provided to the payments. The payoff from the
facility of delegation takes away the burden of the overhead. The
paper discusses the design of the protocol and provides a basic
analysis of the performance of the system.

e-coupons is based on PayWord, a single-seed one-way hash
chain for unit-wise payment, TESLA for payment security and
SPKI/SDSI as underlying PKI framework for its unique delega-
tion feature. The results obtained from the implementation of e-
coupons are quite acceptable and show near real-time response.
Our scheme uses multi-seed one-way hash chains for unit-wise
payment. Furthermore, it allows an ordered transfer of the por-
tions of payment chains to others. Because of this user’s spending
capability can be used from different service access points to ac-
cess the subscribed service, concurrently.

Key Words. micro-payment, security, delegation, one-way hash
function, PayWord, TESLA, SPKI/SDSI

1. Introduction

E-Commerce covers a broad spectrum of trans-
actions varying from macro-transactions to micro-
transactions. In macro-transactions, while the value of
each transaction is very high, the challenge lies in pro-
viding a higher grade of authentication, payment se-

curity, and non-repudiation of transactions. In case of
micro-transactions, while the need is to cater to a large
volume of transactions of low intrinsic financial value,
the challenge is to keep the cost of each transaction to
a minimum on an average.

Micro-transactions include Internet-enabled ser-
vices like streaming multi-media, accessing computa-
tional power from grids, loadable softwares, software
plug-ins/APIs, VoIP calls, e-Library, news, and vari-
ous such non-tangible goods which can be delivered
through Internet (of them, news is free, for example).
Subscribers access such services through different ser-
vice access points and would not always like to reveal
the set of their access points. The service providers have
not succeeded in charging their services by following
the available means. Hence, they provide the services to
the users free of cost or employ mechanisms other than
a micro-payment system. The service providers recover
the cost from the advertisers or bulk subscriptions us-
ing authentication based on host IP addresses and/or
browser cookies etc. A direct micro-payment mecha-
nism would be of great complement and facilitate small
vendors. Further, it would provide incentives for spo-
radic users who do not want a full-time subscription to
some paid service. Unlike macro-payments, the mon-
etary value of every micro-payment is extremely low
and the risk involved is acceptable. While the macro-
payments emphasizes on security, non-repudiation and

Present address: Vishwas Patil, Dipartimento di Informatica, Uni-
versità degli Studi di Roma “La Sapienza”, Via Salaria 113, 00198
Roma, Italy. E-mail: patil@di.uniroma1.it
∗This work is supported by grants from Ministry of Information and
Technology, Government of India.

371



372 Patil and Shyamasundar

atomicity of the transaction, micro-payment systems
aim at efficient, low-cost, secure setup. The users are
ready to accept micro-payment systems with reason-
able risk factors associated with it. In this paper, we
are concerned with the design and development of a
micro-transaction system that charges the user directly
complying with requirements such as security, low-cost
per transaction, and delegation facility.

There are several e-payment schemes proposed in
the literature: PayWord and MicroMint, (Rivest and
Shamir, 1996); MilliCent, (Glassman et al., 1995);
MiniPay, (Herzberg and Yochai, 1997); NetBill, (The
NetBill Electronic Commerce Project, 1995); Net-
Card, (Anderson et al., 1996); NetCash, (Medvinsky
and Neuman, 1993); Agora, (Gabber and Silberschatz,
1996); MPTP, (Hallam-Baker, 1995); iKP, (Bellare
et al., 2000) based micro-payment, etc. These schemes
can be broadly differentiated into on-line and off-line
categories based on the type of payment validation
used. In off-line methods, risk naturally arises as im-
mediate validation is not performed. NetBill, NetCash,
MiniPay, MilliCent use on-line or semi-online type of
payment validation, which is costly in general. Net-
Bill is designed for buying information goods via Inter-
net with emphasis on security and atomicity of trans-
actions. A central trusted server is involved in every
transaction. Micro-economy and scalability are ques-
tionable because of the extensive network traffic re-
quired during the transaction and the interaction with
the central NetBill server. NetCash is another on-line
scheme that offers a framework for a secure and par-
tially anonymous real time digital payment system.
The basic NetCash structure consists of independent,
distributed currency servers providing a link between
anonymous electronic currency and non anonymous
services. Currency server provides customer services,
like double spending detection, coin exchange to al-
low untraceability, purchases of coins with cheques
and redemption of coins for cheques. MiniPay fea-
tures a low cost, negligible delay, natural user inter-
face, scalable design, support for multiple currencies,
and high security—including non-repudiation, over-
spending prevention, and protection against denial of
service. MiniPay architecture involves four to six par-
ties in its setup. It uses public-keys to authenticate
parties and it is based on peer to peer relationships,
where public-keys are exchanged and authenticated
using existing relationships between the peers. Mil-
liCent is a proprietary voucher based digital micro-
commerce system. The system uses merchant spe-

cific vouchers, called scrip, a form of token that is
only valid with a particular merchant for a limited
period of time. MilliCent transactions are not anony-
mous and mostly off-line. PayWord is an off-line, ex-
tremely efficient, credit-based micro-payment scheme.
It is a tripartite scheme involving a bank, the vendors
and users. The bank gives credit facility to the users
and assures the vendors for redemption of payments
made by the registered users. The other micro-payment
schemes; micro-iKP, NetCard, MPTP are largely based
on PayWord proposal. We have excluded from our dis-
cussion the other micro-payment schemes (like Mon-
dex, CAFE) that rely on special hardware like smart-
card.

The above micro-payment schemes have been de-
signed with the intention to make secure and/or ef-
ficient payments for non-tangible goods on pay-per-
view/pay-per-click/pay-as-you-go basis. The schemes
either rely more heavily on asymmetric key applica-
tions or they are more burdensome for the bank in terms
of minting coins and on-line verification. Furthermore,
most of these proposals are not scalable due to their
centralized design. The present day applications de-
mand much more than what these schemes provide.
Nowadays, the users employ software robots to make
purchases on their behalf. The users expect their sub-
scribed services to be accessible from different access
points (plausibly simultaneously). We present two typ-
ical micro-payment scenarios that cannot be satisfacto-
rily handled by the existing schemes discussed above.

Scenario 1 A consortium of academic institutions
has subscribed itself to various electronic publica-
tion services. The consortium management is will-
ing to lure other non-member institutions for these
subscriptions on an ad-hoc or permanent basis. For
this purpose, it is necessary for the consortium
administrator to have features like partial delega-
tion of authority to other institution or individual
while maintaining the efficiency and security of the
system.
Scenario 2 A user has a multi-threaded applica-
tion and the threads make use of different exter-
nal APIs/plug-ins (Application Program Interfaces),
based on the subscriptions of the user. A mono-
lithic payment instrument will hinder the execution
of threads in parallel.

One of the principal reason is that the existing micro-
payment schemes do not allow a user to delegate his



e-coupons: An Efficient, Secure and Delegable Micro-Payment System∗ 373

authority totally or in part to third parties. There are
many such scenarios where the growth of e-commerce
has stagnated due to unavailability of an efficient and
secure micro-payment scheme that provides delegation
facility to users over their spending capability. In this
paper, we shall address the design and implementation
of a micro-payment system satisfying these require-
ments: security, low-cost per transaction, efficiency,
and a provision to delegate the spending capability. Our
design uses features from PayWord (Rivest and Shamir,
1996), TESLA (Perrig et al., 2002; Perrig et al., 2001),
and SPKI/SDSI (Clarke et al., 2001). In other words,
we have extended the PayWord framework (Rivest and
Shamir, 1996) to handle delegation of users’ spending
capability through SPKI/SDSI and handling security
through TESLA.

Our scheme is a credit-based and off-line scheme.
Also, the coins/paywords (payment’s primitive unit)
are vendor-specific and not user-specific, unlike
PayWord. It is necessary to keep the coins only
vendor-specific and not user-specific as coins are
going to change hands. One needs to provide security
to coins since there is a threat that they can be snatched
in transit and submitted in real-time to the vendor.
We employ the modified TESLA protocol for this
purpose. It not only provides an efficient method of
source authentication but also provides economical
security to the coins and thwarts the man-in-middle and
denial-of-service attacks. We make use of SPKI/SDSI
(Clarke et al., 2001; Ellison, 2002) framework as a
Public-Key Infrastructure satisfying the requirements
(especially delegation of authorization) of the parties
involved in our setup. Our implementation is efficient,
secure and capable of addressing the exemplary
micro-payment scenarios described above with ease
of manage-ability and maintenance.

Rest of the paper is organized as follows: In the next
section, we provide an overview of protocols in isola-
tion i.e., PayWord, TESLA, and SPKI/SDSI followed
by our proposal in Sections 3 and 4. Section 7 gives
a detailed analysis of our protocol in terms of secu-
rity aspects, risk factors and performance. The paper
concludes with a discussion in Section 8.

2. Overview

In this section, we provide a brief overview of the
schemes such as PayWord, TESLA and SPKI/SDSI
on which our scheme is based.

2.1. PayWord
It is a credit-based, off-line micro-payment scheme, that
uses chains of paywords (one-way hash values repre-
senting primitive monetary units). The thrust of the
scheme lies in minimizing the number of public-key
operations required per payment and thereby achieving
exceptional efficiency (Rivest and Shamir, 1996). It is a
tripartite mechanism involving a user U who makes the
payment, a vendor V who receives the payment and a
broker B (a financial intermediary) who keeps accounts
for the parties concerned. Broker is a trusted party and
gives credit facility to the users for transacting with the
vendors. After reaching a formal credit agreement be-
tween B and U, B promises V to redeem the paywords
spent by U at regular intervals of time.

Before making any payments to the vendor, the user
generates a payword chain which is user-specific and
vendor-specific. The user generates the payword chain
in reverse order by picking the last payword wn at ran-
dom, and then subsequently computing each payword
wi = h(wi+1) for i = n − 1, n − 2, . . . , 0, where h is
a strong hash function and w0 is called the root (com-
mitment) of that payword chain. The user has to register
such payword chains with the vendor before using the
chains as a payment instrument. The user submits the
payword chain’s commitment value (w0) along with
the authorization (PayWord certificate) that empow-
ered the user to generate such a payment instrument.

On successful verification on vendor’s side, the user
can use the registered payword chain for unit-wise
buying activity. While making the unit-wise payments
using the generated paywords, the i-th payment (for
i = 1, 2, . . . , n) from U to V consists of the pair (wi , i)
which V can verify using wi−1 with the help of the
one-way hash function, h. Each such payment requires
no computations by the user, and only a single hash
operation by the vendor for verification. The vendor
can verify the payment by computing the hash of the
present payword and checking that it is equal to the
prior payword respective the root in the commitment
for the first payword tendered.

For redemption of the accumulated paywords, at
regular intervals the vendor interacts with the facili-
tating bank and reports the last (highest-indexed) pay-
ment (wl , l) received from each registered user after
last such reporting, together with each corresponding
commitment. On verification, the bank charges user’s
account l units of currency and deposits it to vendor’s
account. Note that it is therefore unnecessary for the
bank to maintain large online databases.



374 Patil and Shyamasundar

Relationship between Bank, User and Vendor: Let
the public-keys of bank B, user U, and vendor V be
denoted by K B , KU , KV and their private-keys be de-
noted by K −1

B , K −1
U , K −1

V respectively. The interaction
between the three parties is described below:

B ↔ U: User U approaches B with its delivery-
address details (AU ) and some additional informa-
tion (IU ) for obtaining the PayWord certificate CU =
{B, U, AU , KU , E, IU }K −1

B
where E is the certificate

expiry date i.e., the date up to which the subscribed
service can be availed.
U ↔ V: U computes a payword chain w1, . . . , wn with
root w0 and then it generates a commitment for the pay-
word chain: M = {V, CU , w0, D, IM}K −1

U
where D is

the current date and IM is some additional desired in-
formation. A payment P = (wi , i) from U to V consists
of a payword and its index i.
V ↔ B: At regular time intervals, vendor V redeems

the accumulated paywords with bank B. In each such
redemption request, V produces every subscriber’s pay-
word chain commitment with the respective CU re-
ceived from subscriber U (if it has not already done so
in previous redemption requests), and the last payment
P = (wl , l) received from each user. On verification of
the received signed commitments, B does the account-
ing work i.e., it deducts l units from U’s account and
credits it to V’s account. This payment settlement takes
place outside the PayWord system.

PayWord is optimized for sequences of micro-
payments, but is secure and flexible enough to sup-
port larger variable-value payments as well, depending
upon how much risk the bank and vendor are willing
to take. The scheme has user-specific, vendor-specific
payword chains and hence, an adversary has no inter-
est in either stealing it while in transit or to double-
spend. As a consequence, PayWord cannot provide
anonymity to the transactions. When the user requires
multiple payword chains for its own use e.g., for ac-
cessing subscribed services via multiple devices (PC,
Laptop, PDA, Mobile Phone, etc.,) it has to request
and register separately for each device, which makes
the system inefficient since it increases the costly initial
interactions with the bank.

2.2. TESLA
TESLA (Timed Efficient Stream Loss-tolerant Authen-
tication) is an efficient source authentication protocol
with low communication and computational overhead
(Perrig et al., 2002, 2001). It uses pure symmetric
cryptographic functions (MAC–Message Authentica-

tion Code (Schneier, 1996) functions) and achieves
asymmetric properties through loosely synchronized
clocks and delayed key disclosure. It uses the time dif-
ference between the sender and receiver for achieving
asymmetry.

The TESLA protocol is briefed in the following: The
sender of the message attaches the MAC over each out-
going packet calculated using a key k which is known
only to the sender. The receiver goes on buffering such
packets and authenticates them as soon as the sender
discloses k in its subsequent transmissions. At regular
intervals, the sender changes key k used for MAC com-
putation. These values of k are derived from a one-way
collision resistant hash function in such a way that the
subsequent values can be authenticated in reverse or-
der. Due to such use of one way hash chain values for
computing MAC over outgoing packets, the receiver
can thwart the denial-of-service and replay attacks by
simply looking at the packet time-stamp, the key dis-
closed by the sender at that time, and can ignore dubious
packets (Perrig et al., 2002). The original protocol is
briefly described below.

Before starting the actual transmission, the receiver
and sender loosely synchronize their time. During
this process, receiver is interested in calculating the
maximum time synchronization error �. The receiver
records its local time tR and sends a Nonce as a time syn-
chronization request to the sender. The sender responds
with a digitally signed message {tS, Nonce}K −1

S
, where

tS and K −1
S are sender’s local time and private-key re-

spectively. On successful verification of the Nonce re-
turned by the sender, the receiver computes the upper
bound on the sender’s current time as ts ≤ tr − tR + tS ,
where tr is receiver’s current time. After this process,
the actual time synchronization error δ, that is the dif-
ference between the sender and the receiver’s time, is
computed.

Now the sender splits up the time into intervals of
uniform duration and assigns the values of a one-way
hash chain [cf. Appendix A] sequentially to each time
interval to generate MACs over packet data during the
respective time intervals. Sender defines a disclosure
time d for one-way chain values and conveys it to the re-
ceiver. On receiving the packets appended with MACs
computed over it by the sender, the receiver performs
the following: Since the schedule for disclosing the
keys are known and the clocks are loosely synchro-
nized, the receiver can check that the key used to com-
pute the MAC is still secret by determining that the
sender could not have yet reached the time interval for



e-coupons: An Efficient, Secure and Delegable Micro-Payment System∗ 375

disclosing it. If the MAC key is still secret, then the
receiver buffers the packet. The sender sends the most
recent one-way chain value that it can disclose with
each packet; the receiver checks that the disclosed key
is correct by virtue of the property of one-way chains,
and then checks the correctness of the MAC of buffered
packets that were sent in the time interval of the dis-
closed key. The receiver accepts the packet only if the
MAC sent by the sender matches with its locally com-
puted value.

TESLA has low computation overhead for the gen-
eration and verification of authentication information,
and has low communication overhead. Limited buffer-
ing is required for the sender and the receiver, hence
timely authentication for each individual packet. It uses
delayed disclosure of encryption key and achieves the
property of data confidentiality and authentication ef-
ficiently, which is generally provided by asymmetric
cryptographic methods. TESLA cannot provide non-
repudiation, an important requirement for financial
transactions. Security of the TESLA also relies on the
fact that earlier keys become redundant after a period
of time.

2.3. SPKI/SDSI
SPKI and SDSI were two separate efforts initiated to
overcome the complexity, privacy and trust related
issues faced by the traditional highly centralized PKIs
(Ellison, 2002). Later these schemes were merged and
called SPKI or SPKI/SDSI. It uses s-expressions to
represent the data structures, which provides the user
much needed transparency and avoids ASN.1 (Abstract
Syntax Notation One (ASN.1, )) encoding. Unlike
the global naming scheme employed in hierarchical
PKIs, it uses local name spaces associated with each
public-key. So every principal can issue/define the key
bindings locally. Principals can create new definitions
binding other principal’s keys or names based on
the trust he is willing to put, like PGP’s web-of-trust
(PGP, ). This scheme follows the bottom-up approach,
unlike X.509’s top-down approach (Ford and Baum,
2002), and has provisions to accommodate global root
Certification Authorities (CAs). Also, the separation
of authorization from naming prevents unnecessary
revelation of user’s authorizations which are not
required while executing a particular authority. This
is not possible when certificates play naming and
multiple authorization bindings together. Furthermore,
the threshold certificates and group certificates allow
a security administrator to write the access control

policies in a manageable way [cf. Appendix A]. A
brief functional outline of the usage is illustrated with
the following scenario:

Let principal K serve as a resource provider denoted
by RESOURCE and specify the ACL for its access. K au-
thorizes principals K1, K2, K3 to act as retailers for its
service. A principal Ks subscribes for the RESOURCE

service via one of the retailers. Let us see how the sub-
scriber Ks comes up with an authorization proof to ac-
cess RESOURCE, and how the resource owner K makes
use of group certificates and extended names to effi-
ciently specify and manage the access to the resource.

Design for such a policy is given in the following
using SPKI notations.

� K my retailers −→ {K1, K2, K3} is a
“my retailers” group defined by principal K
and it can enforce some common policy on all the
three subject principals by just narrating the policy
over the name definition my retailers.

� K my customers −→ {K A, K B, K3 customers} is
another local group definition by principal K , where
it has included another group i.e., K3’s customers
apart from K A and K B , where K3 customers −→
{K p, Kq , Kr , Ks}.

� Principal K consolidates its groups and cre-
ates a new definition, K my groups −→
{K my retailers, K my customers} and
empowers its members to access the RE-
SOURCE by making an authorization definition,
K RESOURCE−→ K my groups �, where the � (live
delegation flag) indicates further delegation of
authority is allowed to the subject principals.
The sequence of messages, between RESOURCE con-
troller K and requester Ks is given below:

� Ks sends an access request for RESOURCE. Controller
K demands Ks to satisfy the access control policy
enforced by rule K RESOURCE −→ K my groups �.

� Ks requests for the definition of K ’s my groups.
� K provides the definitions of its groups my groups,

my retailers, and my customers.
In K ’s my customers definition, Ks finds the miss-
ing authorization link.

� Proof of Ks’s certificate chain discovery is:
K RESOURCE −→ K my groups �
K RESOURCE −→ K my customers �; since
K my groups −→
{K my retailers, K my customers}K RESOURCE−→
K3 customers �; since



376 Patil and Shyamasundar

K my customers −→ {K A, K B, K3 customers}
and
K3 customers −→ {K p, Kq , Kr , Ks}
∴ K RESOURCE −→ Ks �
In this manner, Ks proves its access credentials over

RESOURCE and is capable of delegating the authority
further. But a � (dead delegation flag) in the access
control definition of RESOURCE will restrict Ks from
further delegation.

Such a distributed security infrastructure facilitates
in designing and efficiently managing complex security
models. Its ability to allow users to locally define their
own name and authorization binding helps in achieving
natural trust models, which are not rigidly dependent on
global root CAs. The existing micro-payment schemes
seem to imply reliance on a centralized certification au-
thority infrastructure, which is facing scalability prob-
lems and has hierarchical trust relationships.

3. e-coupons: Basic Scheme

In this paper, our primary concern is the design and
implementation of a micro-payment system with the
following features:

1. The system should at least be on par with the Pay-
Word system, in terms of efficiency and security,

2. It should allow users to delegate their spending ca-
pability.

The heart of our construction is a vendor-specific
PayWord protocol enabled with TESLA assisted source
authentication and confidentiality mechanism for the
paywords (coins). Though our implementation is sim-
ilar to PayWord in spirit, instead of generating a single
payword chain and spending it over the time period,
user generates multiple payword chains and use a sta-
tistical management approach (which varies from user
to user based on their spending patterns) for spending
it over non-conflicting time intervals. The SPKI/SDSI
framework not only provides properties such as non-
repudiation, but also provides the important feature
of delegation. Our protocol is an off-line protocol,
which is a very important feature of any micro-payment
scheme.

In the following, we shall describe the basic pro-
tocol without the feature of delegation for the sake of
clarity. The protocol’s delegation feature is separately
explained in Section 4. The transactions of the basic

protocol among the three parties is described in Fig. 1,
and the details of each transaction step are described
below:

a© Request for PayWord certificate. Using stan-
dard payment protocol the user establishes a ses-
sion with the bank and chooses an appropriate mode
for payment. Credit card information CCU , user’s
public-key KU and other supporting information IU

is sent to the bank using a standard payment proto-
col. The details of the user needed by the bank for
the transaction and the mechanism employed are not
of relevance here.
b© Issuance of PayWord certificate. Based on

user’s credit worthiness, bank denies or issues a
PayWord certificate CU to the user U . This enables
the user to generate the payword chains locally, for
which the bank’s guarantee of redemption exists for
the paywords spent by the user with a vendor. The
signed reply contains the relevant trust building in-
formation for the vendor, i.e., PayWord issuing bank
B, user’s name, public-key, certificate expiry time E
and other information IU (payword chain limit).
Upon receiving the PayWord certificate, user mints
its’ paywords by choosing a random number r and
applying a standard, collision resistant, cryptograph-
ically secure one-way hash function h, such as SHA-
1 (NIST, 1995), over it successively over a range
specified by the bank in the PayWord certificate.
i.e., h(r ) = wn, h(wn) = wn−1 for n + 1 times and
h(w1) = w0; w0 is called the root or commitment
of the payword chain, which itself is not used as a
payword (cf. Fig. 2).
c© Registration with vendor. This is a one-time

process in which user sends a digitally signed mes-
sage containing vendor’s name V , its PayWord cre-
dentials CU , payword chain root/commitment w0,
and optional information I (what length of substring
from w is used as payword encryption key e.g. 56-
bit or 64-bit). Vendor verifies user’s signature and
authenticity of the PayWord certificate CU enclosed
in M . Vendor also checks for the presence of the
commitment value provided by the user in its regis-
tration entries to thwart the double-spending effort.
d© Time synchronization request. Before giving
the user a go-ahead signal, the vendor time synchro-
nizes itself with the user so that it can weed out
the fake packets from its buffer and authenticate the
source of remaining packets. This is the first step in
initializing TESLA. The vendor records its local time



e-coupons: An Efficient, Secure and Delegable Micro-Payment System∗ 377

Fig. 1. e-coupons Protocol stages.

Fig. 2. PayWord chain generation.

tR and sends a Nonce encrypted with the private-key
as a secure time synchronization request.
e© Reply. In response to the time synchronization

request from the vendor, the user sends an encrypted
message consisting of its local time tU , Nonce, the
time interval Tint for which one key will be used for
encryption, and integer d that signifies time intervals
for which the key will remain secret. After success-
fully verifying the value of Nonce returned by U ,
vendor computes the maximum time synchronization
error � as explained in Section 2.2.
f©, g©, h© Secure Payment. Now, the vendor is

ready to accept the payword. Instead of sending the
paywords in plain format, user encrypts each pay-
word with the payword itself as an encryption key
i.e., 〈wi 〉wi . The encrypted payword is sent with its
MAC, computed using the payword as the key, and
the most recent key which the user can reveal. For
the first d messages the user does not have to reveal
any key. From (d + 1)st message, the user will start
disclosing appropriate keys. Therefore, the vendor
buffers the last d messages and authenticates the first
payword as soon as the key is disclosed by the user in
(d + 1)st message. So, every payword verification is
delayed by d intervals, which is generally a small in-

teger value. By employing the TESLA mechanism,
vendor authenticates the packet and for verification
of the payword, it applies the hash function h over
the payword and checks it against the last payword
submitted by the user. Thus, the authentication and
verification of payword goes hand-in-hand with a
small delay d.

4. e-coupons: Scheme with Delegation

Delegation is an important feature which is missing
in existing micro-payment schemes since users have
different devices to access a subscription service. It is
obviously not advisable to register all possible devices
with the vendor and have separate prior agreements
with bank. Our aim should be to minimize the costly
computations particularly for hand held devices with
limited resources. Our scheme allows a user to regis-
ter from her PC and delegate the spending capability
to her own devices or even to other users. We achieve
delegation of spending capability through multi-seed
payword chains using the SPKI/SDSI authorization
certificates without burdening further with the PKI
operations.

In the following, we shall highlight the way delega-
tion is integrated in e-coupons. For this, let us assume
the following authorization certificate.

KU Chain1[201−402] −→ Kagent3�

Through this authorization certificate, the principal KU



378 Patil and Shyamasundar

Fig. 3. Multi-seed payword chains generation.

delegates its authority over a portion of Chain1 to
Kagent3. The dead delegation flag in the certificate im-
plies that Kagent3 can exercise the authorization but can-
not further delegate it to others.

So, in our e-coupons system, a user willing to make
use of delegation facility starts requesting the bank for
a PayWord certificate and also notifies the bank about
its multi-seed payword generation requirements so that
the bank anticipates more than one registration by
the user with a vendor using multiple values from a
payword chain as commitments. The bank issues the
PayWord certificate to the user and the user starts gen-
erating the payword chains. A sample schematic pre-
sentation of the multi-seed payword chains is shown in
Fig. 3, and some portions of these multi-seed payword
chains are delegated to three different agents as follows:

User−→ {w0, Kagent1, E, IU , 〈wl〉Kagent1} −→agent1
User−→ {x0, Kagent2, E, IU , 〈x100〉Kagent2} −→agent2
User−→ {w201, Kagent3, E, IU , 〈w402〉Kagent3} −→agent3

User authorizes its software agents to spend on its
behalf by issuing an authorization certificate consist-
ing of the following information: commitment for the
agent, spending limit, expiry date, agent’s public-key
and other application specific data.

These agents/sub-users do not have to randomly
choose a number and compute their own chain, but
the start and end values of the chain will be provided
by U . The root value is enclosed in the certificate
and the upper ceiling value (wl) is sent to the agent1
in encrypted format, i.e., 〈wl〉Kagent1 . agent1 starts ap-
plying the hash function h over wl for l times and
reaches the root value defined by U . As soon as the

User delegates such an authority over the part of pay-
word chain, it locks that chain from further access un-
til the portion of the chain is fully spent or expired.
So, the next payword request from another sub-user
will be served from a different un-locked payword
chain. Thus, the User’s ability to delegate partial au-
thority over payword chain is restricted by the num-
ber of un-locked payword chains with the User. The
agents/sub-users having authority to spend paywords
from different payword chains, can transact concur-
rently. If the User has a priori knowledge about the pat-
tern of requests coming from the sub-users, it can intel-
ligently partition the payword chains of well-calculated
length.
The registration step c© will be a little different, that is

agent3 −→ {V, X, w201, Iagent3}K −1
agent3

−→Vendor

where X is agent3’s proof of authorization in
SPKI/SDSI, and w201 is the root value of the payword
chain which agent3 is going to spend. Vendor verifies
signatures over the registration message and checks au-
thenticity of the proof presented by the requester and
proceeds further.

At periodic intervals, vendor submits all the signed
commitments to the bank with corresponding highest
spent payword value and its index. Bank verifies this
data provided by the vendor off-line and accordingly
credits money to vendor’s account from user’s account.

Before considering the analysis of our micro-
payment scheme e-coupons, we shall summarize the
obligations of the actors in the protocol, namely the
Bank, the Vendor, and the User.

Bank is the trusted party in this setup. It acts as a fa-
cilitator for Vendors and Users. Banks enter into legal



e-coupons: An Efficient, Secure and Delegable Micro-Payment System∗ 379

Fig. 4. Bank’s interface to issue PayWord certificates to users.

agreement with these two other entities independently,
under which they agree for honest behavior. Bank guar-
antees the participating Vendors for redemption of the
paywords spent by the registered Users. Vendors are
bound to deliver the goods on receiving the agreed
payment amount. Users are required to spend their pay-
word chains in the reverse order of its creation and they
are responsible for managing their own multi-seed pay-
word chains, and risk to lose the paywords by not fol-
lowing the order in which they have to be spent.

5. e-coupons: Implementation

In this section, we shall provide the first hand im-
plementation perspective of our system followed by
few snapshots explaining system’s interface for its
users. The development of e-coupons is done on three
GNU/Linux-based Intel-Pentium machines holding the
Bank, Vendor, User programs each and a laptop, as an
additional service access point for the user, to demon-
strate user’s delegation of paywords from her PC to
laptop.

The software development of e-coupons is an in-
tegration of three main modules; namely PayWord,
modified TESLA, and SPKI/SDSI. The implementa-
tion of these modules is done using C, Perl-CGI, and
other scripting languages, mySQL as database for Bank
and Vendor, Apache as a web server for Bank, and
OpenSSL libraries for cryptographic primitives. We
have described the setup of individual entities of e-
coupons in the following:

� Bank: It is central to the system. This trusted en-
tity vouches for the users by issuing certificates. A
SPKI/SDSI module runs on the Bank machine acting
as CA. Bank’s interface for users is a wrapper built
around Matt Fredette’s (MIT, Cambridge) sdsi2sh
tool. This interface is hosted by SSL-enabled Apache
server that accepts input from users and issues Pay-
Word certificate by accepting payments by credit-
cards. The input collected from user is directed to
sdsi2sh shell by Perl-CGI scripts. The s-expression
based certificate is presented to user, while a copy is
stored in Bank’s database. Fig. 4, gives a glimpse of
User’s interaction with Bank. Bank’s server listens
on port 2344 for redemption requests from Vendors.



380 Patil and Shyamasundar

Fig. 5. User’s wallet interface: initial status at time t0.

This program accepts data (user commitments and/or
payword indices) from Vendors and stores the com-
mitments to respective Vendor’s database table and
redeems the Vendor’s account according to the pay-
word index after validating its value. These compu-
tations are done with less priority depending upon
the load on server.

� User: After making macro-payment for a partic-
ular service of a Vendor, user receives the author-
ity, via PayWord certificate, to mint its own pay-
words for payment purpose. This certificate is stored
into User’s $HOME/.e-coupons/certificates/
directory with name $VENDORID.crt, by default.
Users are provided with an interactive program that
helps them to generate payword chains of different
lengths based on their requirements. The program
checks for absence of a lock file $VENDORID.lock
in $HOME/.e-coupons/status/used-certs/ di-
rectory before generating the payword chains for a
particular Vendor. Upon successful run it generates a
lock and stores the generated chains in separate files
under $HOME/.e-coupons/chains/$VENDORID/
directory. Taking into consideration the space re-
quired for storing paywords into a file and the time
required for accessing each payword from the file

versus generating the payword value afresh having
readily available previous value in CPU cache, our
program just stores the intermediate values and cor-
responding index into the payword file apart from
the chain’s boundary values. Having generated the
paywords (Fig. 5, shows User’s initial wallet sta-
tus), the User can either register the chains for
self use or delegate the chains, in totality or par-
tially, to others. For using a chain for self use, the
User signs the chain’s root value as its commit-
ment and registers it with the vendor after initial-
izing the TESLA server on port 2345 for handling
time-synchronization requests arising from Vendor
side. User is also equipped with the sdsi2sh shell
for delegating its spending capability. Fig. 6, shows
the usage of utility provided to users to delegate the
spending capability. A full-fledged interface is pro-
vided to users of the system to manage the wallet.
Figs. 7, 8, 9, shows User’s wallet status at different
time intervals highlighting the paywords in distinct
color codes indicating “unspent”, “delegated” and
“spent” paywords.

� Vendor: In our implementation, we have inte-
grated a streaming music server, as Vendor’s service,
that listens on port 6666 for User requests. Vendors



e-coupons: An Efficient, Secure and Delegable Micro-Payment System∗ 381

Fig. 6. User delegating its spending capability.

Fig. 7. User’s wallet status at time t1.

may have different methods to implement their inter-
face for users. Vendor is equipped with SPKI/SDSI
verification mechanism and a database to store user’s
information.

Users register with the vendor by sending the
signed commitments along with their proof of spend-
ing capability either obtained from the facilitating
bank or an authorized user. Upon receiving such



382 Patil and Shyamasundar

Fig. 8. User’s wallet status at time t2.

registration requests, Vendor performs the veri-
fication mechanism. The process involves user’s
credential (single PayWord certificate or chain of
certificates—in case of delegation) verification and
on successful verification Vendor stores the user’s
commitment in its database against the entry of user.
Vendor retains this information for sufficiently long
duration to thwart user’s overspending and double-
spending efforts. Before initializing the transaction,
Vendor time-synchronizes itself with User by send-
ing a request to User’s port 2345. As the transaction
proceeds, Vendor goes on storing the highest pay-
word index received from the user.
Vendor periodically sends the accumulated com-
mitments and payword indices to the facilitating
Bank for redemption. Bank may report existence of
double-spending efforts from particular user. Vendor
immediately purges such users from the database of
registered users.

6. e-coupons: Applications

In this section, we provide a typical application sce-
nario of e-coupons system which cannot be envisaged

using existing schemes. But the scope of e-coupons
should not be considered limited to the exemplary sce-
narios discussed in this paper. The ability of e-coupons
to support concurrent payments for a subscribed service
from different service access points simultaneously is
one of its important features. This feature is explained
with the help of following example.

Google, a leading search engine, allows application
programmers to access its search data through APIs
(Application Program Interfaces). At present Google
provides free access to its data via APIs with per user,
per week access restrictions. May be due to lack of a
suitable micro-payment scheme, Google is not switch-
ing to pay-mode. e-coupons is a perfect fit for this
scenario.

Let us assume, a user “U1” subscribes to such
API service with the help of a facilitating bank. The
user writes a multi-threaded application, in which each
thread individually requires the API’s subscription ser-
vice and capability to pay on its own. Because, large
systems do load balancing between the servers there-
fore the API requests get randomly distributed among
the system’s servers [cf. Fig. 10] (hence single-seed
payword chain is not suitable for such scenarios). One



e-coupons: An Efficient, Secure and Delegable Micro-Payment System∗ 383

Fig. 9. User’s wallet status at time t3.

Fig. 10. Concurrent payments for multi-threaded applications.

may argue about making the “Load Balancer” itself as
payment gateway for API service, instead of individ-
ual servers that are actually catering the API request.
But such approach will centralize the computational

burden to the “Load Balancer” and communication be-
tween the “Load Balancer” and the servers behind it
will tremendously increase. One may also argue that
instead of each thread making payments individually,



384 Patil and Shyamasundar

let the parent of these threads make consolidated pay-
ments. But such an approach will limit the autonomy
of the threads while negotiating for parameters like
“Quality of Service”.

Furthermore, a user would require to access the ser-
vice from a temporarily borrowed device or may like
to allow another user use the service in limited form
(analogous to gift coupons). This requirement is de-
picted in Fig. 10, where user “U1” issues an autho-
rization certificate to “U2”. Apart from the validity pe-
riod, this certificate contains the boundary values of a
sub-chain, picked by “U1” from its un-locked set of
multi-seed payword chains as shown in Section 4. The
scenario described above has close resemblance with
many applications in distributed computing, especially
in Grid-Computing, pricing in MANETs etc. Further-
more, the facility of delegation enables the users to use
the paywords fully, by gifting it to others, instead of
them getting expired unspent.

7. Analysis of e-coupons Scheme

In this section, we provide analysis of e-coupons with
respect to the issues like risk involved, security and
performance, followed by a brief comparison of our
system with existing micro-payment systems.

7.1. Risk analysis
e-coupons does not attract any additional risk while
making the unit-wise payments. Though making the
paywords free from user-specific-ness involves the risk
of the paywords being stolen in transit, but adequate se-
curity via a relative encryption process and the TESLA
authentication mechanism thwarts such attempts. A
low-level risk is associated with all the parties involved
in the protocol. Since bank gives credit facility to users
and a guarantee to the vendors for redemption against
paywords, the mischievous efforts of overspending by
the user keeps the bank at risk. However the legal agree-
ments between the bank and the user will be a deter-
rent. There is a risk of a user not receiving the goods
for which he has paid for. The risk associated with the
user is low because the payments are unit-wise, but the
vendor is at great risk of losing his reputation.

We understand that the use of the same key for en-
cryption purpose and for computing MAC might lead to
cryptographic weaknesses of the protocol. But we are
interested in providing confidentiality to the paywords

for a brief time interval during their transit, which we
do by using a 64-bit substring of the payword itself.

While the vendor loosely time synchronizes itself
with the sender in TESLA protocol, it does not know
the propagation delay of the time synchronization re-
quest packet, so it has to assume that the time syn-
chronization error is �. To remain on safer side we
take the full round-trip time of the packet. Even if ven-
dor loses one of the valid incoming packet, it can own
its value on successfully receiving the next packet be-
cause of the self-authenticating nature of the paywords
in the chain. The vendor can always go from the highest
payword value towards the commitment value. Given
such facilities, the vendor is ready to take risk of losing
intermediate packets due to network errors.

Also, the vendor needs to buffer packets during the
disclosure delay before it can authenticate them. And
at times due to heavy load on the vendor, it becomes
risky to simply drop the packets when the resource (in-
coming buffer space) is fully utilized. The problem can
be solved by keeping the onus of buffering the pack-
ets during disclosure delay on the users. Moreover, by
enclosing hash values of future paywords in an earlier
packet will help in authenticating data in later payword
packets as soon as they arrive. Thus verification can be
done in real-time.

The risk of double-spending paywords can be neu-
tralized by two methods. Either the vendor should
maintain a buffer of registered commitment values and
check each new registration against this buffer or it can
opt to verify each payword chain commitment value
with the bank. The later option is on-line and it is
costly. This will be a policy decision of the setup based
on the agreement between bank and the vendor. We
exercise the real-world reputation model to check the
misconduct of the entities involved in the setup. A bad
reputation due to non-delivery of goods on successful
payments by the users would cost the vendor in terms
of loss in business. And the bank will penalize the mis-
behaving users (double-spending efforts) by refusing
to issue the PayWord certificate at the time of renewal
of the subscription.

7.2. Security analysis
In PayWord protocol, the paywords are user and
vendor-specific, so they don’t bear the threat of being
stolen while in transit unlike e-coupons, where the pay-
words are not user-specific. Every message in which
the adversary might have interest is encrypted using
low-bit encryption keys. Security is provided to every



e-coupons: An Efficient, Secure and Delegable Micro-Payment System∗ 385

Table 1. Performance analysis and comparative evaluation

No. of Asymmetric key No. of Symmetric key No. of Hashes required
operations required operations required payword gen./verification,
signature/encryption payword encryption/decryption MAC computations

User Vendor User Vendor User Vendor

Chain 1 1 + E D 400 400 (402 × 2) + 400 404 + 400
Chain 2 1 + E D 400 400 (404 × 2) + 400 408 + 400
Chain 3 1 + E D 400 400 (408 × 2) + 400 416 + 400
Chain 4 1 + E D 400 400 (416 × 2) + 400 432 + 400
Single 1 1 0 0 1601 + 0 1601 + 0
Chain no security coins are vendor

(1600 paywords) required, since and user-specific

payword sent by a user to the vendor because the pay-
words are not user-specific and are vulnerable to get
stolen while in transit. We have provided the security
with the help of TESLA’s efficient source authenti-
cation mechanism and by simultaneously encrypting
each payword with itself. TESLA has not become an
overhead since we do not generate a separate one-way
hash chain for MAC computations and make use of the
readily available self-authenticating payword chain it-
self; since it is another chain of one-way hash values.
The double-spending of paywords is not possible since
the paywords are vendor-specific.

The user credit card information is sent under stan-
dard payment protocol, whereas the encryption method
used for payword’s confidentiality is relatively weak.
Since 56-bit encryption provides satisfactorily enough
confidence against the brute-force attacks for a time
period that is enough for payword getting verified by
the receiver, we avoid using the full length of payword
as encryption key. Because of such a practical security
cover for the payments, user can think of taking a risk
of sending paywords of higher denomination.

7.3. Performance analysis and comparative
evaluation
The performance evaluation of our system against the
original PayWord protocol while making a deviation
from the monolithic user-specific and vendor-specific
payword chain to a multi-seed vendor-specific payment
instrument is given in Table 1. In this table, D denotes
the number of times the encryption of the Nonce is
done as a time synchronization request from a vendor
to an user, and E denotes the encrypted response from
the user to the vendor. Value of both D and E is equal
to the total number of transaction initiation phases be-
tween them, as time synchronization is the first step

in doing micro-transactions. The symmetric key op-
erations (encryption/decryption using 64-bit DES) are
involved in our implementation at the stage of send-
ing the paywords and their verification at the receiving
end.

This analysis is based on delegation of payword au-
thority up to depth 1, i.e., the sub-users who have re-
ceived the payword authorization have not delegated
their authority any further, which will be the general
case. Therefore, in Hash column of Table 1, the user’s
payword chain length is multiplied by 2; the original
owner of the chain generates the values applying hash
function h and delegates some range of this chain to
the sub-user and the sub-user again computes the val-
ues between the range. Hence, the multiplication factor
is d + 1, where d is delegation depth.

Also, the delegation of payword authority by a user
to a sub-user adds a certificate into the authorization
proof (X ) of the sub-user. This will increase the autho-
rization verification time of the vendor. Therefore, the
depth of delegation and the time required for authoriza-
tion verification by the vendor are linearly proportional.
From our implementation, we have produced a graph
of “number of paywords” against “verification time re-
quired by the Vendor” for PayWord and e-coupons pro-
tocol to substantiate our claims (Fig. 11). It is evident
from the graph that e-coupons require more time, on
Vendor’s side, for validation as compared to PayWord
protocol but it provides the flexibility to the users to
manage their spending capability.

The hash operations performed by sub-user for
payword generation is a re-computation of values
earlier computed by the delegator. So, it will be a
policy decision, whether to give computed values to
the user or only the boundary values. If a user skips
some paywords and trades a later one without trading



386 Patil and Shyamasundar

Fig. 11. Computational evaluation of e-coupons against payword w.r.t. vendor

.

those skipped ones, the user can pay a higher amount in
one transaction. The vendor can still check the validity
of the payword by a repeated application of the hash
function. While implementing the measures against
the double-spending, the process can be improved
in its efficiency by employing probabilistic polling
(Jarecki and Odlyzko, 1997). Now, let us evaluate
e-coupons with the other existing schemes.

1. A micro-payment scheme requires PKI for authenti-
cation and non-repudiation. SPKI provides the prim-
itive facilities required from a PKI. Because of this
framework it is possible for us to introduce the con-
cept of spending capability delegation to other users.
This facility is absent in all other micro-payment
schemes. Obviously, one cannot keep the paywords
user-specific if one is going to delegate the author-
ity to spend the paywords to others. This modifi-
cation to the original PayWord scheme introduces
the threat of paywords being snatched while in tran-
sit. We have shown how TESLA provides security
to the paywords in transit. These gradual modifi-
cations to the original PayWord scheme makes our
scheme slightly less efficient than the simple Pay-
Word scheme. But the original PayWord scheme
lacks the much required facility of delegation of the
spending capability.

2. Amongst the various existing micro-payment
schemes attempting to provide low-cost payments

over the Internet, the most closely related to our
scheme are PayWord and MiniPay. Both of them
are off-line schemes and are suitable for pay-as-
you-go applications. But our scheme differs from
them substantially in terms of facilities like delega-
tion and the way in which we provide security to the
transactions.

3. Since PayWord scheme is vendor-specific and user-
specific, it limits the user of a particular subscription
to a single registered access point, which is quite
un-natural. In practice, if a user is subscribed to a
particular service, the user should have full free-
dom to access the service irrespective of the ac-
cess methodology. Making the payword chains user-
specific, the scheme has tackled the security and
double-spending issues elegantly.

4. Unlike PayWord’s tripartite architecture (consist-
ing a bank, vendor and the users), MiniPay sys-
tem would consist four to six parties (users, Ac-
cess Provider for users’ billing system, a bank, ven-
dor, Internet Service Provider for seller’s billing
system, an arbitrator). Since trust is not transitive,
the increase in number of entities in basic archi-
tecture for the sake of facilities like multiple cur-
rency support, overspending request handling etc.,
reduces the overall trust amongst the entities of
the system. Instead the support for multiple curren-
cies can be handled by the facilitating bank with-
out substantial efforts on design side. We have used



e-coupons: An Efficient, Secure and Delegable Micro-Payment System∗ 387

currency neutral units for payment and the ven-
dor can redeem such units from the bank in de-
sired currency at current exchange rates between
the currency in which user has paid for the Pay-
Word Authorization and the currency desired by the
vendor.

5. In MiniPay protocol, the threat of denial-of-service
is not handled by the end users but by the intermedi-
ate facilitators i.e., Access Provider and the Internet
Service Provider. It claims that all parties are pro-
tected from clogging. In contrast, the TESLA mech-
anism in our protocol allows the buyer and seller to
do source authentication on each incoming packet
in real-time. In this way, we have handled the bo-
gus incoming packets intended for denial-of-service
attack.

8. Conclusion

In this paper, we have discussed the design and im-
plementation of an efficient micro-payment scheme
that supports delegation of spending capability to
others and has inherent lightweight security mea-
sures in it. To the best of our knowledge, this is
the first of such initiative. It is a low cost, robust
scheme and has negligible delay in response time. Our
scheme detects attempts of double-spending, thwarts
attempts of denial-of-service and man-in-middle at-
tacks. The results of our implementation are satisfac-
tory and show improved efficiency while integrated
with the probabilistic signature verification scheme
(Shamir, 1995).

In terms of trust associated among the three par-
ties i.e., the bank, the users and the vendors and
the risk involved in this protocol, our scheme is as
good as PayWord scheme. Furthermore, PayWord as-
sumes vendors to be trusted, while users need not be
trusted. Our scheme also works under the same envi-
ronment of trust and mistrust. However, our scheme
gives more practical functionalities to the micro-
payment transactions, like partial handing over of
the spending capability to your application robots or
offering introductory limited subscriptions to poten-
tial customers which are not part of such a setup.
The introduction of delegation feature does not in-
vite any risk, therefore the facility of delegation is
viable.

The role of SPKI/SDSI is not restricted to del-
egation, but it also fulfills the system’s requirement

of a PKI providing public-keys and certificate valida-
tion, verification. Thus we have an excellent micro-
payment system which is secure, relatively efficient,
and provides one layer of indirection (while users
delegate the authority) that contributes to transaction
anonymity.

Our scheme allows a user to parameterize the se-
curity strength provided for the payments. For mak-
ing payments at different vendors, user can specify
the encryption strength to be provided for the pay-
ments based on the vulnerability of underlying protocol
(HTTP, WAP) and available computational resources.
This provision encourages a user to make payments of
higher value with more security. A practically secure
micro-payment with relatively higher monetary value is
equivalent to making multiple efficient payments of the
same monetary value for the same set of deliverables.
Such provisions are important since they cater to trans-
actions lying in between micro-payments and macro-
payments.

Our implementation is off-line, vendor-specific but
not user-specific and quite efficient. Being just vendor-
specific, it is able to thwart the double-spending efforts
and collusion between the vendors. Since it is not user-
specific, it faces the risk of paywords getting stolen
while in transit. We have done away with this problem
by providing an ephemeral data confidentiality cover.
The layers of indirection in authorizations give the end
users more anonymity than they were enjoying earlier.
Needless to say, privacy is a much demanded feature
for e-commerce.

One can make the system free from vendor-specific-
ness by making the vendors maintain the values of
commitments they receive, and simultaneously (on-
line) submitting it to the bank for verification against
multiple registrations. This way, the user cannot spend
the same payword chain with two different vendors
taking the advantage of vendor’s periodic settlement
with the bank.

Appendix

A. One-way hash functions & MAC
A hash function is a mathematical function that takes
a variable-length input string (called a pre-image)
and converts it to a fixed-length (generally smaller)
output string (called a hash value). A one-way hash
function is a hash function that works in one direction:



388 Patil and Shyamasundar

Fig. 12. Name and authorization certificates (issued by the bank to a user).

It is easy to compute a hash value from pre-image,
but it is hard to generate a pre-image that hashes
to a particular value. The output is not dependent
on the input in any discernible way. A single bit
change in the pre-image changes, on the average,
half of the bits in the hash value. Given a hash value,
it is computationally infeasible to find a pre-image
that hashes to that value. A good one-way hash
function is also collision-free: It is hard to generate
two pre-images with the same hash value (Schneier,
1996; Lamport, 1981). So, a one-way hash function is
a mapping h from some set of words into itself such
that:

1. Given a word x , it is easy to compute h(x).
2. Given a word y, it is not feasible to compute a word

x such that y = h(x).

A message authentication code, or MAC, is a
key-dependent one-way hash function. MACs have
the same properties as the one-way hash functions,
but they also include a key. Only someone with the
identical key can verify the hash (Schneier, 1996).
They are very useful to provide authenticity without
secrecy.

B. SPKI certificates
Fig. 12, shows the actual certificates issued by the
bank B, whose public-key is marked inside the
issuer box, to the user U as a subject of the
certificate. By issuing this name certificate, Bank
has given the subscriber a membership to its group
Service-X-Subscriber-class-economy for a pe-
riod of one-year. And by issuing the authorization
certificate, the bank has empowered the members of

group Service-X-Subscriber-class-economy to
mint their coins with proper limits (in this case it is
3000, similarly there can be another group definition
called Service-X-Subscriber-class-exclusive
with higher spending limits). This way SPKI has clear
edge over other PKI schemes in terms of efficient
management of name space and authorization. Also,
note the difference between the validity periods of
the two certificates. The authorization expires within
a month, whereas the name bindings stand for longer
time-period.


