
Mutation-driven Test Case Generation Using
Short-lived Concurrent Mutants

First Results

Willibald Krenn1 and Rupert Schlick1

AIT Austrian Institute of Technology GmbH,
first.second@ait.ac.at

Abstract. In the context of black-box testing, generating test cases
through model mutation is known to produce powerful test suites but
usually has the drawback of being prohibitively expensive. This paper
presents a new version of the tool MoMuT::UML, which implements a
scalable version of mutation-driven test case generation (MDTCG). It
is able to handle industrial-sized UML models comprising networks of,
e.g., 2800 interacting state machines. To achieve the required scalability,
the implemented algorithm exploits the concurrency in MDTCG and
combines it with a search based generation strategy. For evaluation, we
use seven case studies of different application domains with an increasing
level of difficulty, stopping at a model of a railway station in Austria’s
national rail network.

1 Introduction

For reactive systems, especially in the safety critical domain and in contexts
where updates are expensive, proper testing is mandatory. In the former domain,
safety standards actually require certain forms of testing to be conducted and
some standards highly recommend the use of formal methods and model-based
testing. Mutation-driven test case generation (MDTCG), which is a form of
fault-based testing [13], could help in satisfying the requirements posed by the
standards – if it worked well enough with industrial sized models.

In this work, we address pushing out the boundaries of what can be done
with MDTCG by addressing performance issues caused by the specific nature of
the model-based mutation testing problem. To do so, we take advantage of the
locality of mutations for the exploration itself and use mutation based heuristics
for guiding a search based approach over mutant schemata. As a benchmark we
use seven industrial sized UML models of different domains. Notice that we could
not handle most of these with our previous versions of MoMuT::UML1 [1]. The
models were built either by industry engineers at partner companies or in close
cooperation with them. The smallest model describes the behaviour of a typical
car alarm system, while the largest is a model of a mid-sized railway station in

1 Pronounced as ”MoMuT for UML”.

ar
X

iv
:1

60
1.

06
97

4v
1

 [
cs

.S
E

]
 2

6
Ja

n
20

16

2

Table 1: Three Generations of MoMuT::UML

Mutator Test Case Generator

Engine Mutants Level Compression Search Detection Exploration Execution

Gen1 F UML - BF S Enum. Interpreter
Gen2 F UML - Re S, W Symb. SMT
Gen3 F, H OOAS Schemata GR S, W EPOR Compiled

F . First Order Mutants
H . Higher Order Mutants
OOAS Object Oriented Action System
GR . Guided Random
BF . Breadth First Search

Re . . . Symb. Refinement Check + Reachability
S Strong Mutation + IOCO
W . Weak Mutation
EPOR . . Enumerative Partial Order Reduction
SMT Satisfiability Modulo Theories

the national rail network of Austria. The models have different characteristics:
some favour symbolic approaches, some favour enumerative ones, some are highly
concurrent, some are serialized, some use discrete time, while others do not.

Table 1 provides an overview of the three MoMuT::UML generations and
their differences. The first generation appeared around 2010 and was based on
a Prolog-based enumerative input-output conformance (ioco)[17] checker, called
Ulysses, that was paired with a separate UML mutation engine. Generation
one proved powerful enough to handle simple to slightly complex models [3].
The second MoMuT::UML generation changed the exploration approach from
interpreted enumeration to SMT-solver-based exploration. Although the SMT-
based back end proved to be more efficient than the first generation engine and
made a big performance impact with a particular type of model, its lack of
list-support and object variables meant it could not handle the models we were
ultimately aiming for. That said, we applied it successfully to a use-case that is
also re-presented in this paper. The article [2] provides the following summary
of our findings when applying the second generation MoMuT::UML:

The figures on the computation time prove that we spend more than
60% of the total TCG time checking equivalent model mutants. . . . The
data also demonstrates that our mutation engine needs to be improved
to generate more meaningful mutants as . . . 80% of the model mutants
are covered by test cases generated for 2% of them.

Back then, the total TCG time was in excess of 44 hours for test cases with a
depth of 25 interactions generated from an UML model comprising one instance,
and 64 attributes. Our goal was to handle models in excess of 2000 instances,
3000 attributes, and to produce vastly deeper test cases in less time. So, for
MoMuT::UML 3.0 we switched from formal conformance checking to a search-
based exploration strategy with short-lived mutants as announced in [3]:

. . . the authors attempt to combine directed random exploration and
mutation based test-case generation on-the-fly. The idea is that during

3

Fig. 1: MoMuT::UML 3.x Principal Architecture

the exploration of the system, mutations which are close to the current
state are dynamically inserted and conformance is checked. . . .

The contributions of this paper are threefold. First, we describe the tech-
niques used in the latest version of MoMuT::UML that allow us to scale up
MDTCG to industry relevant model sizes. Second we present four case studies
taken from industry the first time and, third, we evaluate our approach according
to the following research questions. RQ1: Can we apply MDTCG to industrial-
sized models at a cost (time, resources) the user would be willing to accept?
RQ2: Do we retain enough fault coverage for the tool to be useful? RQ3: Given
our two different guidance heuristics, are both equally suitable?

The paper is organized as follows. Section 2 introduces the mutation-based
test case generation problem, mentions the main difficulties associated with it,
provides a list of mutation operators used for the presented experiments, and
gives a brief introduction of the Object-Oriented Action Systems modelling lan-
guage. Section 3 presents MoMuT::UML’s main system architecture, discusses
the mutation engine in detail, and introduces the short-lived-mutant algorithm.
Section 4 then presents the seven case studies and is followed by an evaluation
in Section 5. The paper closes with a discussion of related work in Section 6 and
concludes in Section 7.

2 Generating Tests from Model Mutants

Mutation-driven test case generation strives to automatically produce test cases
that are able to detect faulty (”mutated”) versions of a given specification
(”model”). Research has shown that this methodology is powerful and can sub-
sume other coverage criteria, like condition coverage [15], given the right set of
mutation operators. Besides requiring a model, the main drawback of MDTCG
is the computational complexity involved in finding test data that is able to re-
veal a faulty model (”mutant”). This challenge is easily cast as a model-checking
problem, however, using model-checkers for test generation has its own issues [6],
e.g., with large and non-deterministic models.

Besides the general computational complexity of the underlying problem,
another issue that further increases the computational cost is that of equivalent

4

Table 2: OOAS Mutation Operators

Mutation Operator Number Of Mutants, Upper Bound

Disable Guarded Command O(g) g. . . # guarded commands
Replace Binary Operator O(b) b. . . # of ≥, >,<,≤,=, 6=,+,−, ∗, div,

mod, and, or, =⇒ ,∈, 6∈
Replace Unary Operator O(u) u. . . # of −,+, abs, not,∀, ∃
Invert Boolean-Literal O(x) x. . . # of true/false in rhs of assignments
Replace Integer-Literal O(x) x. . . # of literals in rhs of assignments

mutants. Equivalent mutants are mutants that do not show any difference in
behaviour. In other words, they are observationally equivalent to the original
model. These mutants, which cannot lead to a test case, carry the maximum
penalty for TCG approaches based on exhaustive exploration. For example, in
our previous MoMuT::UML version, we spent 60% of the overall computation
time in checking equivalent mutants.

As a black-box TCG tool, MoMuT::UML requires a strong mutation testing
setting, which means that it can only consider a mutant detected (”killed”) if
the mutant showed a difference in the observable behaviour compared to the
original. The conformance relation we use for testing is Tretman’s input-output
conformance[17], which is defined over labelled transition systems and says that
any observation that can be made from the system under test (SUT) after a
particular trace must be predicted by the model. Notice that if the SUT only
produces a subset of the possible observables, it is still fine. For a formal defini-
tion of ioco and LTSs, we refer to Tretmans [17].

Figure 1 shows an overview of MoMuT’s architecture. The tool is distributed
as single .jar file and combines a front end, written in Java, with a back end
that is written in C++11. While the front end is responsible for checking the
input, the back end is doing the actual work. Notice that front- and back end
are separated via Google Protocol Buffers, so it is possible to use the back end
stand-alone. As input, MoMuT::UML may use UML state charts or Object-
Oriented Action Systems (OOAS). If a UML model – comprising state charts,
class diagrams, and instance diagrams – is used, MoMuT first translates it into
OOAS code [10]. The next step is to add mutations to the model. As can be
seen in the figure, this is carried out at the OOAS level. Applying mutations
directly to OOAS has the advantage of being applicable to all front-end languages
(not only UML). One might see the possibility of introducing ”semantic UML
mutations” as a drawback but since the UML to OOAS mapping preserves the
UML model’s structure nicely the vast majority of mutations have a 1:1 mapping
to UML. For example, the mutation operator disabling a guarded command maps
to disabling transitions in the UML model. Table 2 provides an overview of the
mutation operators used in the experiments described in this paper. After adding
mutations, the OOAS is compiled to native machine code and finally the test case
generation phase is started. Like all model-based testing tools, MoMuT delivers

5

Fig. 2: Example OOAS

test cases on the level of abstraction of the model – in other words abstract test
cases[19]. Hence before running any tests on the SUT, they might need to be
concretized. As a test case output format MoMuT currently uses the Aldebaran
format2 but also writes a dot-graph in addition.

2.1 The Input Language: Object-Oriented Action Systems

OOAS are a suitable modelling language as they have formal semantics, are
relatively simple, and well suited to express discrete state transition systems.
An example OOAS can be found on the web at www.momut.org. The language
is based on a generalisation of Dijkstra’s guarded command language [14] and
Back’s action system [5] formalism. It is similar to Event-B in some sense, al-
though less restrictive in terms of nesting of guarded commands and actions.
Figure 2 shows an example model in the syntax MoMuT::UML is parsing. Each
action system may declare attributes, methods, labelled actions, and one do-od
block that drives the execution. As long as one action in the do-od block can
be executed, the block keeps iterating. MoMuT::UML uses several extensions to
the original action system, one being labelled actions. An action can be marked

2 http://cadp.inria.fr/man/aut.html

www.momut.org
http://cadp.inria.fr/man/aut.html

6

Fig. 3: Decision graph of an OOAS generated from UML

”obs” (observable), ”ctr” (controllable) or neither, which means it is an inter-
nal action. Notice that we disallow recursion in OOAS and also do not provide
loops (with the exception of the do-od block). Instead, the language provides a
fold operator. All data types, including lists and integers, need to be declared
with bounds. Direct access to attributes of other objects is forbidden. Instead,
getter/setter methods are used.

Statements can be combined with sequential (”;”), non-deterministic (”[]”),
or prioritised (”//”) composition operators. Object instantiation is only allowed
upon attribute initialization as MoMuT::UML computes the set of live objects
statically at compile time. Late-binding is not supported. The language fea-
tures a way to express a simple scheduling policy: on a system basis, objects
can be given priority (”//”) over objects of other systems. A final feature of
the language is called projection. Given the statement var input: t UserAction:
c userAction(input) where t UserAction is an enumeration with values SetPause
. . . StopMeasurement, the system will try to execute c userAction with all pos-
sible values of t UserAction. Put differently, it is a shorthand for saying c user-
Action(SetPause) [] . . . [] c userAction(StopMeasurement).

The main difference between OOAS and conventional languages is the way
the sequential composition works together with guarded commands (”requires”).
If we had a statement requires (A): skip end; requires(B): skip end, the system
would first check whether A and B hold at the required times before execut-
ing the composed statement. The system, in other words, needs to compute
the enabledness of actions. For model-animation this means that some sort
of backtracking is mandatory. Also, as concurrency is expressed through non-
deterministic choice, an efficient exploration engine is needed when computing
all possible traces through the OOAS.

Given all the different ways of composing actions in non-sequential ways, it is
interesting to observe how many levels deep these structures usually are nested.
Figure 3 shows a cut from the decision graph taken from the big railway station
model. The red node is the initial block, which is part of the scheduler. This
is where execution starts. All the other, coloured, nodes represent backtrack-
ing/decision points. Grey nodes stand for prioritized composition, orange nodes

7

for non-deterministic composition, and purple ones for projections (the self loop
indicates the amount of values to try). White nodes indicate a terminal, sequen-
tial block. As can be seen, the UML mapping does not usually produce very
deep backtracking structures. However, this is a static view and does not take
into account operators like fold, forall, and exists in full detail.

3 An Architecture for Short Lived Mutants

Fig. 4: MoMuT::UML 3.x TCG Architecture

Compared to earlier generations of MoMuT::UML, the key architectural
changes are (a) native just-in-time compilation, (b) mutant compression through
schemata (c.f. [18]), (c) adoption of partial order reduction techniques, and (d)
dynamic instantiation of short-lived mutants. To facilitate these changes, the
back end was completely re-written with a clear focus on performance.

A first step towards this goal is to natively execute the OOAS model. This
is where MoMuT relies on the LLVM[11] compiler framework to compile the
model just-in-time. Since OOAS are inherently non-deterministic and in need of
backtracking, a first prototype inlined the code for the backtracking search into
the LLVM-Intermediate Representation (LLVM-IR) of the model. This, how-
ever, proved quite fragile (stack saving logic, inability to compare intermediate
states, fixed search algorithm), so we turned to a forward execution approach
instead. Forward execution means that there is no backtracking going on inside
the compiled model. Instead, during execution, the compiled model asks an ex-
ternal scheduler component, which is part of the runtime provided by MoMuT,

8

what alternative to take. This is done for one trace within the do-od blocks at
a time. In case the schedule leads the execution engine to some guarded com-
mand that is disabled, the run is aborted and the scheduler informed about the
result. In the simplified class diagram of Figure 4, classes FWTraceExecutor and
FWDfsScheduler build this basic execution framework. Notice that the forward
execution works in our case as the actions within one iteration of the do-od block
of a system do not compute highly complex mathematical functions. So the time
spent for re-computing partial results is negligible.

Using this simple trace-based execution framework as the basis, MoMuT::UML
succeeds in adding a generic explorer (FWExplorerGeneric) and one that takes
partial orders into account (FWPartialOrderExplorer) on top. To actually gener-
ate test cases, an instance of the class FWTcgGraphExplorer can be used. This
class takes an FWPartialOrderExplorer and adds logic for building up a test
graph. The logic that drives the short-lived mutation strategy is implemented in
FWOtfTaskmaster. This class owns a set of workers (FWOtfWorker) and man-
ages exploration tasks (FWOtfTask). Each worker runs in its own thread and
owns an instance of an FWOtfExplorer, a subclass of the FWTcgGraphExplorer.

In total, which means including the backtracking engine, MoMuT::UML
comprises about 74600 LoC Java, and 59300 LoC C++ codes. The Java-part
of the OOAS compiler was recently released under BSD and is available on
www.momut.org. We are currently looking into options of making the source of
the C++ backend available under some academic research license.

3.1 Mutant Schemata

For our short-lived mutant project, we needed a compiled model that, at each
point, included the information about possible mutants. Also, we wanted to limit
our calls of the LLVM JIT compiler to a minimum and required cheap mutant
instantiation at any given system state. This lead to the following design. First,
the mutation engine walks over the abstract syntax tree (AST) of the OOAS be-
fore it is turned into LLVM-IR. According to selection criteria that may be set
by the user, the mutation engine selects nodes in the AST and adds a mutation
annotation that essentially is an alternative AST with the mutation inserted.
Second, during LLVM-IR generation, a specialized code emitter looks at all the
mutation annotations and emits the additional code and additional calls into the
MoMuT::UML runtime library that determine whether the execution will follow
the original model or any of the mutations. Technically this is done by matching
mutant-IDs. The original model has the mutant-ID of 0, any real mutation a
value greater than this. When instantiating the FWTraceExecutor, a configura-
tion setting describes which mutation-ID should be enabled during execution.
This design makes it possible to enable a set of mutations at once, effectively
enabling MoMuT::UML to deal with higher order mutations. In this work, how-
ever, we always select one mutation-ID only. So in the end enabling or disabling
a mutation becomes setting an integer value in the configuration of the execu-
tion engine, which facilitates rapid mutant instantiations. Also, as the compiled

9

Algorithm 1 TCG With Short-Lived Mutants

procedure Generate(numTests, depthTest)
error ← 0
test← 0
while test < numTests do

master ← submitInitialTask() . Explore original until first choice
error ← waitForTaskCompletion()
if error 6= 0 then

break
end if
choiceString ← ””
choiceStates← master.getStartState()
choiceCount← 0
while choiceCount < depthTest do

queueLiveMutants(choiceString) . Schedule running mutants
queueNewMutants(choiceStates) . Add new mutants
error ← waitForTaskCompletion()
if error 6= 0 then

break
end if
filterMutants() . Killcheck!
selectNextInput(master, out choiceString, out choiceStates)
choiceCount← choiceCount+ 1

end while
writeTest(master, test)
test← test+ 1

end while
return error

end procedure

model asks the runtime which mutant to select, the runtime knows about all pos-
sible mutations on the current path and can decide whether to spawn a mutant
or not. Notice that we require the state structure to remain unchanged between
original and mutant, which restricts the set of possible mutation operators.

3.2 Test Case Generation With Short-Lived Mutants

Algorithm 1 sketches the main control loop MoMuT::UML uses to start/stop
mutants and find its way through the state space. The basic pattern this algo-
rithm follows is to explore the original model from a given state, e.g., the initial
state, up to the next choice point where the tester is required to select a visible
action. In other words, all internal actions and all observable actions that do not
warrant a choice on part of the tester are expanded automatically. During the
exploration of the original model, the number of candidate mutants is tracked.

Upon reaching the next choice point, exploration of the original model is
paused and new mutants are instantiated. Mutant instantiation not only is based
on the information gained when exploring the original but also takes the number
of already running mutants and a user-defined limit of a maximum number of
active mutants into account. After updating the list of active mutants, the system
re-plays the input, the original model was faced with, on all mutants. Next, the
mutants are filtered. All mutants that showed observables not predicated by
the original are considered killed and removed. All mutants that crashed during
execution are also removed. Also all mutants that reached identical states as the

10

original are removed and, finally, mutants that were live for too many steps (20)
are removed and marked as ”given up on”. Finally, MoMuT calls on a heuristic
to select a new input and explores the original model again, closing the loop.

Currently two different heuristics for selecting the next input are imple-
mented. The first heuristics just uses a weighted random choice over the set
of available actions. The heuristics guides the exploration in a sense that it pe-
nalizes already taken actions so as to prefer never-before selected actions over
already taken ones. The second heuristic selects a bounded subset of available
actions and explores all of them. Once done, the action leading to the most new
candidate mutations is chosen. In case none is available, the heuristics regresses
to the guided random choice described before.

4 Case Studies

Table 3: Properties of the Test Models

UML OOAS TCG

Model Time Objs Traces Stmnts Attrs State Size Ctrs Init-τ Init-S

M1 Y 1 55 · 106 362 34 0.3 8 2 · 103 4
M2 Y 2 108 · 109 748 98 0.8 8 3 · 103 2
M3 Y 1 41 · 103 877 64 0.5 26 1 · 102 2
M4 Y 2 3 · 103 1215 67 0.4 34 3 · 101 2
M5 N 151 3 · 103 3831 479 9.7 14 4 · 104 46
M6 N 125 2 · 103 4798 404 22.3 172 1 · 105 82
M7 N 2847 51 · 103 26385 3127 184.9 1652 8 · 107 2572

Time . Whether the UML model uses timed triggers, i.e. discrete time.
Objs.Number of instances in the UML model; Approx. parallel running state machines.
Traces Theoretical maximum for one dood block run. Fold being restricted one-element lists.
Stmnts . Number of OOAS-statements.
Attrs . Number of attributes, i.e. non-local/”class-level” variables.
State Size In KiB. Memory needed to hold all attributes of all instances; M7: lower bound.
Ctrs . Number of controllable events in the model.
Init-τ Number of traces necessary to expand all τs from the initial state, after POR.
Init-S. . . .Number of expansion steps necessary to expand all τs from the initial state, after POR.

Table 3 provides a comparison of some of the key properties of the test
models considered in this paper. Models M1 and M3 were already described in
previous publications [1,2,3] and remain unchanged, while M2 is a new model for
a use case also described in [3]. The table is separated into three main columns,
reading UML, OOAS, and TCG. The properties listed under the UML column
concern the UML model itself: whether the model uses timed triggers, and how
many objects are instantiated. For the majority of the models, the number of
objects corresponds to the number of parallel running state machines, with the

11

Fig. 5: Statechart of M1

exception of M5 that also instantiates non-active classes. Please note that we
only use UML state charts, class diagrams, and instance diagrams in this work.

Column OOAS in Table 3 lists key properties of the transformed UML mod-
els. In particular it shows the number of different execution traces that are
possible, considering the non-deterministically composed actions of the do-od
blocks. Notice that since MoMuT::UML supports lists, the OOAS models need
a way of iterating over them. As we disallow recursion and loops in OOAS, this
functionality is provided through a fold operator included in the language. The
number of traces reported, which in general is dependent on the number of times
the fold operator is applied on a list, assumes that all lists have a length of one
element. The second property shown is the number of statements, as found by
the OOAS-compiler. Finally, the number of attributes at a system-level is given.

Column TCG describes dynamic properties of the models. First, the size of
the state is given in KiB. For all models, except M7 this number is computed
as including the maximum length of all lists used as attributes and, hence, rep-
resents an upper bound. For M7 this number becomes meaningless (>8 MiB,
more than 9000 lists), hence we give the lower bound of the state size, assuming
all lists are empty. Second, the number of controllable events is reported. Con-
trollables are the inputs the tester can give a system under test (SUT). Some
models make heavy use of parametrized controllables, hence the number only is
an indication of the complexities involved. In particular M2 has parametrized
controllables that lead to more than 1600 possible inputs to the SUT. Third, the
number of traces the test-case generation engine needs to look at when expand-
ing all internal actions from the initial state is reported. Finally, the last column
shows the number of do-od block iterations that are necessary to expand-away
all internal actions starting from the initial state. Please note that the figures of
the last two columns are after partial order reduction (POR). In the remainder
of this section we introduce the use cases individually.

12

M1 – Alarm System. M1 is a simple model of a car alarm system. Previous
results with earlier generations of MoMuT and the model have been described
in, e.g., [1,3]. The sole complication offered by the model is the use of timed
triggers which implies fold-operations over lists. It also uses orthogonal regions
as can be seen in Figure 5.

M2 – Loader Bucket Implement. M2 models the control loop (including error
handling) of a bucket loader implement controller. The controller receives joy-
stick deflection values as inputs and computes output values that will drive valves
controlling the movements of the bucket. Although M2 is a rather small model, it
is highly complex, as can be seen in Table 3: due to heavily parametrized actions,
it requires the highest number of traces for one iteration of the do-od block. In
lieu of symbolic execution in MoMuT, we limited the inputs to manually defined
equivalence classes. Initial findings with previous versions of MoMuT and the
use case can be found in [3]. Please notice that the model used in the current
work differs from the ones used in [3]: M2 is a complete model of the system.
We do not resort to partial models, as we had to previously.

M3 – Measurement Device. M3 is a model of a remote control protocol of an
exhaust measurement device taken from industry. Our initial findings of test case
generation for M3 in an industrial context have been published previously [2].
Here, we use the same model with our new test case generation engine. In terms
of complexities posed, the model is slightly more complex than M1.

M4 – Automated External Defibrillator. M4 models the diagnostic logic of an
automated external defibrillator device. The properties can again be seen in
Table 3: although it features more statements than M3 it is less complex.

M5 – Safety Critical Systems Middleware. M5 is a model of a subsystem of
a safety critical systems middleware that is in production. In difference to the
other case studies, the model makes extensive use of UML-call-triggers and is
close to the actual implementation. Although it does not use timed triggers, it
uses discrete time internally: with the help of parametrized actions the tester is
in control of time progression. M5 instantiates a rather large number of objects
but behaves rather synchronously due to the extensive use of call triggers. The
computational overhead due to the low level of abstraction is significant.

M6, M7 – Railway Interlocking Systems. M6 and M7 are instantiations of a
railway interlocking system. They consist of two UML models each: one shared
general model that defines all classes and data structures, and one that instan-
tiates the objects needed for the station. While M6 represents a minimal station
that allows trains to pass one another, M7 is a model of a railway station lo-
cated in Lower Austria. Its layout is shown in Figure 6 and comprises 37 track
sections, 56 track relays, 34 switches, 22 main signals, and 145 train routes the
operator can select from. M6, in contrast, only comprises 10 track sections, 4
track relays, 2 switches, 6 main signals, and 10 train routes. Both models are

13

Fig. 6: Station Layout of M7

Fig. 7: Station Layout of M6

highly non-deterministic due to networks of 2847 (M7), and 125 (M6) parallel
running state machines. The state machines are used to model both, physical,
as well as logical entities, such as train routes. Neither M6 nor M7 includes time
or parametrized actions. However, both models make extensive use of lists and
forall/exists quantifiers. For example, M7 includes more than 9000 lists in the
state, has more than 50 exists quantifiers and over 100 forall quantifiers that
have a maximum nesting depth of five. In addition, both models have a long ini-
tialisation sequence of partially ordered observable actions before controllables
appear. M7, for example, requires MoMuT to look at 83,389,266 traces only to
compute the first – and most expensive – step in this long sequence. In total
the initialisation sequence comprises 264 steps. Only after this initialisation se-
quence is complete can MoMuT start creating inputs that check the interlocking
logic. Notice that M7 was directly derived from the original station data used to
configure the computerized interlocking system in charge of the station. As such
it represents the most complex model presented in this work.

5 Experimental Evaluation

We run the evaluation benchmarks on two different servers. The first machine
is equipped with two 6-core Intel Xeon X5690 CPUs clocked at 3.47 GHz. This
machine offers 24 logical cores. The second server features two 10-core Intel
Xeon E-2680 v2 CPUs clocked at about 2.80 GHz and offers 40 logical cores.
Both servers are backed by 192 GiB RAM. That said, we only used about 100
GiB of RAM even when running 40 workers in parallel. Due to excessive logging,
MoMuT::UML proved to be I/O-bound for the small models on the small server.

Table 4 presents the main results of our evaluation. Each row stands for a
TCG run that generated three test cases with a depth of 150 choices each. We
chose these values mainly to be comparable to our previous publications. Unfor-
tunately, the long running TCG process for M2 triggered a bug in MoMuT on
the 40-core server which caused the tool to only generate one test case. Therefore
these figures are set italic. Notice that for the larger models the generation of

14

Table 4: TCG Evaluation Results
Mutants % Kills

Model Strat. Workers Total Found Exec-Err Killed Skipped Given Up Total Found

M1
S1 24

323
303 15 272 0 16 88.3 94.4

S1 40 303 15 267 0 21 86.7 92.7
S2 40 303 15 261 0 27 84.7 90.6

M2
S1 24

1417
1089 77 850 111 51 63.4 90.0

S1 40 856 37 (5) 310 484 25
S2 40 996 27 (3) 319 625 25

M3
S1 24

1297
1145 25 1103 8 9 86.7 98.5

S1 40 1145 25 1098 0 22 86.3 98.0
S2 40 1145 25 1116 14 19 87.7 99.6

M4
S1 24

1142
810 21 781 0 8 69.7 99.0

S1 40 810 21 775 0 14 69.1 98.2
S2 40 835 21 801 0 13 71.5 98.4

M5
S1 24

1505
635 55 (9) 389 0 191 26.8 67.1

S1 40 724 108 (39) 426 0 190 30.5 69.2
S2 40 725 90 (22) 474 0 161 33.5 74.6

M6
S1 24

2044
802 23 661 76 42 32.7 84.9

S1 40 802 23 (2) 654 41 84 32.4 84.0
S2 40 832 23 (2) 680 40 89 33.7 84.1

M7
S1 24

3524
1601 30 1496 47 28 42.8 95.2

S1 40 1601 37 (11) 1495 2 67 42.9 95.6
S2 40 1751 37 (11) 1637 12 65 46.9 95.5

Rows represent the results of TCG runs that generated 3 test cases with 150 choices each. Strategy
S1 represents the guided random approach, strategy S2 the not-yet-encountered mutants based

one. Figures in parenthesis indicate how many of the execution errors are due to time-out. Skipped
means mutants found but never scheduled. Figures in italic indicate one generated test case only.

only three test cases is expected to result in a less-than-desired total mutation
coverage, as the amount of possible behaviour increases sharply. As a further
remark let us say that we know to have mutations in dead code in M6 and M7.
This is due to the fact that these instances build upon a shared, general railway
model and our UML to OOAS translation engine is not clever enough to remove
all dead code. This is also corroborated by the fact that the bigger model M7,
that uses more model elements, has the better total mutation coverage than M6.

As the table shows, our proposed methodology works surprisingly well: if
MoMuT is able to find a mutant, it is very likely killed. Table 5 shows a summary
of how many steps are needed for a kill. The data confirms our focus on short
lived mutants, as most of the kills happen early on. For the smaller models we can
also report a very solid total mutation coverage often beyond 85%. These results
also have to be seen in the context of the total TCG time: it took MoMuT 104
seconds to generate the test cases (S2) for M1 on the big machine with 40 workers.
The tool was done with M3 in 320 seconds on the same machine, achieving a
total mutation coverage of about 88%. The three tests for M7 were completed
in 22.6 hours, which means it took MoMuT about 7.5 hours per test. Most of
the cost actually lies in the computation of the station-initialization: as each

15

Table 5: TCG Time And Number of Steps To Kill
Time (h:m:s) S1: Killed in Step# S2: Killed in Step#

Model S1 S2 0-4 5-9 10-14 15-19 20 0-4 5-9 10-14 15-19 20

M1 00:01:21 00:01:44 241 3 23 0 0 255 6 0 0 0
M2 19:30:22 - 850 0 0 0 0 - - - - -
M3 00:02:32 00:05:20 1094 4 0 0 0 1109 0 7 0 0
M4 00:02:18 00:03:16 767 0 0 8 0 788 8 0 5 0
M5 00:32:49 00:30:18 400 16 8 0 2 447 3 24 0 0
M6 00:13:24 00:22:34 647 1 4 2 0 675 2 2 0 1
M7 17:09:24 22:37:33 1493 2 0 0 0 1633 2 2 0 0

Data given for runs with 40 workers and a cut-off mutant exploration time of 2*time(orig) + 3
min, except for M2 which is data from an unconstrained run with 24 workers.

element moves into its starting position, MoMuT is faced with a huge amount
of concurrency. It goes without saying that this can be easily optimized away by
using the state after the initialization as initial state. Hence the figures presented
here are the worst case. Compared to pure random TCG, which generates one
random test with 150 choices in about 2.5 hours, strategy S2 is about three times
more expensive. This is due to mutants taking longer to compute but also due
to the CPU clocking lower when reaching its package power limit. Notice that
we allow mutants to only take the double amount (plus three minutes) of the
time the original model needed to complete the step. This is mostly to recover
from mutants stuck in internal, i.e. tau, loops.

0

10

20

30

40

50

60

70

1 11 21 31 41 51 61 71 81 91

St

at
e

s

Visits

S1

S2

(a) M1

0

5000

10000

15000

20000

25000

30000

35000

40000

1 11 21 31 41 51 61 71 81 91 101 111 121

St

at
e

s

Visits

S1

S2

(b) M7

Fig. 8: Number of times states have been visited.

During the evaluation we also tracked the states MoMuT was exploring.
Figure 8 shows the resulting number-of-visits vs. number-of-states graphs for M1
and M7 and both strategies. As can be seen in the figure, strategy S2 increased
the number of visited states when compared to S1. In total, MoMuT explored
185 states of the original model M1 given strategy S1. This number increased
to 217 states when switching to strategy S2. For M7 the figures look similar:
strategy S1 made MoMuT find 39 539 unique states when exploring the non-
mutated model. Switching to strategy S2 increased this number to 7 113 946
states. The latter figure seems surprising and needs additional review, however,

16

the experiments yielding this data were run on the big server. Hence strategy S2
was exploring 40 actions in parallel when trying to find the best next candidate
action. Except for strategy S2 in M1 the plots in Figure 8 look as we would like
them to be: the majority of states was only visited a couple of times.

RQ1: Can we apply MDTCG to industrial-sized models at a cost (time, resources)
the user would be willing to accept? Based on the results, we think we can argue
that, indeed, we are able to handle industrial-sized models at a cost that is
acceptable. Even the biggest models with thousands of parallel running state
machines were easily handled by one computer within a time and memory budget
adequate to the model size. None of the seven use cases needed more than a day
of computation time, with the majority of cases actually less than 20 minutes.
Of course there always is room for further optimization, however, MoMuT::UML
3.0 proves a strong base line.

RQ2: Do we retain enough fault coverage for the tool to be useful? In case of
the smaller models and the chosen test case generation settings, we retained
enough fault coverage. For the bigger models, we did not achieve the amount
of fault coverage we deem is necessary. Most probably, this is due to only three
test cases of limited depth being generated. A more thorough analysis is needed
to confirm this hypothesis and also rule out mutations in dead code skewing
the result. All in all, we argue the outcome shows our approach to be effective:
especially the concept of ”short-lived concurrent” mutants proved its value as
any mutant that was instantiated was killed with high probability. So, yes, in
principle we retain enough fault coverage for the tool to be useful, albeit we need
to extend the test case generation algorithm slightly so it considers the number
of not-yet-seen mutations as a stopping criterion.

RQ3: Given our two different guidance heuristics, are both equally suitable?
From the figures, it seems both heuristics behave roughly the same with S2
having only a slight advantage. This result is unexpected and needs further in-
vestigation. As S2 is quite a bit more expensive to run, it should also lead to
better mutation coverage. Why this was not the case remains unclear. Hence,
further research is necessary.

Threats to Validity. (A) Our results clearly depend on the selected mutation
operators. For the experiments shown, we chose a standard set that should be
representative. We are aware that more intricate mutants may be created. (B)
The results also depend on the number of mutations in several ways (c.f.[4]): a
high number of mutations increases the likelihood of finding some but it also
increases the amount of mutations in dead code. (C) Our experiments are based
on guided random heuristics that may perform differently depending on the
random number generator. (D) Knowing the needed depth to achieve a high
kill-ratio can shift the balance. We have tried to find some middle ground by
using a depth that should cover the simple models nicely but is not enough for the
bigger models. (E) Although we present seven quite different case studies, this

17

is still a sample and might not be representative (enough). (F) Software bugs.
To reduce any potential issue related to bugs, we carefully checked the results,
re-run outliers under close supervision and with different settings, and scanned
the log files for output we could not explain and that needed investigation.

6 Related Work

The most recent work that is close to ours, is the article of Just et al. [9]. In
their work, the authors optimize the mutation testing problem of Java programs.
One of their contributions is a dynamic pre-pass that checks which mutant-
test combination can be safely left out of actual test execution runs. To do
so, the authors instrument the original Java program, run the tests and use a
runtime library to track whether, e.g., an expression within the program would
compute a different value given the presented test inputs and mutation operators.
Based on this information, the authors can decide to not run certain test-mutant
combinations. The authors also use mutant schemata to reduce the compile
time of the mutants. Infected states, as Just et al. call local modified states
of the mutant, are also checked for in MoMuT::UML. Once MoMuT::UML has
instantiated a mutant it will check at the next choice point whether the state
is different to the original or not. Based on this result MoMuT will keep the
mutant or remove it from the set of live mutants.

The MuTMuT tool[7] also tries to optimize the mutation testing problem.
Given a test suite and a multi-threaded program it tries to learn which mutations
the tests are able to reach. Similar to MoMuT it uses mutants that are started
from a given state of the original program.

As stated in the survey of McMinn et al. [12], work done in the general area of
search based testing picked up in recent years. For example related to mutation
testing, Papadakis et al. show in [16] that a basic hill climbing algorithm already
leads to good results for mutation based test case generation of C programs. We
also want to point the reader to an excellent survey of mutation testing in [8].

7 Conclusions and Outlook

We presented the third generation of MoMuT::UML that concentrates on scaling
up MDTCG to industrial-sized use cases. We demonstrated the applicability
with the help of seven UML models, the largest being a model of a railway
station and comprising over 2800 parallel running state machines. Answering
our research questions, we have shown that we can apply MDTCG at acceptable
cost (time and resources) on the basis of the case studies. We also demonstrated
that MoMuT::UML is able to achieve a good fault coverage provided the number
and depth of the test cases match the complexity of the model. That said, we
also identified the need to improve our guidance heuristics especially for complex
models. From the two proposed guidance heuristics, S2 had a slight advantage
over S1 on the more complex models but this was not a decisive advantage.

18

Compared to previous generations of MoMuT::UML, the presented version
is a big leap ahead. It achieves comparable mutation coverage on the models
previous generations were able to handle in less time and also succeeds in han-
dling models hundreds of times more complex. Future tool-improvements will
concentrate on including more expensive, i.e. formal, approaches to boost the
total mutation detection ratio once the presented heuristics become ineffective.
It is planned to integrate symbolic exploration techniques and to add further
search strategies and fitness functions like distance metrics to the tool. During
the evaluation, we also identified possible task-scheduling improvements in the
presented algorithm.

Acknowledgments

The authors want to acknowledge the partners from industry supplying and help-
ing to build the models. Especially to mention are Werner Schütz, Peter Tum-
meltshammer and colleagues. This paper would not have been possible without
their continued support. The authors also want to acknowledge Bernhard Aich-
ernig’s group at Graz University of Technology for their continued cooperation.
The research leading to these results has received funding from the European
Union’s Seventh Framework Program (FP7/2007-2013) for CRYSTAL Critical
System Engineering Acceleration Joint Undertaking under grant agreement #
332830 and from the Austrian Research Promotion Agency (FFG) on behalf of
the Austrian Federal Ministry for Transport, Innovation and Technology.

References

1. B. Aichernig, H. Brandl, E. Jöbstl, W. Krenn, R. Schlick, and S. Tiran. Mo-
Mut::UML model-based mutation testing for UML. In Software Testing, Verifi-
cation and Validation (ICST), 2015 IEEE 8th International Conference on, pages
1–8, April 2015.

2. B. K. Aichernig, J. Auer, E. Jöbstl, R. Korošec, W. Krenn, R. Schlick, and
B. Schmidt. Model-based mutation testing of an industrial measurement device.
In M. Seidl and N. Tillmann, editors, Tests and Proofs, volume 8570 of Lecture
Notes in Computer Science, pages 1–19. Springer International Publishing, 2014.

3. B. K. Aichernig, H. Brandl, E. Jöbstl, W. Krenn, R. Schlick, and S. Tiran. Killing
strategies for model-based mutation testing. Software Testing, Verification and
Reliability, Feb. 2014.

4. P. Ammann, M. E. Delamaro, and J. Offutt. Establishing theoretical minimal sets
of mutants. In Proceedings of the 2014 IEEE International Conference on Software
Testing, Verification, and Validation, ICST ’14, pages 21–30, Washington, DC,
USA, 2014. IEEE Computer Society.

5. R.-J. Back and R. Kurki-Suonio. Decentralization of process nets with centralized
control. In PODC, pages 131–142. ACM, 1983.

6. G. Fraser, F. Wotawa, and P. Ammann. Issues in using model checkers for test
case generation. Journal of Systems and Software, 82(9):1403 – 1418, 2009.

19

7. M. Gligoric, V. Jagannath, and D. Marinov. MuTMuT: Efficient exploration for
mutation testing of multithreaded code. In Software Testing, Verification and
Validation (ICST), 2010 Third International Conference on, pages 55–64. IEEE,
2010.

8. Y. Jia and M. Harman. An analysis and survey of the development of mutation
testing. Software Engineering, IEEE Transactions on, 37(5):649–678, 2011.

9. R. Just, M. D. Ernst, and G. Fraser. Efficient mutation analysis by propagating
and partitioning infected execution states. In Proceedings of the 2014 International
Symposium on Software Testing and Analysis, pages 315–326. ACM, 2014.

10. W. Krenn, R. Schlick, and B. K. Aichernig. Mapping UML to labeled transition
systems for test-case generation - a translation via object-oriented action systems.
In F. S. d. Boer, M. M. Bonsangue, S. Hallerstede, and M. Leuschel, editors, Formal
Methods for Components and Objects - 8th International Symposium, FMCO 2009,
Eindhoven, The Netherlands, November 4-6, 2009. Revised Selected Papers, volume
6286 of LNCS, pages 186–207. Springer, 2009.

11. C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program
analysis and transformation. pages 75–88, San Jose, CA, USA, Mar 2004.

12. P. McMinn. Search-Based Software Testing: Past, Present and Future. In 2011
IEEE Fourth International Conference on Software Testing, Verification and Val-
idation Workshops (ICSTW), pages 153–163, Mar. 2011.

13. L. Morell. Theoretical insights into fault-based testing. In , Proceedings of the
Second Workshop on Software Testing, Verification, and Analysis, 1988, pages
45062–, 1988.

14. G. Nelson. A generalization of Dijkstra’s calculus. ACM Trans. Program. Lang.
Syst., 11(4):517–561, 1989.

15. A. J. Offutt and J. M. Voas. Subsumption of condition coverage techniques by
mutation testing. Technical report, Dept. of Information and Software Systems
Eng., George Mason Univ., 1996.

16. M. Papadakis and N. Malevris. Killing mutants effectively a search based approach.
In M. Virvou and S. Matsuura, editors, Knowledge-Based Software Engineering -
Proceedings of the Tenth Conference on Knowledge-Based Software Engineering,
JCKBSE 2012, Rodos, Greece, August 23-26, 2012, volume 240 of Frontiers in
Artificial Intelligence and Applications, pages 217–226. IOS Press, 2012.

17. J. Tretmans. Test generation with inputs, outputs and repetitive quiescence. Soft-
ware - Concepts and Tools, 17(3):103–120, 1996.

18. R. H. Untch, A. J. Offutt, and M. J. Harrold. Mutation analysis using mutant
schemata. In Proceedings of the 1993 ACM SIGSOFT International Symposium
on Software Testing and Analysis, ISSTA ’93, pages 139–148, New York, NY, USA,
1993. ACM.

19. M. Utting and B. Legeard. Practical Model-Based Testing: A Tools Approach.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2007.

	Mutation-driven Test Case Generation Using Short-lived Concurrent Mutants

